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1 Introduction

In this note, we present some theoretical results useful for inference on a population Lorenz

curve for income and expenditure distributions, when the population density of the distribu-

tion is not (uniformly) bounded away from zero, and potentially has thick tails. Our approach

is to de�ne Hadamard di¤erentiability in a slightly nonstandard way, and using it to establish

a functional delta method for the Lorenz map. Our di¤erentiability concept is nonstandard

in that the perturbation functions, which are used to compute the functional derivative, are

assumed to satisfy certain limit conditions. These perturbation functions correspond to a

(nonparametric) distribution function estimator. Therefore, as long as the employed estima-

tor satis�es the same limit conditions, which we verify in this paper, the delta method and

corresponding asymptotic distribution results can be established.

For verifying these limit conditions, we establish novel (simultaneous) uniform conver-

gence results for a (smoothed) distribution function estimator and its corresponding density

estimator using a so-called boundary kernel. We allow the left end point of the support to

be bounded, which is a natural feature of income and consumption distributions, e.g. due
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to presence of minimum wages in the case of income or due to minimum expenditure re-

quired for sustenance in the case of consumption. If the support has a �nite boundary point,

nonparametric estimators with a usual symmetric kernel incur the so-called boundary bias,

resulting in inconsistency. The use of a boundary kernel allows us to overcome the boundary

bias problem and establish uniform convergence of our nonparametric estimators.

The above uniform convergence results are used here as intermediate steps to establish

the delta method for the Lorenz curve. But they are interesting in their own right and can

be used in other contexts. For instance, consider semi/nonparametric problems that involve

multiple estimation steps as in the case of partially-linear regression, nonparametric regres-

sion with generated regressors, and matching estimators, c.f. Andrews (1994), and Hahn and

Ridder (2012). In these problems, it is often the case that the entire functional form of prelim-

inary kernel based estimators determine �nal semi/nonparametric estimators, and thus their

uniform convergence is required to establish the asymptotic distributional results of the �nal

estimators. When the support of relevant variables has a �nite end point, one has to employ

some boundary correction method; otherwise, the uniform convergence of the (preliminary)

kernel estimators fails, resulting in inconsistency of the �nal estimators. Indeed, these issues

seem to have been ignored in some previous papers on semiparametric problems. For the case

with no boundary bias problem, various useful uniform results of kernel estimators have been

developed in the literature (e.g., Hansen, 2008), but the corresponding results for boundary

corrected kernel estimators have not been formally investigated; our new uniform results �ll

this gap. Our application of the above results to the Lorenz curve also extends and modi�es

a previous claim in Bhattacharya, (2007 Claim 1), by resolving some technical issues that

arise in establishing di¤erentiability when the density of the income distribution declines to

zero with thick tails, e.g. a Pareto distribution. Finally, Fang and Santos (2015) have gener-

alized the Delta method under directional Hadamard di¤erentiability, which is signi�cantly

weaker than standard Hadamard di¤erentiability, in that it does not require linearity of the

functional derivative. While the notion of functional di¤erentiability we consider here is also

weaker than standard Hadamard di¤erentiability, it is di¤erent from their generalization; the

functional derivative of the Lorenz curve in our case does indeed satisfy linearity. In indepen-

dent work, Kaji (2017) has derived Hadamard di¤erentiability results for general L-statistics,

which provide an alternative way to establish an asymptotic distribution theory for Lorenz

curves.

The rest of this paper is organized as follows. In the next section, we discuss our weaker

notion of the functional di¤erentiability for the Lorenz curve and verify its di¤erentiability

under a set of high-level conditions. Section 3 introduces a new kernel based nonparametric
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estimator, and investigates its uniform convergence properties, which are also of independent

interest. Finally, we verify that our new estimator indeed satis�es the high level conditions

for the di¤erentiability and discuss the functional delta method for the Lorenz curve. All

proofs can be found in the Appendix.

2 Functional di¤erentiability of the Lorenz curve

In this section, we introduce our basic setup and establish di¤erentiability of the Lorenz

curve. To this end, let F (�) be the cumulative distribution function (CDF) of a random
variable X with support [l;1), where the left end point l is supposed to be �nite and known
to researchers, e.g. the minimum wage in case of income. To �x ideas, we will suppose from

now on that X is individual income. We also set l = 0 for notational economy.

Let � be a mapping from a [0; 1]-valued, non-decreasing, continuous function F (�) on
[0;1) to a continuous function � (F ) (�) on [0; 1] de�ned as

� (F ) (p) :=

Z p

0
F�1 (u) du; (1)

where F�1 (u) := infx2[0;1) fF (x) � ug. We show that this mapping � is Hadamard di¤er-
entiable in a restricted sense that [�(Ft) � �(F )]=t has a well de�ned limit when a class of
perturbed functions, fFt (�)gt2(0;1], satis�es certain limit conditions as t ! 0 (presented as

C.2 below), where Ft (�) is de�ned as Ft (�) := F (�) + tht (�) through a class of functions,
fht (�)gt2(0;1], and F (�) is the limit of Ft (�) at which the derivative of � is computed.

The usual de�nition of the Hadarmard di¤erentiability (e.g., Section 20.2 of van der Vaart,

1998) requires that the convergence of [�(Ft)��(F )]=t take place for every fht (�)g converg-
ing to h (�). In contrast, our strategy to show the di¤erentiability of � is to impose some

restrictions on limit behavior of fht (�)g or equivalently that of fFt (�)g. This is innocuous
for our eventual purpose of applying the functional Delta method. We consider a particular

nonparametric estimator of the cumulative distribution function (CDF) F (�) in the next sec-
tion, which corresponds to the class of fFt (�)g, where the index t corresponds to the sample
size n in that t! 0 is interpreted as 1=

p
n! 0. It turns out that our estimator satis�es such

limit behavior (C.2), as shown in the next section. Therefore, it is su¢ cient to establish

Hadamard di¤erentiability in the restricted sense.

We impose the following conditions on the CDF F (�) at which the derivative of � is
de�ned and on the set of functions fFt (�)g = fFt (�)gt2(0;1]:

C.1 Let F (�) be a cumulative distribution function (CDF): [0;1)! [0; 1), and it satis�es the

following properties: i) F (�) is continuously di¤erentiable with its probability density

3



function, f (x) = (d=dx)F (x), satisfying

sup
x2[0;1)

f (x) <1, and f (x) > 0 for each x 2 [0;1):

ii) There exists some non-increasing function g (�) : [0;1) ! (0;1) such that f (x) �
g (x) (> 0) and Z 1

0
[1� F (x)] [f (x) =g (x)] dx <1:

C.2 i) For each t 2 (0; 1], Ft (�) is a CDF on [0;1) that is continuously di¤erentiable and
has the derivative ft (x) at each x 2 [0;1) (f (0), the derivative of F (x) at x = 0, is
interpreted as a one-side, right derivative).

ii) For the function g(�) introduced in C.1, let

Qt (u) :=
1� u

g
�
F�1t (u)

� ;
where F�1t (u) := infx2[0;1) fFt (x) � ug. For some (su¢ ciently small) � > 0, fQt (�)gt2(0;�]
is uniform integrable (with respect to the Lebesgue measure on [0; 1]).

The monotonicity condition on g (�), i.e. (ii) of C.1 does not allow for f (0) = 0. While
this case might also be accommodated by suitably restricting behavior of f (x) at and near

x = 0, the condition of f (0) > 0 does not appear restrictive for income distributions and is

maintained throughout the paper, which makes our proof arguments simple and transparent.

The integrability condition (ii) of C.1 implies the existence of the �rst moment of X since

f (x) =g (x) � 1 and E [X] =
R1
0 [1� F (x)]dx.

As for the condition ii) of C.2, we say that fQt (�)gt2(0;�] uniformly integrable if

lim
�!1

sup
t2(0;�]

Z 1

0
1 fQt(u) � �gQt(u)du = 0;

which is the standard de�nition (for the �nite-measure case) in the literature. For a �xed

� > 0, C.2 allows us to de�ne a space/class of functions, say, denoted by �D�[0;1). In view of

this, the di¤erentiability in our restricted sense may be regarded as the standard Hadamard

di¤erentiability of a mapping from �D�[0;1) to the set of continuous function on [0; 1]. However,

since we may take any arbitrarily small �, we may interpret ii) as a condition on the limit

behavior of Qt (�) as t! 0.

A su¢ cient condition of the uniform integrability (UI) condition ii) is that for some � > 0,

lim sup
t!0

Z 1

0
f[1� Ft (x)] =g (x)g1+�ft (x) dx <1; (2)
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which is veri�ed for our speci�c estimators in Theorem 3 below. The su¢ ciency follows from

the Markov inequality and the fact thatZ 1

0
Q1+�t (u)du =

Z 1

0
f[1� Ft (x)] =g (x)g1+�ft (x) dx; (3)

which follows from change of variables with u = Ft (x) (we refer to, e.g., Equation (1)

and Footnote 3 of Falkner and Teschl, 2012 for change-of-variables formulae when Ft (�) is
nondecreasing but may not be strictly increasing).1 The condition of (2), though nonstandard

as a condition for di¤erentiability, is satis�ed for a kernel based estimator of F (�) under a
set of reasonable conditions, as we will see in the next section.

Given these, we can verify the di¤erentiability of �:

Theorem 1 Let � be the mapping (see 1), F (2 �D[0;1)) 7! � (F ) (2 C[0;1]), where �D[0;1) is
the space of cumulative distribution functions on [0;1) (equipped with the sup norm) each
element of which satis�es the conditions in C.1, and C[0;1] is the set of continuous functions

on [0; 1] (equipped with the L1 norm). Let D� be the space of all realized sample paths of a

F -Brownian bridge (i.e., h
�
F�1 (�)

�
2 D� is a standard Brownian bridge on [0; 1]).

Then, � is Hadamard di¤erentiable at F tangentially to D� in the following sense: there

exists a linear functional h 7! �0F (h) := �
R p
0
h(z(u))
f(z(u))du such that



� (F + tht)� � (F )t

� �0F (h)





L1

! 0 as t # 0,

for any fht (�)gt2(0;1] with ht (�) converging uniformly on [0;1) to h (�) 2 D� and Ft (�) =
F (�) + tht (�) being an element of the functional class fFt (�)gt2(0;1] satisfying the conditions
in C.2.

3 Construction of a smooth distribution function Estimator

In this section, we construct an estimator that satis�es all the conditions of Theorem 1. In

practical inference procedures, the set of the perturbation functions fFt (�)g of the theorem
1 It in general holds that F�1t (Ft (x)) � x, with equality holding when Ft (x) is strictly increasing. However,

on the region when Ft (x) is not strictly increasing (i.e., �at), we have F�1t (Ft (x)) < x but at the same time

ft (x) = 0. That is, only the set of x with F�1t (Ft (x)) = x contribute to the calculation of the integral:Z 1

0

Q1+�t (u)du =

Z 1

0

(
[1� Ft (x)]

g
�
F�1t (Ft (x))

�)1+�

ft (x) dx;

leasing to (3).
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corresponds to a sequence of estimators of the CDF F (�) (with its index being sample size
n). Given a set of i.i.d. observations from the CDF F , fXig = fXigni=1, we present a feasible
nonparametric kernel based estimator F̂ (�) of F (�). Note that the index t 2 (0; 1] of fFt (�)g
may correspond to the sample size n; in particular, t ! 0 is interpreted as 1=

p
n ! 0. For

consistency of notation, we let t = 1=
p
n and subsequently interpret

Ft (�) = F1=pn (�) = F̂ (�) : (4)

As is evident from Theorem 1 and its conditions (C.1-C.2), our veri�cation of the func-

tional di¤erentiability of � requires the existence of the densities of the true F and perturbed

Ft (equivalently, the estimator F̂ ). This requires the estimator F̂ (x) to be smooth and

possess derivative f̂ (x) = (d=dx)F̂ (x). Therefore, we cannot use the empirical distribu-

tion function, (1=n)
Pn
i=1 1 fXi � xg, which is discontinuous by construction. Instead, we

consider a kernel-based smooth estimator f̂ (x) and de�ne our estimator of the CDF as the

following smoothed empirical distribution function (SDF):

F̂ (x) :=

Z x

0
f̂ (y) dy: (5)

For the construction of f̂ (�), we need to take into account the boundedness of the left-end
point of the support of F (�), which is zero. When the support has a �nite end point, it is
known that the standard (Parzen-Rosenblatt type) kernel density estimator is not uniformly

consistent over the entire support. The bias of the usual/standard kernel estimators with a

symmetric kernel does not vanish (as n!1) at and near the boundary. This is because the
support of the kernel function exceeds that of the function to be estimated �the so called

boundary bias problem. While the convergence of the density functions fft (�)g to f (�) is
itself not necessarily required in Theorem 1, the inconsistency of the density estimator carries

over to that of the CDF estimator, which is de�ned through integration as in (5), resulting

in the violation of the conditions of Theorem 1. In particular, in our proof strategy, it does

not appear possible to verify C.2 without the uniform convergnece property of the density.

To overcome this problem, we introduce a so-called boundary kernel, i.e., a kernel function

whose shape changes/adapts according to the location x. This shape adapting property

guarantees the uniform convergence of the estimator over the entire support [0;1) as shown in
Theorem 2. Speci�cally, for a kernel function K (u) with

R1
�1K (u) du = 1, whose conditions

are provided below, we let a0 (p) :=
R p
�1K (u) du and de�ne the following boundary kernel

(indexed by x=bn):

Kx=bn (u) :=
1

a0 (x=bn)
K (u) ; (6)
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where b = bn > 0 is a bandwidth/smoothing parameter tending to zero as n ! 1 (the

bandwidth is set as a parameter depending on n, selected by a researcher but its dependence

on n is suppressed subseqently for notational simplicity). Given this, our �rst boundary

corrected density estimator is de�ned as

f̂B (x) :=
1

nbn

nX
i=1

Kx=bn

�
x�Xi
bn

�
; (7)

which depends on x and bn through two routes, a0 (�) andK (�). While this estimator possesses
the desirable consistency property uniformly over x 2 [0;1), it does not integrate to one.
Thus, if we de�ne a CDF estimator as

F̂B (x) :=

Z x

0
f̂B (y) dy; (8)

[1� F̂B (x)] may not approach zero as x!1; thus it is uncertain if we can indeed verify the
condition (2) in C.2 (if we set Ft (x) = F̂B (x)).2 We therefore consider normalizing f̂B (x)

by F̂B (1) :=
R1
0 f̂B (y) dy. That is, we de�ne our further modi�ed density estimator as

f̂(x) :=
f̂B (x)

F̂B (1)
; (9)

Given this (9) and the de�nition of (5), our CDF estimator can be written as

F̂ (x) =
1

F̂B (1)nbn

nX
i=1

Z x

0
Ky=bn

�
y �Xi
bn

�
dy: (10)

Another boundary corrected CDF estimator has also been considered in Tenneiro (2013).

In our setup/notation, his estimator may be interpreted as the one corresponding to F̂T (x) :=
1
nbn

Pn
i=1

R x
0 Kx=bn

�
y�Xi
bn

�
dy (note that his estimator is based on a more general boundary

kernel). This F̂T (x) and our F̂ (x) are similar but di¤er in two respects: Firstly, F̂T (x)

may not satisfy F̂T (1) = 1 as it does not have a normalization factor (while this can be

easily modi�ed); secondly and more importantly, the integration of the kernel function for

F̂T (x) over [0; x] does not concern the �index�variable x=bn, while that for our estimator

does so. This point may be understood by comparing the summands in F̂T (x) and ours,

say,
R x
0 Kx=bn

�
y�Xi
bn

�
dy and

R x
0 Ky=bn

�
y�Xi
bn

�
dy. This di¤erence leads to two consequences:

1) F̂T (x) is easier to compute, which usually has a closed-form expression, but our F̂ (x)

may not, often requiring numerical integration (even for a usual/simple underlying kernel

2We can see this point through the following: F̂B (1) = 1
n

Pn
i=1

R1
�Xi=h

1
a0(w+Xi=h)

K (w) dw (by

changing variables); and if if K (�) is symmetric, it holds that
R1
�Xi=h

1
a0(Xi=h)

K (w) dw = 1 but notR1
�Xi=h

1
a0(w+Xi=h)

K (w) dw =
R1
�Xi=h

1
a0(Xi=h)

K (w) dw in general.
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function K (�)); 2) The derivative of F̂T (x), f̂T (x) = (d=dx) F̂T (x), may not be consistent

for f (x), which may hamper the veri�cation of the conditions of Theorem 1. In general,

boundary correction requires di¤erent boundary kernels for estimating an original function

and its derivative (c.f. the local linear method produces an estimator for a target function

and one for its derivative but the latter is not de�ned as the derivative of the former; see

also discussions in Section 8 of Jones, 1993). In contrast, our CDF estimator F̂ (x) and its

derivative f̂(x) = (d=dx) F̂ (x) are uniformly consistent, as shown in Theorem 2, which is a

natural consequence of our construction of F̂ (x) as the integral of the consistent estimator

f̂ (x). This simultaneous consistency property may be conveniently used in verifying the

conditions of Theorem 1 (this task is undertaken in Theorem 3 below).

Note that our simple boundary correction method (i.e., dividing the original kernel K (u)

by a0 (x=bn)) may recover the consistency but does not allow for higher order bias correction.

That is, the bias of our f̂ (x) is at most O(bn) and inferior to O
�
b2n
�
, where the latter bias

order is attained by kernel estimators with a usual symmetric (second order) kernel func-

tion when there is no boundary problem. Several papers have proposed how to construct

second or higher order boundary kernels, including Müller (1991), Jones (1993), Müller and

Wang (1994), and Zhang and Karunamuni (1998, 2000). While the use of such a sophisti-

cated boundary kernel allows for the bias rate of O
�
b2n
�
or faster, it may produce negative

estimates of the density f (x) for some x since the second or higher order kernels may take

negative values. Negative estimates of the density f (x) produce an estimate of F (�) that
is not a proper CDF (i.e., 6= 1 at x = 1 or decreasing). While some sort of regularization

or normalization may be applied to correct these undesirable features, it may result in a

complicated form of the corrected estimator. On the other hand, our estimator f̂ (x) is non

negative for any x 2 [0;1) by construction, and F̂ (x) is shown to possess all the prerequisite
of Theorem 1.

As an alternative to our F̂ (�) based on the boundary kernel in (6), we might be able to use
a so-called asymmetric kernel and construct a CDF estimator that overcomes the boundary

bias problem with a better bias rate (such as O(b2n)) but without losing the positivity of f̂(�)
(we refer to Hirukawa and Sakudo, 2014, and Igarashi and Kakizawa, 2017, for various forms

of asymmetric kernels). Regardless of potentially better performances of asymmetric-kernel-

based estimators, it may not be straightforward to establish uniform convergence results

of such estimators, which do not appear to have been well investigated in the literature. In

addition, asymmetric kernel based estimators do not involve a convolution operation, which is

unlike boundary kernel based estimators (note that the standard kernel density estimator may

be viewed as the convolution of the kernel function and the empirical distribution function).
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For establishing the weak convergence result of smoothed CDF estimators, their convolution

form appears to play an important role (see our discussions on the weak convergence of (10)

in Section 3.2); it is uncertain if the asymmetric kernel based CDF estimator may satisfy the

weak convergence property.

3.1 Uniform convergence of the new boundary corrected kernel estimators

In this subsection, we derive uniform convergence rates of our new nonparametric estimator

F̂ (�) and its derivative f̂ (�). The rate results may be e¤ectively used to show that the

estimators satisfy all the conditions of Theorem 1, whereC.2 and other conditions of Theorem

1 are interpreted as the ones for F̂ (�) through (4). To this end, we introduce some additional
conditions on F (�):

Assumption 1 Let fXigni=1 be an i.i.d. sample from the CDF F (�). i) F (�) satis�es the con-
dition i) in C.1. and the density f (�) of F (�) is di¤erentiable on [0;1) with supx2[0;1) jf 0 (x)j <
1.
ii) There exist some (su¢ ciently large) constant M > 0 and some positive constant � > 1

such that ��f 0 (x)�� �M0 [1 + x]
�� for any x � 0,

for some � > 1.

The condition i) of Assumption 1 is fairly standard. The polynomial decaying condition

ii) on the derivative f 0 (�) appears not to be restrictive, which may be e¤ectively used to
derive the uniform convergence of F̂B (�).

We also set out the conditions on the kernel function used to compute F̂ (x) and f̂ (x):

Assumption 2 The kernel function K (�) : R! R satis�es the following conditions: i) it is
of bounded variation with supu2RK (u) <1,

R1
�1K (u) du = 1, and

R1
�1 juK (u)j du <1.

ii) There exist some constants MK > 0 and � > 2 such that

jK (u)j �MK [1 + juj]�� :

The condition i) of Assumption 2 is fairly weak, including almost all forms of kernel

functions found in the literature. It is su¢ cient (as a condition on K (�)) for establishing the
uniform convergence of the �rst step density estimator f̂B (�) by using the covering number
technique from empirical process theory (developed by Kanaya, 2017). The condition ii)

is conveniently used to establish the uniform convergence of the (�rst step) CDF estimator

F̂B (�). For example, it is trivially satis�ed the boundedness of the support of K (�).
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We also note that i) - ii) permit K (�) to be discontinuous and/or non-symmetric; this
weaker condition is maintained for the sake of generality. While the continuity of kernel

functions has been imposed to establish the uniform convergence of kernel based estimators

in Hansen (2008) and other work, it is not a necessary condition. The uniform convergence of

kernel estimators may be established for discontinuous kernel functions by using the so-called

covering number technique (from empirical process theory) developed by Kanaya (2017) (see

the proof of Theorem 2 below).

Given Assumptions 1-2l, we are ready to state the uniform convergence result of our

nonparametric estimators:

Theorem 2 Suppose that i) of Assumption 1 and Assumption 2 hold. Then, the density

estimator f̂ (x) de�ned in (9) satis�es

f̂ (x)� f (x) = Op(
p
(log n) =nbn) +Op(bn), (11)

uniformly over x 2 [0;1), as n ! 1 and bn ! 0 with (log n) =nbn ! 0. Suppose further

that ii) of Assumption 1 holds. Then, the CDF estimator de�ned in (10) satis�es

F̂ (x)� F (x) = Op(
p
(log n) =n) +Op (bn) , (12)

uniformly over x 2 [0;1), as n!1 and bn ! 0.

The �rst part of Theorem 2 establishes the uniform convergence of our boundary corrected

kernel density estimator f̂(�). While similar sorts of conjectures/results has been presented
in Müller (1991, p. 524), we here provide a formal proof. The second part for the bias cor-

rected CDF estimator F̂ (�) appears to be new and is potentially useful in other applications.
This theorem e¤ectively establishes the simultaneous uniform convergence of F̂ (�) and its
derivative f̂(�).

Note that Tenreiro (2013) has also considered smoothed CDF estimation and investigated

the uniform convergence of his estimator (Theorem 3.2). However, as discussed above, Ten-

reiro�s result is not applicable to our case as his estimator is di¤erent, which does not appear

to admit the simultaneous convergence.

Assumption 2 on K (�) and our construction of the boundary kernel in 6 do not allow
for the second or higher order boundary kernel, resulting in the bias order of Op (bn), which

however is sharp in our setting. We again emphasize that the use of higher-order kernel is

possible but it may produce negative estimates of the density, leading to an estimate of F (�)
that can be decreasing over part of the support.
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3.2 Veri�cation of Condition C.2

Here, we verify that our boundary corrected CDF estimator F̂ (�) and its derivative f̂(�)
satisfy Condition C.2, which are interpreted as Ft (�) and ft (�) through (4). To this end, we
impose some additional conditions on the (true) F (�) and the kernel function K (�):

Assumption 3 Let F (�) be the CDF introduced in C.1 and f (�) be its probability density.
Either of the following conditions is satis�ed: a) There exists some (su¢ ciently large) con-

stants L;M � 1 such that

(1=M)x�� � f (x) �Mx�� for any x � L, (13)

(1=M)L�� � inf
z2[0;L]

f (z) , (14)

for some � > 2; OR b) There exist some positive constantM � 1 and some strictly increasing
function m (�) : [0;1)! (0;1) such that

(1=M) exp f�m (x)g � f (x) �M exp f�m (x)g for any x � 0, (15)

and satis�es

lim
x!1

log x

m (x)
! 0 and lim inf

x!1
m (x)

m (x� �c) = 1; (16)

where some constant �c > 0, which may be arbitrarily small.

The bound condition (13) in Part a) of Assumption 3 speci�es that the tail of f (�) declines,
to some extent, smoothly and monotonically to zero. It appears to be reasonable for income

distributions. In particular, Pareto distributions, which are often used to model an income

distribution, would satisfy (13). We can also allow for the case when the convergence rates

of the lower and upper bounds are not the same, say, (1=M)x��1 � f (x) � Mx��2 for

�1 > �2 > 2, and the result of Theorem 3 may be established when the di¤erence of �1 and �2

are not too large. For economy, we do not consider this case. An implication of (13) is that

1� F (x) �M
Z 1

x
z��dz =

M

� � 1x
��+1; (17)

which shall be used repeatedly in our subsequent proofs. The condition (14) is not at all

restrictive as long as f (x) > 0 for any x � 0; we can always �nd some su¢ ciently large L

and M satisfying (14).

Given (13)-(14), we can also �nd g (�), the lower bound function of f (�) introduced in
C.1, as

g (x) :=

(
infz2[0;L] f (z) for x 2 [0; L);
(1=M)x�� for x � L;

(18)

11



which is nonincreasing on [0;1). We subsequently suppose that g (x) takes this form when

Part a) of Assumption 3 is satis�ed. Using the upper bound of f (x) in (13), that of 1�F (x)
in (17), and this expression of g (x), we can easily check that the integrability condition ii)

of C.1 is satis�ed under � > 2.

The conditions in Part b) covers the cases when the tail decay speed of f (�) is faster
than any polynomial functions, including tails of the log normal, exponential, and normal

distributions. The bound condition (15) has implications similar to (13) in Part a). Note

that for the polynomial decaying case, we can write x�� = exp f�� log xg but this is excluded
by the �rst limit condition in (16). Given this expression of x�� , we could write Parts a)

and b) in a unifying manner. However, for the proof of Theorem 3, we use lower and upper

bounds for 1�F (x). For Part a), we need to use tight bounds (since the tail decaying speed
of f (�) is not fast enough; see the proof of Theorem 3), which can be easily derived under

the condition (13) as in (17). In contrast, under the conditions in Part b), we have the faster

decaying rate of f (�) and some less tight bounds of 1� F (x) are su¢ cient, which are to be
derived below. This is the reason why we consider Parts a) and b) separately.

The second limit condition (16) is satis�ed by various functions that grows slower than

exponential functions, say, m (�) can be any power of the logarithm, (log x)p1 with p1 > 1,

any polynomial function, xp2 with any p2 > 0, or any product of them. It can be e¤ectively

used to establish an upper bound of f (x� �c) in terms of m (x). We can also accommodate
the case when m (x) has some exponential or faster growth rate by considering the bounds

of f (x) as (1=M) exp f� expfm (x)gg � f (x) � M exp f� expfm (x)gg, which allows us to
derive some reasonable upper bound of f (x� �c) and lower and upper bounds of 1 � F (x)
under some conditions analogous to (16). However, this case is omitted for brevity.

To establish Theorem 3, we also need to impose some additional conditions on the kernel

K (�):

Assumption 4 It holds that K (u) � 0 for any u 2 R and K(u) = 0 for juj > LK with some
(su¢ ciently large) constant LK > 0.

The positivity of K (�) in Assumption 4 guarantees that F̂ (�) is a CDF for any (�nite)
realization of fXigni=1. The boundedness of the support of K (�) is imposed for convenience.3

3We can also employ some kernel function whose support is the whole real line, say the normal kernel.

However, in order to establish Theorem 3 under such a choice of K (�), we must restrict the tail decaying rate of
f (�). That is, roughly speaking, the tail decaying rate of K (�) must be faster than that of f (�), meaning that
a researcher, to some extent, needs to know the unknown density function�s tail decay property. In contrast,

if K with bounded support is used, it can allow for any fast tail decaying rate of f (�).

12



A speci�c choice of K (�) that satis�es all the conditions in Assumptions 2-4, is the Epanech-
nikov kernel, K (u) = (3=4

p
5)(1� u2=5) for juj �

p
5; = 0 otherwise.

Now we are ready present a result that our new CDF estimator F̂ (�) satis�es the inte-
grability condition corresponding to the one in C.2:

Theorem 3 Suppose that Assumptions 1-4 hold. If it also holds that

bn = o
�
n�1=2

�
and 1=bn = O (n

q) for some q 2 (0; 1) , (19)

then, there exist some (su¢ ciently small) constant � > 0 and some constant C� 2 (0;1)
such that Z 1

0
f[1� F̂ (x)]=g (x)g1+�f̂ (x) dx < C�,

with probability approaching 1 (as n!1), where the expression of C� is given in the proof.

The �rst bandwidth condition in (19) requires the bandwidth bn to be undersmoothing

(as the one intended for any of CDF and density estimators). As a result of this, the bias

components in (11) and (12) of Theorem 2, corresponding to Op(bn) are negligible relatively

to the variance-e¤ect components of the order
p
(log n) =nbn and

p
(log n) =n. The second

condition in (19) requires bn not to be too small, which for example, excludes bn = (log n)
2 =n.

The condition of bn = o
�
n�1=2

�
has also been used in Yukich (1992), where the weak

convergence of smoothed CDF estimators under fairly weak conditions when there is no

boundary problem. Yukich�s result (Theorem 2.1) also holds in our case, i.e., we have

p
n[F̂ � F ]) G; (20)

in the space of l1[0;1), where l1[0;1) is the set of all bounded functions on [0;1)
and G := fG (�)gx2[0;1) is a tight Brownian bridge process whose covariance is given by
F (x) [1� F (x)]. We can formally prove this result under the conditions of Theorem 3; note

in particular that the measure induced by the density 1
a0(x=bn)bn

K (u=bn) weakly converges

to the Dirac measure at zero as bn ! 0 for any x 2 (0;1); we also refer to van der Vaart,
1994). This weak convergence result also corresponds to the condition in Theorem 1 that ht

converges to a path of a Brownian bridge.

To conclude this section, we point out that our boundary corrected smoothed CDF es-

timator F̂ (�) in (10) satis�es all the conditions imposed for the functional di¤erentiability
result of the mapping �, Theorem 1; thus, given the weak convergence result of (20), we can

apply the functional Delta method, which allows us to establish the asymptotic distribution

of the estimated �.
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A Appendix

A.1 Proof of Theorem 1

In this section, we prove the functional di¤erentiability of the mapping �:

Proof of Theorem 1. Consider a sequence of di¤erentiable functions fht (�)gt�0 that
converges uniformly on [0;1) to h (�) as t ! 0 with Ft (�) = F (�) + tht (�) 2 �D[0;1) for any

t 2 (0; 1]. De�ne the following two functions [0; 1)! (0;1) as

zt (u) := inf
x2[0;1)

fFt (x) � ug and z (u) := inf
x2[0;1)

fF (x) � ug :

We also write F�1t (u) = zt (u) and F�1 (u) = z (u), where F (�) is strictly increasing and the
latter is the inverse function of F (�) in the usual sense. We shall show that as t! 0,Z 1

0

����
R p
0 zt (u) du�

R p
0 z (u) du

t
�
�
�
Z p

0

h (z (u))

f (z (u))
du

����� dp! 0:

Now, since F (�) is di¤erentiable, for each u 2 (0; 1), we can write

u = F (z (u)) = F (zt (u)) + [z (u)� zt (u)] f (~zt (u))

= Ft (zt (u)) + [z (u)� zt (u)] f (~zt (u))� tht (zt (u)) ;

for some ~zt (u) lying between zt (u) and z (u) (by the mean-value theorem), where ft (x) is

the derivative of Ft (x) with respect to x. Since any element in �D[0;1) is continuous and thus

Ft (zt (u)) = u, we have
zt (u)� z (u)

t
= �ht (zt (u))

f (~zt (u))
: (21)

Therefore,Z 1

0

����
R p
0 zt (u) du�

R p
0 z (u) du

t
�
�
�
Z p

0

h (z (u))

f (z (u))
du

����� dp
�
Z 1

0

Z p

0

����ht (zt (u))f (~zt (u))
� h (z (u))
f (z (u))

���� dudp
=

Z 1

0
(1� u)

����ht (zt (u))f (~zt (u))
� h (z (u))
f (z (u))

���� du
�
Z 1

0
(1� u) jht (zt (u))� h (zt (u))j

f (~zt (u))
du+

Z 1

0
(1� u) jh (zt (u))� h (z (u))j

f (~zt (u))
du

+

Z 1

0
(1� u)

���� h (z (u))f (~zt (u))
� h (z (u))
f (z (u))

���� du
=: N1 (t) +N2 (t) +N3 (t) ; (22)
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where the equality on the third line holds by changing the order of integration. We below

show that the thee terms on the majorant side converge to zero.

Convergence of N1 (t) in (22). Since supx2[0;1) jht (x)� h (x)j ! 0 (as t! 0) by the

de�nition and

N1 (t) � sup
x2[0;1)

jht (x)� h (x)j
Z 1

0

1� u
f (~zt (u))

du;

the convergence of N1 (t) follows if it holds that

lim sup
t!0

Z 1

0

1� u
f (~zt (u))

du <1; (23)

which is to be shown below.

By the construction of ~zt (u) through the mean-value theorem, which is on the line segment

connecting zt (u) to z (u) for each u, and by the non-increasing property of g (�) in C.1, we
must always have either

g (z (u)) � g (~zt (u)) � g (zt (u)) or g (z (u)) � g (~zt (u)) � g (zt (u)) :

Thus, letting

At := fu 2 [0;1) j g (z (u)) � g (~zt (u)) � g (zt (u))g and

Bt := fu 2 [0;1) j g (z (u)) � g (~zt (u)) � g (zt (u))g ;

we have Z 1

0

1� u
g (~zt (u))

du =

Z
u2At

1� u
g (~zt (u))

du+

Z
u2Bt

1� u
g (~zt (u))

du

�
Z
u2At

1� u
g (z (u))

du+

Z
u2Bt

1� u
g (zt (u))

du

�
Z 1

0

1� u
g (z (u))

du+

Z 1

0

1� u
g (zt (u))

du: (24)

By changing variables, we can check the boundedness of the two terms on the RHS:Z 1

0

1� u
g (z (u))

du =

Z 1

0
[1� F (x)] [f (x) =g (x)] dx <1 and (25)

lim sup
t!0

Z 1

0

1� u
g (zt (u))

du <1;

where the former is imposed in ii) of C.1 and and the latter holds since the UI condition ii)

of C.2 imlies that

lim sup
t!0

Z 1

0

1� u
g (zt (u))

du

� sup
t2(0;�]

Z 1

0
1 fQt(u) � �gQt(u)du+ sup

t2(0;�]

Z 1

0
1 fQt(u) < �gQt(u)du

� 1 + �;
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for some su¢ ciently large constant � (independent of t). Therefore, we have obtained the

desired result (23), implying the convergence of N1 (t).

Convergence of N2 (t) in (22). To obtain the desired result, we shall show I) the

pointwise convergence of the integrand variable of the second term in (22):

~Y2;t (u) := (1� u)
jh (zt (u))� h (z (u))j

f (~zt (u))
! 0 for each u, as t! 0; (26)

and II) the uniform integrability (UI) of ~Yt. Given these I) and II), the Vitali convergence

theorem (see, e.g., p. 187 of Holland, 1999) implies that N2 (t)! 0 as t! 0.

To show I), recall the de�nition of Ft (x) = F (x)+ tht (x) 2 �D[0;1) (with ht (�) uniformly
converging to h (�)). Noting the uniform convergence of Ft (�) (to F (�) on [0;1)) and the
following inequality:

sup
u2[0;1)

jF (z (u))� F (zt (u))j = sup
u2[0;1)

ju� F (zt (u))j

= sup
u2[0;1)

jFt (zt (u))� F (zt (u))j = sup
x2[0;1)

jFt (x)� F (x)j ;

wherw the second equality uses the fact that Ft (zt (u)) = u (by the de�nition of zt =

infx2[0;1) fFt (x) � ug), we also have the uniform convergence of F (zt (u)) to F (z (u)) on

[0; 1) (as t! 0). Then, since F�1 (u) = z (u) is continuous, it holds that

jz (u)� zt (u)j =
��F�1(F (z (u)))� F�1 (F (zt (u)))��! 0 for each u 2 [0; 1);

which implies that

jz (u)� ~zt (u) j ! 0 for each u 2 [0; 1); (27)

where we recall the de�nition of ~zt (u) through the mean-value theorem. Now, by the con-

tinuity of h (�), which is a realized path of the Brownian bridge, as well as that of f (�), we
have jh (~zt (u))� h (z (u))j ! 0 and f (~zt (u)) ! f (z (u)) for each u 2 [0; 1) and obtain the
pointwise convergence (26).

Next, we verify II), the UI of ~Y2;t. To this end, recall that the limit h (�) of ht (�) is de�ned
as the standard Brownian bridge�s path, and the value space of z (u) is exactly the whole

[0;1). Given these facts, we can see the uniform blondeness of h (z (�)) over u 2 [0; 1], that
is,

sup
x2[0;1)

jh (x)j = sup
u2[0;1)

jh (z (u))j =: �Ch <1:

This also implies that supu2[0;1) h (zt (u)) � supx2[0;1) jh (x)j = �Ch. Using the monotonicity
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of g (�) and the same argument as that for (24),

~Y2;t (u) � (1� u) jh (zt (u))� h (z (u))j
�

1

g (zt (u))
+

1

g (z (u))

�
� 2 �Ch

�
1� u
g (z (u))

+
1� u
g (zt (u))

�
: (28)

Here, 1�u
g(z(u)) is independent of t, whose integrability has been checked in (25), and the UI of

Qt (u) =
1�u

g(zt(u))
is supposed in ii) of C.2. That is, the upper bound of ~Y2;t (u) is shown to

be uniformly integrable, and thus ~Y2;t (u) itself is also uniformly integrable. Therefore, given

the results I) and II), we have established the convergence of N2 (t).

Convergence of N3 (t) in (22). We can show the desired result in the same way as for

N2 (t). To this end, look at

N3 (t) � sup
x2[0;1)

jh (x)j �
Z 1

0

���� 1� u
f (~zt (u))

� 1� u
f (z (u))

���� du:
The convergence of N3 (t) follows if the integrand on the RHS satis�es the pointwise conver-

gence (to zero for each u as t ! 0) and UI. The former holds by (27) and the continuity of

f (�), and the latter holds if 1�u
f(~zt(u))

is UI. By the same argument as before, we can see that

1� u
f (~zt (u))

� 1� u
g (z (u))

+
1� u
g (zt (u))

and the UI of the majorant side has been already veri�ed for ~Y2;t (u) through discussions

after (28). Now, the proof is completed.

A.2 Proof of Theorem 2

In this section, we provide the proof of Theorem 2, the uniform convergence results for our

kernel estimators. To this end, we �rst derive the convergence rate of the normalization

component F̂B (1) in Lemma 1, which is required to investigate the properties of f̂(�) and
F̂ (�) that are based on F̂B (1):

Lemma 1 Suppose that i) of Assumption 1 and i) - ii) of Assumption 2 hold. Then, the

CDF estimator at x =1, F̂B (1) :=
R1
0 f̂B (y) dy, de�ned through (8) satis�es

E[jF̂B (1)� 1j] = Op (bn) as bn ! 0:

Given this lemma, whose proof is provided below, we are ready to derive the uniform

convergence rates of our boundary corrected kernel estimators f̂ (�) and F̂ (�):
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Proof of Theorem 2. We �rst derive the uniform convergence rate of the density

estimator f̂ (x) in (11). Since f̂ (x) = f̂B (x) =F̂B (1) and F̂B (1) = 1 + Op(bn) (by Lemma
1), we can write

f̂ (x)� f (x) = f̂B (x)� f (x)
F̂B (1)

+ f (x)
1� F̂B (1)
F̂B (1)

= [f̂B (x)� f (x)] [1 + op (1)] + f (x)
Op(bn)

1 + op (1)
; (29)

uniformly over x 2 [0;1). The second term on the RHS is Op (bn) uniformly over x 2
[0;1) given that supx2[0;1) f (x) < 1. To analyze the �rst term, consider the following
decomposition: ���f̂B (x)� f (x)��� � ���[f̂B (x)� E[f̂B (x)]���+ ���E[f̂B (x)]� f (x)���

=: �1;n (x) + �2;n (x) : (30)

The �rst term �n;1 on the RHS is the so-called variance term. Recalling the de�nition of

f̂B (x), observe that

�1;n (x) �
1

a0 (0)

���� 1nbnXn

i=1

�
K

�
x�Xi
bn

�
� E[K

�
x�Xi
bn

�
]

����� :
We can apply the same arguments as in the proofs of Theorem 4 of Hansen (2008), under

the uniform boundedness of the density and kernel functions, f (�) and K (�), and i.i.d. as-
sumption of fXigi�1 to obtain 1

nbn

Pn
i=1

h
K
�
x�Xi
bn

�
� E[K

�
x�Xi
bn

�
]
i
= Op(

p
(log n) =nbn)

uniformly over x 2 [0;1). Note that our kernel function K (�) may not satisfy Hansen�s
conditions (his Assumption 3 and/or equation (22)) (as we have not imposed its continuity

in particular). However, by using a technique based on the covering numbers from empirical

process theory, developed by Kanaya (2017), we can signi�cantly relax Hansen�s conditions

on kernel functions. For more details, we refer to Theorem 2, Lemma A.3, and their proofs

of Kanaya (2017).

To analyze the second term on the RHS of (30), which is the bias of f̂B (x), we look at

�2;n (x) =

���� 1

a0 (x=bn)

Z 1

0

1

bn
K

�
x� p
bn

�
f (p) dp� f (x)

����
� 1

a0 (x=bn)

�����
Z �1

x=bn

jK (q)j jf (x� qbn)� f (x)j dq
�����

� 1

a0 (x=bn)

Z x=bn

�1
jK (q)j

��qbnf 0 (~x)�� dq
� bn
a0 (0)

Z 1

�1
jqK (q)j dq � sup

z2[0;1)

��f 0 (z)�� = O(bn);
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uniformly over x 2 [0;1), where we have used the mean-value theorem with some ~x on the

line segment connecting x and x�qbn. From these, we can conclude that �1;n (x)+�2;n (x) =
Op(

p
(log n) =nbn) + Op (bn) uniformly over x 2 [0;1), which, together with (29 and (30),

establishes the desired result (11).

Next, we derive the result (12), the uniform convergence rate of F̂ (x). Recalling the

de�nition of F̂ (x) = F̂B (x) =F̂B (1), we can write

F̂ (x)� F (x) = F̂B (x)� F (x)
F̂B (1)

+
F (x)

F̂B (1)
[1� F̂B (1)]

= [F̂B (x)� F (x)][1 + op(1)] +Op (bn) ; (31)

uniformly over x 2 [0;1), where the second equality has used Lemma 1. To analyze the
term [F̂B (x)� F (x)], we consider the following decomposition:

jF̂B (x)� F (x) j � jF̂B (x)� E[F̂B (x)]j+ jE[F̂B (x)]� F (x) j

= ��1;n (x) + ��n;2 (x) ; (32)

where we shall derive the convergence rates of the two terms on the RHS. To investigate the

term �n;1 on the RHS, we let �K (s) :=
R s
�1K (u) du. Then, by the changing variables,

��n;1 (x) �
1

a0 (0)

���� 1nbnXn

i=1

�Z x

0
K

�
y �Xi
bn

�
dy � E[

Z x

0

�
y �Xi
bn

�
dy]

�����
=

1

a0 (0)

���� 1nXn

i=1

�
�K

�
x�Xi
bn

�
� E[ �K

�
x�Xi
bn

�
]

�����
+

1

a0 (0)

���� 1nXn

i=1
[ �K (�Xi=bn)� E[ �K (�Xi=bn)]

����
=: ��n;11 (x) + ��n;12;

where we note that ��n;12 is independent of x. By changing variables and applying the

bounded convergence theorem, we can compute

Var[ �K (�Xi=bn)� E[ �K (�Xi=bn)]] = bnf (0)
Z 1

0

�K2(�u)du+ o (bn) ;

uniformly over i 2 f1; : : : ; ng, where the boundedness of
R1
0
�K2(�u)du is guaranteed by

Assumption 2. Thus, by the i.i.d. condition of fXig, E
�
j��2n;12

�
= O (bn=n) and ��n;12 =

Op(
p
bn=n). To analyze ��n;11 (x), we employ a technique based on the covering numbers as

in Kanaya (2017): De�ne a set of functions, p (2 [0;1)) 7! �K

�
x� p
bn

�
(2 [0; 1]), indexed by

(x; bn) as

�K :=
�
�K

�
x� p
bn

����� x � 0 and bn > 0

�
:
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By the same arguments as in the proof of Lemma A.3 of Kanaya (2017), this functional

set �K is Euclidean, where we refer to pp. 905-906 of Kanaya (2017) for the de�nition of

being Euclidean. By the uniform boundedness of �K (�), we can check that Var[ �K
�
x�Xi
bn

�
�

E[ �K
�
x�Xi
bn

�
]] is uniformly bounded over x and i. Then, using the Euclidean property of

�K and the Bernstein exponential inequality for i.i.d. random variables (see, e.g., p. 102 of

van der Vaart and Wellner, 1996), we can show that supx2[0;1) ��n;11 (x) = Op(
p
(log n) =n).

Veri�cation of this result is quite analogous to the proof Theorem 2 of Kanaya (2017), and

its details are omitted for brevity. From these, we can see that

��1;n (x) � ��1;n (x) + ��n;12

= Op(
p
(log n) =n) +Op(

p
bn=n) = Op(

p
(log n) =n): (33)

We next investigate the term ��n;2 (x). By changing the order of integration, changing of

variables, and using the Taylor expansion, we have

E[F̂B (x)] =

Z 1

0

�Z x

0

1

a0 (y=bn) bn
K

�
y � p
bn

�
dy

�
f (p) dp

=

Z x

0

1

a0 (y=bn)

(Z y=bn

�1
K (q) f (y � qbn) dp

)
dy

=

Z x

0

1

a0 (y=bn)

(Z y=bn

�1
K (q)

�
f (y)� qbnf 0 (~y)

�
dq

)
dy

=

Z x

0

1

a0 (y=bn)

(Z y=bn

�1
K (q) dp

)
f (y) dy +

Z x

0

1

a0 (y=bn)

(
�bn

Z y=bn

�1
qK (q) f 0 (~y) dq

)
dy;

(34)

where ~y is on the line segment connecting y � qbn to y. The �rst term on the RHS of (34) is

equal to F (x). To �nd a bound for the second term, note that we can write ~y = y��qbn for
some � 2 [0; 1], which depends on y, q, and bn. Thus, for q 2 (�1; y=2bn], we have ~y � y=2
and ��f 0 (~y)�� �M0 [1 + y=2]

�� ;
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by the condition ii) of Assumption 1. Therefore,

��2;n (x) =
���E[F̂B (x)]� F (x)��� � bn

a0 (0)

Z x

0

(Z y=bn

�1
jqjK (q)

��f 0 (~y)�� dq) dy
� bn
a0 (0)

Z x

0

(Z y=2bn

�1
jqjK (q)

��f 0 (~y)�� dq + Z y=bn

y=2bn

qK (q)
��f 0 (~y)�� dq) dy

� bn
a0 (0)

Z x

0

(
M0 [1 + y=2]

��
Z 1

�1
jqK (q)j dq + sup

z2(0;1]

��f 0 (z)�� Z 1

y=2bn

qK (q) dq

)
dy

= O (bn) uniformly over x 2 [0;1); (35)

where the last equality follows sinceZ x

0
[1 + y=2]�� dy �

Z 1

0
[1 + y=2]�� dy <1 andZ x

0

 Z 1

y=2bn

qK (q) dq

!
dy �

Z 1

0

�Z 1

y
qK (q) dq

�
dy <1;

which hold by the condition � > 1 in Assumption 1 and the exponential tail decay condition

on K (�) in Assumption 2, respectively.
By (31)-(33) as well as (35), we can obtain the conclusion of the theorem, completing the

proof.

Proof of Lemma 1. By the de�nition of F̂B (1) and change of variables, we can write

F̂B (1) =
1

n

nX
i=1

Z 1

�Xi=bn

1

a0 (w +Xi=bn)
K (w) dw =:

1

n

nX
i=1

�i: (36)

Given the de�nition of a0 (p) =
R p
�1K (u) du, we have a0 (1) =

R1
�1K (u) du = 1 and

a0 (w +Xi=bn) � a0 (0) for any w � �Xi=bn. Then,

j�i � 1j �
Z 1

�Xi=bn

���� 1

a0 (w +Xi=bn)
� 1

a0 (1)

����K (w) dw
+

�����
Z 1

�Xi=bn

1

a0 (1)
K (w) dw �

Z 1

�1

1

a0 (1)
K (w) dw

�����
� 1

a20 (0)

Z 1

�Xi=bn
[a0 (1)� a0 (w +Xi=bn)] jK (w)j dw +

1

a0 (0)

Z �Xi=bn

�1
jK (w)j dw

=: �1;i +�2;i:
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By ii) of Assumption 2, we can �nd some constant ~MK > 0 such that
R �s
�1 jK (w)j dw �

~MK [1 + s]
��+1 for s � 0 since since � > 2. Thus,

E [�2;i] =
1

a0 (0)

Z 1

0

 Z �p=bn

�1
jK (w)j dw

!
f (p) dp

�
~MK

a0 (0)

Z 1

0
[1 + p=bn]

��+1 f (p) dp

=
~MK

a0 (0)
bn

Z 1

0
[1 + q]��+1 f (qbn) dq

�
~MK

a0 (0)
bn

Z 1

0
[1 + q]��+1 dq � sup

z2[0;1)
f (z) = O (bn) ;

uniformly over i, where the last equality holds since � > 2 and
R1
0 [1 + q]��+1 dq < 1. To

�nd a bound for �1;i, noting that w 2 [�Xi=bn;1), we have

a0 (1)� a0 (w +Xi=bn) =
Z 1

w+Xi=bn

K (u) du � ~MK [1 + jw +Xi=bnj]��+1

and

E [�1;i] �
~MK

a20 (0)

Z 1

0

(Z 1

�p=bn
[1 + jw + p=bnj]��+1 jK (w)j dw

)
f (p) dp

=
~MK

a20 (0)
bn

Z 1

0

�Z 1

�q
[1 + jw + qj]��+1 jK (w)j dw

�
f (qbn) dq

�
~MK

a20 (0)
bn

Z 1

0

�Z 1

�q
[1 + jw + qj]��+1 jK (w)j dw

�
dq � sup

z2[0;1)
f (z) = O (bn) ;

uniformly over i, where the last equality holds sinceZ 1

0

�Z 1

�q
[1 + jw + qj]��+1 jK (w)j dw

�
dq =

Z 1

0

�Z 1

0
[1 + juj]��+1 jK (u� q)j du

�
dq

=

Z 1

0
[1 + juj]��+1

�Z 1

0
jK (u� q)j dq

�
du

�
Z 1

0
[1 + juj]��+1du�

Z 1

�1
jK (�q)j dq <1:

Therefore, we have shown that E [j�i � 1j] = O (bn) uniformly over i, which, together with

(36), implies the conclusion of the lemma. The proof is completed.

A.3 Proof of Theorem 3

In this section, we provide the proof of Theorem 3:

Proof of Theorem 3. We �rst consider Part a). The proof for Part b) can be done

analogously. Our proof proceeds in two steps. In the �rst step, we derive uniform upper
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bounds of the kernel estimators f̂(x) and 1� F̂ (x) as well as that of K
�
x�Xi
bn

�
, and, in the

second step, we show the boundedness of the integral.

Step 1: Given the uniform convergence result in Theorem 2, we can write

f̂ (x) = f (x) + o (1) � 2f (x) for any x 2 [0; L] : (37)

with probability approaching one as n ! 1 (w.p.a. 1). To �nd another bound of f̂(x) for

x � L, let
cn := [nbn=(log n)

2]1=2� : (38)

Since the bandwidth bn is selected as o (1=
p
n), we can also write

f̂ (x) = f (x) +Op(
p
(log n) =nbn);

by Theorem 2. Given the de�nition of cn and Assumption 1, we can check that f (x) is larger

than
p
(log n) =nbn for any x 2 [L; cn] in that

sup
x2[L;cn]

p
(log n) =nbn
f (x)

�
p
(log n) =nbn

(1=M) c��1n
=M=

p
log n = o (1) ;

and thus

f̂ (x) � 2f (x) ; for any x 2 [L; cn] ; (39)

w.p.a. 1.

We now derive some bounds for 1 � F̂ (x). Given the uniform convergence of F̂ (x) in

Theorem 2, for any x 2 (0; L),

0 � 1� F̂ (x) = 1� F (x) + o (1) � 2 [1� F (x)] for any x 2 [0; L] . (40)

To �nd another bound 1�F̂ (x) for x � L, observe that the following lower bound of 1�F (x)
holds:

1� F (x) =
Z 1

x
f (z) dz � 1

M

Z 1

x
z��dz =

1

M (�1 � 1)
x��+1;

by Assumption 1. Given the uniform convergence rate of F̂ (x) in Theorem 2 and the speci�ed

choice of bn, we can write

F̂ (x) = F (x) +Op(
p
(log n) =n) uniformly over x 2 [0;1):

Given these, we can compute

sup
x2[L;cn]

p
(log n) =n

1� F (x) �
p
(log n) =n

[1=M (�1 � 1)]c��+1n

= O(

q
n�1=� (log n)�(��2)=2 b

(��1)=�
n ) = o (1) ;
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implying that, w.p.a. 1,

1� F̂ (x) � 2 [1� F (x)] for any x 2 [L; cn] : (41)

To derive a useful bound for the kernel function K
�
x�Xi
bn

�
, let

dn := [n log n]
1=(��1) : (42)

Then, observe that

Pr [
Sn
i=1 fXi � dn=2g] � n

M

�2 � 1
(dn=2)

��+1 = O((log n)�1)! 0:

This implies that, w.p.a. 1, max1�i�nXi � dn=2 and thus,����x�Xibn

���� � ����x� dn=2bn

���� > LK for any x � dn and i 2 f1; : : : ; ng ;

implying that, w.p.a. 1,

K

�
x�Xi
bn

�
= 0 for any x � dn and i 2 f1; : : : ; ng ; (43)

by the compactness of the support of K (�) imposed in iii) of Assumption 2.

Step 2: We here investigate the boundedness of the integral. To this end, with sight

abuse of integral notation, we writeZ 1

0
f[1� F̂ (x)]=g (x)g1+�f̂ (x) dx =

�Z cn

0
+

Z dn

cn

+

Z 1

dn

�
f[1� F̂ (x)]=g (x)g1+�f̂ (x) dx

=: I1;n + I2;n + I3;n;

where cn and dn are de�ned in (38) and (42), respectively. We below analyze the three terms

on the RHS separately and show that

I2;n = op (1) , I3;n = op (1) ,

and I1;n is bounded, whose upper bound in given in (44)-(45). Therefore, the constant C� is,

for example, given by the twice of the upper bound of I1;n.

The boundedness of I1;n. First, using the four upper bound derived in (37)-(41), we

have

I1;n �
Z cn

0
f2 [1� F (x)] =g(x)g1+� 2f (x) dx

= 22+�
�Z L

0
f[1� F (x)] =g(x)g1+� f (x) dx+

Z 1

L
f[1� F (x)] =g(x)g1+� f (x) dx

�
;

(44)
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where we can easily see the boundedness of the �rst term on the RHS. Using Assumption 1

and its implications derived in (17) and (18), the integral of the second term can be written

as Z 1

L
f[1� F (x)] =g(x)g1+� f (x) dx � ~C

Z 1

L

�
x��+1 � x�

	1+�
x��dx

= ~C

Z 1

L
x(1+�)��dx; (45)

with some (su¢ ciently large) constant ~C > 0. Recalling � > 1, we can see that the integralR1
L x(1+�)��dx is bounded if

(1 + �)� � < �1 , � < � � 2:

It is possible to pick some positive � satisfying this inequality when � > 2, which is maintained

in Assumption 1.

The boundedness of I2;n. For notational convenience, we let

�f (x) :=
1

nbn

nX
i=1

K

�
x�Xi
bn

�
and �F c (x) :=

Z 1

x

�f (y) dy:

Using these, we can write

f̂ (x) =
f̂B (1)
F̂B (1)

=
1

F̂B (1)
1

nbn

nX
i=1

1

a0(y=bn)
K

�
x�Xi
bn

�
� 1

[1 + op (1)] a0 (0)
�f (x) ; (46)

1� F̂ (x) = 1

F̂B (1)
[F̂B (1)� F̂B (x)]

=
1

F̂B (1)
1

nbn

nX
i=1

Z 1

x

1

a0(y=bn)
K

�
y �Xi
bn

�
dy

� 1

[1 + op (1)] a0 (0)
�F c (x) ; (47)

uniformly over x 2 [0;1), where the ineuqlities have used a0(y=h) � a0 (0) and F̂B (1) =
1+op (1) (by Lemma 1). Therefore, the boundedness of I2;n (in the probability sense) follows

if that of
�I2;n :=

Z dn

cn

f �F c (x) =g (x)g1+� �f (x) dx

holds (since I2;n = Op (1)� �I2;n). By the Hölder inequality,

�I2;n �

sZ dn

cn

jg (x)j�(1+�) j �f (x) j2dx�
Z dn

cn

jg (x)j�(1+�) j �F c (x) j2(1+�)dx

=:
q
�I21;n � �I22;n:

27



To analyze �I21;n, we look at

�I21;n =
1

n2bn

nX
i=1

Z dn

cn

jg (x)j�(1+�) 1
bn
K2

�
x�Xi
bn

�
dx

+
2

n2

X
1�i<j�n

Z dn

cn

jg (x)j�(1+�) 1
b2n
K

�
x�Xi
bn

�
K

�
x�Xj
bn

�
dx

=:
1

n2bn

nX
i=1

Dn (i) +
2

n2

X
1�i<j�n

�n (i; j) : (48)

By changing the order of integration and changing variables, we can compute the expectation

of the summand of the �rst term on the RHS as follows:

E [Dn (i)] =

Z dn

cn

jg (x)j�(1+�)
"Z x=bn

�1
K2 (q) f (x� qbn) dq

#
dx

�M �(1+�)

Z dn

cn

x�(1+�)

"
M jx=2j��

Z 1

�1
K2 (q) dq +

Z 1

x=2bn

K2 (q) dq sup
z2[0;1)

f (z)

#
dx

� �C2

Z dn

cn

x��dx;

uniformly over i, where the last inequality holds with a constant �C2 :=M �1(1+�)+12�
R1
�1K

2 (q) dq

since
R1
x=2bn

K2 (q) dq = 0 for x=2bn > cn=2bn > LK (by the boundedness of the support of

K (�)). For � (1 + �)� � > 0, we have
R dn
cn
x��dx � d��+1n and

E [Dn (i)] � �C2d
��+1
n , uniformly over i 2 f1; : : : ; ng :

Since we have set dn = [n log n]
1=(��1) and 1=bn = O(n�q0) for some q0 2 (0; 1),

1

n2bn

Xn

i=1
E[Dn (i)] �

1

nbn
�C2d

��+1
n

= O(1)� (log n)
��
��1n

��
��1�(1�q0) = o (1) ; (49)

where the last equality holds if

��

� � 1 � (1� q0) < 0 , � <
1

�
(� � 1) (1� q0) :

This inequality is satis�ed for some (su¢ ciently small) � > 0 since � > 2 and q0 2 (0; 1).
Since Xi and Xj (i < j) are independent, we can compute

E [�n (i; j)] =

Z dn

cn

jg (x)j�(1+�)
(Z x=bn

�1
K (q) f (x� qbn) dq

)2
dx:
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The integral between the curly braces is bounded as follows:Z x=bn

�1
K (q) f (x� qbn) dq =

Z x=2bn

�1
K (q) f (x� qbn) dq +

Z x=bn

x=2bn

K (q) f (x� qbn) dq

�
Z 1

�1
K (q) dq �M (x=2)�� = O (1)� x�� ;

uniformly over x � cn (� L), and thus

E [�n (i; j)] = O (1)�
Z dn

cn

jg (x)j(1+�) (x=bn)�2� dx

� O (1)�M1+�

Z 1

cn

x�(1+�) (x=bn)
�2� dx

= O (1)� b2�n c�(1+�)�2�+1n ; uniformly over i; j 2 f1; : : : ; ng ;

where the last equality holds when

� (1 + �)� 2� + 1 < �1 , � < (� � 2) =2�:

which may be satis�ed for any su¢ ciently small � since � > 2. Therefore, given cn =

[nbn=(log n)
2]1=2� in (38) and bn = o

�
n�1=2

�
,

2

n2

X
1�i<j�n

�n (i; j) = o (1)� (log n)�1=2�n�
�
2
� 1
4� = o (1) ;

which, together with (48) and (49), leads to �I21;n = op (1).

To analyze the term �I22;n, note that

�I22;n �
Z dn

cn

jg (x)j�(1+�) j �F c (x) j2dx;

since �F c (x) < 1 for any x 2 [0;1) (by its de�nition). This upper bound of �I22;n can be
shown to be op (1), which may be analyzed exactly in the same way as �I21;n. While details

are omitted for brevity, we in particular note that both the kernel function and its integral

have the same tail decay rate, i.e.,

K (x) �MK exp f�cKxg and
Z 1

x
K (y) dy � (MK=cK) exp f�cKxg ;

This property leads to the same tail behavior of �f (x) and �F c (x), and thus the same conver-

gence speed of �I21;n and �I22;n.

The boundedness of I3;n. By (46), it is su¢ cient to show the boundedness of

I3;n = Op(1)�
Z 1

dn

f[1� F̂ (x)]=g (x)g1+� �f (x) dx:
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By the bound derived in (43), we have

�f(x) � 1

bn
K

�
x� dn=2
bn

�
= 0 for x � dn;

w.p.a. 1. Therefore, I3;n = 0 w.p.a. 1. Now, the proof is completed.
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