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Abstract
High-dimensional hypothesis testing is ubiquitous in the biomedical sciences,
and informative covariates may be employed to improve power. The conditional
false discovery rate (cFDR) is a widely used approach suited to the setting where
the covariate is a set of p-values for the equivalent hypotheses for a second trait.
Although related to the Benjamini–Hochberg procedure, it does not permit any
easy control of type-1 error rate and existing methods are over-conservative. We
propose a newmethod for type-1 error rate control based on identifyingmappings
from the unit square to the unit interval defined by the estimated cFDR and split-
ting observations so that each map is independent of the observations it is used
to test. We also propose an adjustment to the existing cFDR estimator which fur-
ther improves power. We show by simulation that the new method more than
doubles potential improvement in power over unconditional analyses compared
to existing methods. We demonstrate our method on transcriptome-wide associ-
ation studies and show that the method can be used in an iterative way, enabling
the use of multiple covariates successively. Our methods substantially improve
the power and applicability of cFDR analysis.

KEYWORDS
conditional false discovery rate, empirical Bayes, false discovery rate, high-dimensional asso-
ciation study, transcriptome-wide association study, unsupervised learning

1 INTRODUCTION

In the ‘omics’ approach to biology, a large number 𝑛 of descriptive variables are considered in the analysis of a biolog-
ical system, intended to provide a near-exhaustive characterisation of the system under consideration. Typically only a
small proportion of the investigated variables are associated with the behaviour of the system, and we seek to identify
this subset of variables, along with the magnitude and direction of their associated effect sizes. A first step is generally
to test each hypothesis in a frequentist framework, generating a corresponding set of p-values. Often, additional infor-
mation is available in the form of an external covariate, which assigns a numerical value to each hypothesis which has
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different (unknown) distributions amongst associations and non-associations. Information from such covariates can be
incorporated into hypothesis testing to improve power in detecting associations.
A range of procedures have been proposed for this type of analysis. An important consideration is the form of the (two-

dimensional) rejection rule applied to the p-value-covariate pairs. An optimal procedure (in terms of minimising type 2
error and controlling type 1 error) determines rejection regions on the basis of a ratio of bivariate probability densities
(PDFs) of the p-value and covariate under the null and under the alternative. One approach to the problem at hand is to
estimate this ratio directly (Alishahi et al., 2016; Du et al., 2014; Lei and Fithian, 2018). Other approaches include ‘filtering’
on covariate values (Bourgon et al., 2010), weighting hypotheses according to the value of the covariate (Basu et al., 2018;
Benjamini et al., 2006; Cai et al., 2016; Genovese et al., 2006; Ignatiadis et al., 2016), modulating a univariate test of p-values
in response to the covariate in some other way (Li and Barber, 2016, 2017; Scott et al., 2015) and binning covariates in order
to treat each bin separately (Ferkingstad et al., 2008). Since covariates can be of many types (continuous, categorical;
univariate, multivariate; known or unknown distributional properties) and can relate to the p-values in a range of ways,
this array of methods is necessary to manage the range of problem types.
The conditional false discovery rate (cFDR) circumvents the difficulties of estimating PDFs by approximating the opti-

mal ratio using cumulative density functions (CDFs) (Andreassen et al., 2013c). In this case, the covariate is generally a set
of p-values arising from an analogous procedure on the same variables for a second ‘conditional’ trait with an unknown
degree of similarity to the trait giving rise to the primary set of p-values (whichwe call the ‘principal’ trait). Themethod has
been extensively used in genomics (Andreassen et al., 2013a, 2013b, 2013c, 2014a, 2014b, 2015; Broce et al., 2018; Desikan
et al., 2015a, 2015b; Ferrari et al., 2017; Karch et al., 2018; Le Hellard et al., 2016; Liley and Wallace, 2015; Liu et al., 2013;
Lv et al., 2017; McLaughlin et al., 2017; Schork et al., 2016; Shadrin et al., 2018; Smeland et al., 2017a, 2017b, 2017c; Van der
Meer et al., 2020; Wang et al., 2016; Witoelar et al., 2017; Zuber et al., 2018). Formally, the cFDR is a posterior probability
of non-association with the principal trait given that p-values for the principal and conditional traits fall below p-value
thresholds 𝑝, 𝑞, respectively. It is readily estimated using empirical CDFs (ECDFs) (Andreassen et al., 2013c).
The cFDR is a useful Bayesian quantity in its own right. Generally, the cFDR is used in effectively a frequentist way:

roughly, for each observed p-value pair (𝑝𝑖, 𝑞𝑖), we estimate the cFDR at (𝑝, 𝑞) = (𝑝𝑖, 𝑞𝑖) and reject the null hypothesis if
this estimated value is less than some threshold 𝛼. This process is nearly analogous to the Benjamini–Hochberg procedure
(B-H) (Benjamini and Hochberg, 1995) on a single set of p-values 𝑝𝑖 , but unlike B-H, it does not control the false discovery
rate (FDR) at 𝛼 (nor any other conventional measure of type-1 error rate). In a previous paper (Liley and Wallace, 2015),
we proposed a rough method to approximately control FDR in this setting, but our method was drastically conservative.
The main contribution of this paper is to propose a much improved type-1 error rate control strategy for cFDR, which

improves power relative to previous methods. Our method transforms cFDR estimates into ‘v-values’, which function
analogously to p-values and can be used to control FDR or family-wise error rate (FWER). In four secondary contributions,
we (a) propose an improvement to the existing estimator which improves power, (b) show several asymptotic results about
themethod and demonstrate that the effect of certain troublesome properties is small, (c) enable and demonstrate iterative
use of the procedure and (d) compare the general cFDRmethod with PDF-based, parametric and kernel density estimator
(KDE)-based approaches. An R package is provided.
In this paper, we begin by describing a motivating example using transcriptome-wide association studies (TWAS). We

then summarise the cFDR and its estimator and describe its relation to the B-H procedure. We then describe our method
to transform cFDR estimates into p-value-like quantities and discuss how the cFDR approach relates to similar methods
in the field. We evaluate the type-1 error rate control and power of the method and finally describe an iterated form of the
procedure for use with multiple sets of covariates.

1.1 Motivating example

We consider a TWAS (Gusev et al., 2016) of breast cancer BRCA (Michailidou et al., 2017) and ovarian cancer (OCA; Phelan
et al., 2017), which are epidemiologically and biologically similar diseases (Greene et al., 1984). TWASs test for association
between levels of predicted expression of transcripts (gene products) in various tissues between cases (BRCA or OCA) and
controls. For each transcript–tissue pair, the TWAS generates a p-value against the null hypothesis that the predictedmean
expression of that transcript in that tissue is the same in case and control populations, according to a transcript-prediction
rule learnt from independent data. The TWASs in question test around 10,000 gene transcripts across 45 tissues (though
many transcript–tissue pairs are missing), and after we restrict to transcript–tissue pairs common to both studies, we are
left with a set of ≈ 105 p-values 𝑝𝐵𝑅𝐶𝐴, 𝑝𝑂𝐶𝐴 for association with BRCA and OCA, respectively (further detail is given in
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F IGURE 1 Illustration of cFDR approach using example data from the TWAS study of breast cancer (BRCA), conditioning on ovarian
cancer (OCA). Each plot shows test statistics from BRCA (x axis) and OCA (y axis) on either the Z (a–c) or p-value (d) scale. All rejection
regions use methods to control FDR at < 1 × 10−6. (a) B-H procedure applied to BRCA statistics alone leads to a rejection region to the right of
the blue dashed vertical line. (b) B-H applied to those variables for which 𝑧OCA exceeds the threshold shown by a solid red line. (c) cFDR
procedure: for the 𝑖th values 𝑧𝐵𝑅𝐶𝐴(𝑖)𝑧𝑂𝐶𝐴(𝑖), a B-H procedure aiming to control the FDR at 𝛼 is conducted on only the variables for which
𝑧𝑂𝐶𝐴 ≥ 𝑧𝑂𝐶𝐴(𝑖), and if the 𝑖th null hypothesis is rejected during this procedure, it is rejected overall. We term the rejection region
corresponding to this value 𝛼 an ‘L-region’ 𝐿(𝛼), shown as the shaded region. (d) The exposition that follows using p-values rather than Z
scores, and so we reproduce the data and 𝐿(𝛼) on the p-value scale. On this scale, the estimated cFDR at a point 𝑝𝐵𝑅𝐶𝐴, 𝑝𝑂𝐶𝐴 can be
considered an estimate of the FDR corresponding to a fixed rejection region given by the box with 𝑝𝐵𝑅𝐶𝐴, 𝑝𝑂𝐶𝐴 as its top-right corner, and the
L-region 𝐿(𝛼) roughly as the locus of top-right corners of boxes with estimated cFDR equal to 𝛼. Two such boxes are illustrated in the figure

Supporting Information Section 1.1).Wewish to findwhich of the variables are associatedwith BRCA, and thus investigate
a null hypothesis𝐻0

𝐵𝑅𝐶𝐴
of non-association. Given established genetic correlations BRCA and OCA, we hope to leverage

theOCATWAS results to increase power in this search.Wewill assume thatwe have no prior knowledge that any variables
are more likely to be BRCA- or OCA- associated, that absolute Z-scores 𝑧𝐵𝑅𝐶𝐴 = −Φ−1(𝑝𝐵𝑅𝐶𝐴∕2), 𝑧𝑂𝐶𝐴 = −Φ−1(𝑝𝑂𝐶𝐴∕2)

have a block-diagonal correlation structure where block locations are known, and that under a null hypothesis𝐻0
𝐵𝑅𝐶𝐴

of
no association with BRCA, 𝑧𝐵𝑅𝐶𝐴 and 𝑧𝑂𝐶𝐴 is independent.
A straightforward approach is to apply the B-H procedure to the values 𝑝𝐵𝑅𝐶𝐴 (Figure 1, panel a). BRCA and OCA

tend to have associations at the same variables, suggesting that a rejection region should reflect this to improve power. A
natural way to do this is to only consider those variables for which 𝑧OCA exceeds some threshold, which allows rejection
of𝐻0

BRCA at a looser 𝑧BRCA threshold (Figure 1, panel b). FDR control is maintained under the independence assumption
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above (Bourgon et al., 2010). However, this procedure is problematic: a threshold on 𝑧OCA must be chosen a priori and
variables with 𝑧OCA falling below the red line have𝐻0

𝐵𝑅𝐶𝐴
retained automatically.

The cFDR procedure circumvents this problem (Figure 1, panel c). The associated rejection region, which we term an
L-region, ‘adapts’ to the joint distribution of 𝑧𝐵𝑅𝐶𝐴 and 𝑧𝑂𝐶𝐴. For small 𝛼, the L-region approximates an optimal rejection
region (Appendix A.1). Amajor shortcoming is that although a B-H procedure with FDR controlled at 𝛼 is repeatedly used
to generate the L-region, the overall FDR is not controlled at 𝛼, nor any straightforward function of 𝛼 (Liley and Wallace,
2015; Appendix A.2).
In this paper, we demonstrate a straightforward and effective way to control the type-1 error rate (specifically FDR or

FWER) in the cFDR procedure. As 𝛼 varies from 0 to 1, the leftmost boundary of the L-region ‘sweeps’ across the entire
(+,+) quadrant, and for 𝛼1 < 𝛼2, we have 𝐿(𝛼1) ⊆ 𝐿(𝛼2). Thus we can associate each point (x,y) in the (+,+) quadrant
with the smallest L-region containing it, which will generally have (x,y) on its leftmost border. Loosely, we control FDR by
estimating the probability that each point would lie within its associated region under 𝐻0

BRCA. We term this the v-value,
which has similar properties to a p-value and can be used in the B-H procedure.
Care must be taken when applying rejection rules to the same data on which those rules were determined, so we use a

leave-one-out procedure which avoids this problem (Section 3, Appendix A.4). We show that the rejection region gener-
ated by the cFDR approximates the best-possible rejection region (Section 2.2, Appendix A.1), and that rejection regions
converge reasonably fast as the number of variables under consideration increases (Section A.3). The rejection region is
non-parametric, and we show that the cFDR method can outperform parametric methods (Section 5.2). Finally, the v-
values may be considered ‘adjusted’ p-values, which enables straightforward iteration of the method with further sets of
p-values at the same variables, discussed in Section 5.5.

2 REVIEWOF cFDR ESTIMATOR

2.1 Definitions

Assume that we have results from 𝑛 pairs of hypothesis tests against two series of null hypotheses (𝐻𝑝
0 (𝑖), 𝐻

𝑞
0 (𝑖)) in the

form of a set 𝑆 of bivariate p-values 𝑆 = (𝑝𝑖, 𝑞𝑖), 𝑖 = 1…𝑛. In our motivating example,𝐻𝑝
0 (𝑖) and𝐻

𝑞
0 (𝑖) are non-association

of the 𝑖th tissue–gene pair with BRCA and OCA, respectively. We consider (𝐻𝑝
0 (𝑖), 𝐻

𝑞
0 (𝑖)) to be realisations of independent

Bernoulli random variables 𝐻𝑝
0 ,𝐻

𝑞
0 satisfying 𝑃𝑟(𝐻

𝑝
0 ) = 𝜋0, 𝑃𝑟(𝐻

𝑞
0 ) = 𝜋

𝑞
0 , and 𝑝𝑖, 𝑞𝑖 to be independent and identically

distributed (IID) realisations of random variables 𝑃,𝑄 satisfying:

𝑃|𝐻𝑝
0 ∼ 𝑈(0, 1)

𝑃 ⟂⟂ 𝑄|𝐻𝑝
0 (1)

although assumption (1) can be relaxed. We denote

𝐹0(𝑝, 𝑞) = 𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞|𝐻𝑝
0 ) = 𝑝𝐹

𝑞
0 (𝑞) (2)

𝐹(𝑝, 𝑞) = 𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞)

𝑓0(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞|𝐻𝑝
0 ) = 𝑓

𝑞
0 (𝑞) (3)

𝑓(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞),

where the separability of (2) and (3) is due to assumption (1).

2.2 Optimal procedure

Under 𝐻𝑝
0 , the probability of a random instance of (𝑃, 𝑄) falling in a region 𝑅 is ∫

𝑅
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞. To find an ideal two-

dimensional rejection region for hypothesis testing, we wish to fix this value at a level 𝛼 while maximising the probability
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∫
𝑅
𝑓(𝑝, 𝑞)𝑑𝑝𝑑𝑞. This optimal region (or one such optimal region) is given by the set of points {(𝑝, 𝑞) ∶ 𝑓0(𝑝, 𝑞)∕𝑓(𝑝, 𝑞) ≥

𝑘𝛼} for some 𝑘𝛼 (a formal statement and proof are given in Appendix A.1, and this is also shown in various forms in Du
et al. (2014), Alishahi et al. (2016) and Lei and Fithian (2018). In equivalent terms, an optimal decision rule for the set 𝑆
would rank p-value pairs according to 𝑓0(𝑝𝑖, 𝑞𝑖)∕𝑓(𝑝𝑖, 𝑞𝑖) or equivalently 𝑃𝑟(𝐻

𝑝
0 |𝑃 = 𝑝𝑖, 𝑄 = 𝑞𝑖).

A natural approach is to estimate 𝑓0 and 𝑓 using a parametric approximation (Du et al., 2014; Lei and Fithian, 2018) or
local approximations usingKDEs (Alishahi et al., 2016) or splinemodels (Zablocki et al., 2014). However, PDFs are difficult
to estimate in general, and there may be little reason to believe parametric assumptions are satisfied; in our motivating
example (Figure 1, panels a-c) there is little reason to think that a smooth rejection region would be optimal.

2.3 Conditional false discovery rate

The cFDR (Andreassen et al., 2013c) takes an alternative approach of instead ranking points by an estimate of
𝐹0(𝑝, 𝑞)∕𝐹(𝑝, 𝑞). This estimate is obtained by estimating the monotonically related quantity:

𝑐𝐹𝐷𝑅(𝑝, 𝑞) = 𝑃𝑟(𝐻
𝑝
0 |𝑃 ≤ 𝑝,𝑄 ≤ 𝑞) (4)

=
𝑃𝑟(𝑃 ≤ 𝑝|𝐻𝑝

0 , 𝑄 ≤ 𝑞)

𝑃𝑟(𝑃 ≤ 𝑝|𝑄 ≤ 𝑞)
𝑃𝑟(𝐻

𝑝
0 |𝑄 ≤ 𝑞). (5)

Suppose we have a multi-set 𝑋 of p-value pairs (𝑝𝑖, 𝑞𝑖). If almost all these pairs are IID realisations (𝑝𝑖, 𝑞𝑖) of (𝑃, 𝑄), then
for fixed 𝑝, 𝑞, the ECDFs

1|𝑋| |{𝑖 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝑋, 𝑝𝑖 ≤ 𝑝, 𝑞𝑖 ≤ 𝑞}|
1|𝑋| |{𝑖 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝑋, 𝑞𝑖 ≤ 𝑞}|

are consistent estimators of𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞),𝑃𝑟(𝑄 ≤ 𝑞), respectively. Given assumption (1), we have𝑝 = 𝑃𝑟(𝑃 ≤ 𝑝|𝐻𝑝
0 ) =

𝑃𝑟(𝑃 ≤ 𝑝|𝑄 ≤ 𝑞,𝐻
𝑝
0 ) and (for the moment) we may conservatively approximate 𝑃𝑟(𝐻

𝑝
0 |𝑄 ≤ 𝑞) = 1. Given 𝑋, we thus

define the estimated cFDR (denoted 𝑐𝐹𝐷𝑅), as a function of two variables (𝑝, 𝑞) ∈ (0, 1):

𝑐𝐹𝐷𝑅𝑋(𝑝, 𝑞) = 𝑝
max(|{𝑖 ∶ 𝑞𝑖 ≤ 𝑞, (𝑝𝑖, 𝑞𝑖) ∈ 𝑋}|, 1)

max(|{𝑖 ∶ 𝑝𝑖 ≤ 𝑝, 𝑞𝑖 ≤ 𝑞, (𝑝𝑖, 𝑞𝑖) ∈ 𝑋}|), 1) . (6)

For fixed 𝑝, 𝑞, 𝑐𝐹𝐷𝑅𝑋(𝑝, 𝑞) is a generally biased but consistent estimator of 𝑐𝐹𝐷𝑅(𝑝, 𝑞)∕𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞), which converges

uniformly on fixed regions at a rate of 𝑂(𝑛−1∕2) (see Appendix A.3), and it is usually a downwards-biased (conservative)
estimator of 𝑐𝐹𝐷𝑅(𝑝, 𝑞).
Approximating 𝑃𝑟(𝐻𝑝

0 |𝑄 ≤ 𝑞) = 1 in Equation (6) disregards any variation on 𝑃𝑟(𝐻𝑝
0 |𝑄 ≤ 𝑞)with 𝑞, so we introduce at

this stage an estimate of 𝑃𝑟(𝐻𝑝
0 |𝑄 ≤ 𝑞), which we can multiply with 𝑐𝐹𝐷𝑅𝑋(𝑝, 𝑞) to improve the accuracy of approxima-

tion of 𝑐𝐹𝐷𝑅(𝑝, 𝑞). Our estimate is

𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞) = 𝑃𝑟(𝐻

𝑝
0 )
𝑃𝑟(𝑄 ≤ 𝑞|𝐻𝑝

0 )

𝑃𝑟(𝑄 ≤ 𝑞)

≈ 𝜋0

𝑃𝑟(𝑄 ≤ 𝑞|𝑃 > 1∕2)

𝑃𝑟(𝑄 ≤ 𝑞)

≈
min(1, |{𝑖 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝑋, 𝑞𝑖 ≤ 𝑞, 𝑝𝑖 > 1∕2}|)

min(1, |{𝑖 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝑋, 𝑞𝑖 ≤ 𝑞}||{𝑖 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝑋, 𝑝𝑖 > 1∕2}|)
= 𝑃𝑟𝑋(𝐻

𝑝
0 |𝑄 ≤ 𝑞), (7)
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where we approximate 𝜋0 = 𝑃𝑟(𝐻𝑃
0 ) = 1. We denote

𝑐𝐹𝐷𝑅
𝑛

𝑋(𝑝, 𝑞) = 𝑐𝐹𝐷𝑅𝑋(𝑝, 𝑞)𝑃𝑟𝑋(𝐻
𝑝
0 |𝑄 ≤ 𝑞). (8)

Estimating 𝜋0 (rather than setting 𝜋0 = 1) would uniformly scale all estimates of 𝑐𝐹𝐷𝑅(𝑝, 𝑞), which has no effect on our
rejection procedure.
In the hypothesis testing setting, we aim to use 𝑐𝐹𝐷𝑅 or 𝑐𝐹𝐷𝑅

𝑛
to construct a decision rule on our set 𝑆 of observed

p-value pairs (wewill forego the 𝑛 superscript from now, with the understanding that it may be added). A simple approach
is to reject𝐻𝑝

0 (𝑖) if 𝑐𝐹𝐷𝑅𝑆(𝑝𝑖, 𝑞𝑖) ≤ 𝛼, but 𝑐𝐹𝐷𝑅𝑆(𝑝, 𝑞) is notmonotonically increasingwith 𝑝 andwe do not want to reject
𝐻

𝑝
0 for some (𝑝𝑖, 𝑞𝑖) and not for some other pair (𝑝𝑗, 𝑞𝑗) with 𝑞𝑖 = 𝑞𝑗 but 𝑝𝑗 < 𝑝𝑖 . Hence, we can use the decision rule (as

per Andreassen et al., 2013c)

Reject𝐻𝑝
0 if: ∃𝑝

′ ≥ 𝑝𝑖 ∶ 𝑐𝐹𝐷𝑅𝑆(𝑝
′, 𝑞𝑖) ≤ 𝛼. (9)

This enables a rejection region with a single rightmost boundary, as shown in panels D in Figure 1. It closely parallels
the B-H (Benjamini and Hochberg, 1995) procedureon a set of p-values. Suppose we have a set 𝑆1 of p-values 𝑝1, 𝑝2, … , 𝑝𝑛,
and define

𝐵𝐻𝑆1(𝑝) = 𝑝
|𝑆1|

max(1, |{𝑖 ∶ 𝑝𝑖 ≤ 𝑝, 𝑝𝑖 ∈ 𝑆1}|) .
Then the B-H procedure can be written as

Reject𝐻𝑝
0 if: ∃𝑝

′ ≥ 𝑝𝑖 ∶ 𝐵𝐻𝑆1(𝑝
′) ≤ 𝛼. (10)

The B-H procedure controls FDR at 𝛼, and if it is performed with 𝑆1 as the subset of 𝑆 for which 𝑞𝑖 ≤ 𝛾 (where 𝛾 is a
threshold chosen independently of 𝑆), the FDR will still be controlled at 𝛼 if assumption (1) is satisfied (Bourgon et al.,
2010; Ignatiadis et al., 2016). The rejection procedure (9) is equivalent to repeatedly performing this ‘thresholded’ B-H at
𝛾 = 𝑞𝑖 , and using that decision rule for point (𝑝𝑖, 𝑞𝑖) (panel c, Figure 1).
When procedure (9) is used, the FDR is no longer controlled at 𝛼, and indeed can exceed 𝛼 by an arbitrary proportion.

This is most easily seen in the extreme case

𝑃,𝑄|𝐻𝑝
0 ∼ 𝑈(0, 1)2 (11)

𝑃,𝑄|𝐻𝑝
1 ∼ (0, 0), (12)

in which we can show that the FDR 𝛼𝑇𝑅𝑈𝐸 of rejection procedure (9) applied to 𝑐𝐹𝐷𝑅 satisfies

lim
𝑛→∞

(
𝛼𝑇𝑅𝑈𝐸(1 − 𝛼)

𝛼(1 − 𝛼𝑇𝑅𝑈𝐸)

)
= log

(
1 − 𝛼𝜋0

1 − 𝜋0

)
(13)

and when applied to 𝑐𝐹𝐷𝑅
𝑛
satisfies

lim
𝑛→∞

(
𝐹𝐷𝑅

𝛼

)
=

1 − log
(

𝛼

1−𝛼

1−𝜋0

𝜋0

)
1 − 𝛼 log

(
𝛼

1−𝛼

1−𝜋0

𝜋0

) (14)

with the corollary that the actual FDR when using rejection procedure (9) can be an arbitrarily large multiple of 𝛼. These
formulae are proved in Theorem A.3 (Appendix A.2).
Previous work using the cFDR generally interprets it in a Bayesian context, without requiring a bound on FDR or

FWER. In Liley and Wallace (2015), we introduced a method to choose an 𝛼∗ such that rejection criterion (9) roughly
controlled the FDR at 𝛼, but that method was overly conservative, generally controlling FDR at a far lower level
than needed.
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3 MAP FROM p-VALUE PAIRS TO v-VALUES

We identify a ‘rejection region’ associated with 𝑐𝐹𝐷𝑅 by adding a ‘test point’ (𝑝, 𝑞) to a set of points 𝑋 and considering
the region for which a hypothesis corresponding to (𝑝, 𝑞) is rejected under (9) with 𝑆 = 𝑋 + (𝑝, 𝑞).
The function 𝑐𝐹𝐷𝑅𝑋+(𝑝,𝑞)(𝑝, 𝑞) is now defined on the unit square. It is difficult to use, however: when considered as a

function of 𝑝 with fixed 𝑞, it does not monotonically increase with 𝑝. We thus define

𝑐𝐹𝐷𝑅𝑡𝑋(𝑝, 𝑞) = min
𝑝′≥𝑝 𝑐𝐹𝐷𝑅𝑋+(𝑝′,𝑞)(𝑝

′, 𝑞) (15)

and define the ‘L-region’ 𝐿𝑋(𝛼):

𝐿𝑋(𝛼) =
{
(𝑝, 𝑞) ∶ 𝑐𝐹𝐷𝑅𝑡𝑋(𝑝, 𝑞) ≤ 𝛼

}
(16)

= {(𝑝, 𝑞) ∶ ∃𝑝′ ≥ 𝑝 ∶ 𝑐𝐹𝐷𝑅𝑋+(𝑝′,𝑞)(𝑝
′, 𝑞) ≤ 𝛼} (17)

and define the ‘L-curve’ as the rightmost boundary of this region. We note that

𝛼 ≤ 𝛽 ⇒ 𝐿𝑋(𝛼) ⊆ 𝐿𝑋(𝛽). (18)

We now show the following, and include the brief proof:

Theorem 3.1. Assume that 𝑃,𝑄|𝐻𝑃
0 is a bivariate continuous random variable with support [0, 1]2, and set 𝜇0 as its induced

measure. Suppose𝑋 = (𝑝𝑖, 𝑞𝑖) ∈ [0, 1]2, 𝑖 ∈ 1…𝑛 is a fixed finite set of points. Define 𝐿𝑋(𝛼) as per Equation (16), with 𝑐𝐹𝐷𝑅
defined as per either Equation (6) or Equation (8), and define the ‘v-value’ as a function of 𝑝, 𝑞 ∈ (0, 1)2

𝑣𝑋(𝑝, 𝑞) = inf
𝛾∶(𝑝,𝑞)∈𝐿𝑋(𝛾)

(𝜇0[𝐿𝑋(𝛾)])

(
= min

𝛾∶(𝑝,𝑞)∈𝐿𝑋(𝛾)

(
∫
𝐿𝑋(𝛾)

𝑓0(𝑥, 𝑦)𝑑𝑥𝑑𝑦

))
(19)

the second definition being valid if 𝑃,𝑄|𝐻𝑃
0 admits a PDF (as in Section 2). Then for 𝛼 ∈ (0, 1)

𝑃𝑟
(
𝑣𝑋(𝑃, 𝑄) ≤ 𝛼|𝐻𝑃

0

) ≤ 𝛼. (20)

Proof. Since 𝑋 is finite 𝐿𝑋(𝛼) is Lesbegue-measurable, so the integral in (19) is well-defined. Note that since L-regions are
closed regions inside contours of a function monotonic in 𝑝, we could replace ‘inf ’ with ‘min’ in definition (19).
Given 𝛼 ∈ (0, 1), let

Γ(𝛼) = {𝛾 ∶ 𝜇0[𝐿𝑋(𝛾)] ≤ 𝛼}. (21)

Suppose there exists 𝛾(𝛼) ∈ Γ(𝛼) with (𝑝, 𝑞) ∈ 𝐿𝑋(𝛾(𝛼)). Then from definition (19), we have

𝑣𝑋(𝑝, 𝑞) ≤ 𝜇0[𝐿𝑋(𝛾(𝛼))] ≤ 𝛼 (22)

so, using property (18)

𝑃𝑟(𝑣𝑋(𝑃, 𝑄) ≤ 𝛼|𝐻𝑃
0 ) ≤ 𝑃𝑟

[
(𝑃, 𝑄) ∈

⋃
𝛾(𝛼)∈Γ(𝛼)

𝐿𝑋(𝛾(𝛼))|𝐻𝑃
0

]

= sup
𝛾(𝛼)∈Γ(𝛼)

(𝜇0[𝐿𝑋(𝛾(𝛼))])

≤ 𝛼.
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If there exists 𝛾 such that 𝛼 = 𝜇0[𝐿(𝛾)] then (𝑝, 𝑞) ∈ 𝐿𝑋(𝛾) ⇔ 𝑣𝑋(𝑝, 𝑞) ≤ 𝛼, so equality is achieved in (20). □

Remark 3.2. With Γ defined as per (21), and setting 𝜇1 as the induced measure of 𝑃,𝑄|𝐻𝑃
1 , the power of the rejection

procedure

{Reject𝐻𝑃
0 if 𝑣𝑋(𝑝, 𝑞) ≤ 𝛼} (23)

is

𝑃𝑟(reject𝐻𝑃
0 |𝐻𝑃

1 ) = sup
𝛾(𝛼)∈Γ(𝛼)

(𝜇1(𝐿𝑋(𝛾(𝛼))), (24)

and the type-1 error rate is ≤ 𝛼.

Theorem 3.1 assumes the probability measure 𝐹0 of 𝑃,𝑄|𝐻𝑃
0 is known. In practice, it must be estimated. This can be

readily done given assumption (1), as will be shown in Section 3.2. We can think of the function 𝑣𝑋(𝑝, 𝑞) as a map from
the unit square to the unit interval, where the map is defined by the points 𝑋.
We note that property (20) indicates that the value 𝑣𝑋(𝑝, 𝑞) is interpretable as a p-value against 𝐻

𝑝
0 , using 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞)

as a test statistic (it may even be thought of as a definition of a p-value; Storey et al., 2003). In this sense, it is slightly
conservative due to the ‘≤ 𝛼’ rather than ‘= 𝛼’ in (20). Resultant v-values may thus be used in the B-H procedure to
control FDR, or used with a Šidák correction to control FWER. For the remainder of this paper, we will seek to control
FDR by the B-H procedure.
In order to use Theorem 3.1 to generate a p-value for a test point (𝑝, 𝑞). we must assume 𝑋 is ‘fixed’. In practice, this

means (𝑝𝑖, 𝑞𝑖)must be independent of values (𝑝, 𝑞); hence, not in 𝑋.
Given our set of points 𝑆 = (𝑝𝑖, 𝑞𝑖), this is easily managed: to test (𝑝𝑖, 𝑞𝑖), we simply leave (𝑝𝑖, 𝑞𝑖) out of the points

used to define the set of L-regions we use on (𝑝𝑖, 𝑞𝑖) itself. That is, given our set 𝑆 of datapoints as above, we define the
‘leave-one-out’ v-value

𝑣(𝑝𝑖, 𝑞𝑖) = 𝑣𝑆−(𝑝𝑖,𝑞𝑖)(𝑝𝑖, 𝑞𝑖). (25)

The problem can also be managed by leaving out blocks of points; for a partition of 1…𝑛 into blocks 1, 2, … , 𝑘, supposing
𝑖 is in block 𝑏(𝑖), the ‘block-out’ v-value is defined as

𝑣(𝑝𝑖, 𝑞𝑖) = 𝑣𝑆−block 𝑏(𝑖)(𝑝𝑖, 𝑞𝑖). (26)

If observations (𝑝𝑖, 𝑞𝑖) are not independent but have a block-diagonal correlation structure, then this procedure is neces-
sary in order to ensure property (20) holds for (𝑝, 𝑞) = (𝑝𝑖, 𝑞𝑖): since each observation (𝑝𝑖, 𝑞𝑖) carries information about
the other p-value pairs it is correlated with, removing it will not remove the influence of point (𝑝𝑖, 𝑞𝑖) on the map. In this
case, blocks should be chosen so that p-value pairs are independent between blocks, but possibly dependent within blocks.
Such structure arises often in -omics experiments; in genetics, independence of allele counts may be assumed between
chromosomes, but not generally within.
For comparison, we also define the ‘naive’ v-value

𝑣(𝑝𝑖, 𝑞𝑖) = 𝑣𝑆(𝑝𝑖, 𝑞𝑖), (27)

where 𝑝𝑖, 𝑞𝑖 is in 𝑆.
In the subsequent section, we note several asymptotic properties of L-regions and v-values. We note that con-

sistency of L-region estimation is not necessary for type-1 error rate control: there is no requirement in Theo-
rem 3.1 for the values in 𝑋 to have the same distribution as 𝑃,𝑄. L-regions are also identical under monotonic
transformations of the function 𝑐𝐹𝐷𝑅(𝑝, 𝑞), so the method is unaffected by the approximation 𝑃𝑟(𝐻𝑃

0 ) ≈ 1 in
Equation (7).
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3.1 Asymptotic properties of L-regions and v-values

We describe several asymptotic properties of L-regions and v-values. Estimator (7) is not generally consistent, so we focus
our attention on properties of regions defined using 𝑐𝐹𝐷𝑅 rather than 𝑐𝐹𝐷𝑅

𝑛
. We divide out the quantity estimated in (7),

write 𝐹(𝑞) = 𝑃𝑟(𝑄 ≤ 𝑞) and define

𝐶(𝑝, 𝑞) =
𝑐𝐹𝐷𝑅(𝑝, 𝑞)

𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞)

= 𝑝
𝐹(𝑞)

𝐹(𝑝, 𝑞)
, (28)

whichwe generally assumed to be differentiable on the unit square.We recall definition (15) andnote the following (proved
in Appendix A.3):

Theorem3.3. Let𝑅 be the region of the unit square forwhich𝐹(𝑝, 𝑞) ≥ 𝛾 > 0and𝐹(𝑞) > 0. Then on𝑅, 𝑐𝐹𝐷𝑅(𝑝, 𝑞) converges
uniformly to 𝐶(𝑝, 𝑞), and if 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 0, then so does 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞).

This theorem indicates that the empirical L-curve converges to a contour of 𝐶(𝑝, 𝑞), where the contour exists. Although
the region 𝑅 does not cover the entire unit square, in practice it usually has Lesbegue measure 0: if 𝑃𝑟(𝐻𝑄

0 ,𝐻
𝑃
0 ) > 0 and

𝑃,𝑄|𝐻𝑄
0 ,𝐻

𝑃
0 ∼ 𝑈(0, 1)2 then 𝐹(𝑝, 𝑞) is bounded away from 0 on (0, 1)2. We note that 𝐶(𝑝, 𝑞) is meaningful only when

𝐹(𝑝, 𝑞) > 0.
Because of the uniform convergence, this can be translated into a statement about v-values. Given an L-region 𝐿(𝛼), we

define the M-region as the ‘expected’ L-region:

𝑀(𝛼) = {(𝑝, 𝑞) ∶ 𝐶(𝑝, 𝑞) ≤ 𝛼} (29)

and the ‘error’ on the v-value 𝑣 = ∫
𝐿(𝛼)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 as

|Δ𝑣| = |||||∫𝐿(𝛼) 𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 − ∫
𝑀(𝛼)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞
|||||. (30)

Now we have

Theorem 3.4. Define 𝑅 as in Theorem 3.3, and further assume that 𝑓0(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞|𝐻𝑃
0 ) is known and on 𝑅 we

have 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 𝛾2 > 0. Write 𝑅𝑐 = [0, 1]2 ⧵ 𝑅. Then the maximum error on any v-value is

∫
𝑅𝑐
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + 𝑂

(
1√
𝑛

)
(31)

thus, as 𝑛 → ∞, v-values based on 𝑐𝐹𝐷𝑅 converge at a rate𝑂(𝑛−1∕2) to those that would be obtained using 𝐶(𝑝, 𝑞), plus
a fixed error. We also note that under the conditions in both theorems, if 𝑅 has negligible Lesbegue measure, and there
exists 𝛾 such that

∫
𝑀(𝛾)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 1

then as 𝑛 → ∞ the power of rejection procedure (23) satisfies

𝑃𝑟(reject𝐻𝑃
0 |𝐻𝑃

1 ) → 𝜇1[𝑀(𝛾)], (32)

where 𝜇1 is defined as in Equation (23). Finally, we note that neither consistency nor unbiasedness of the 𝑐𝐹𝐷𝑅

estimator is necessary for the p-value property in Theorem 3.1 to hold. Proofs of Theorems 3.3 and 3.4 are given in
Appendix A.3.
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3.2 Estimation of 𝑷,𝑸|𝑯𝒑

𝟎

Recalling Equation (3), wemaywrite𝑓0(𝑝, 𝑞) = 𝑓
𝑞
0 (𝑞). To estimate𝑓

𝑞
0 , we assume that (𝑄|𝐻𝑝

0 ) ∼ (𝑄|𝑃 ≥ 1∕2), and approx-
imate the latter with a mixture-Gaussian distribution

−Φ−1

(
𝑄

2

)||||𝑃 >
1

2
∼

{|𝑁(0, 1)| prob = 𝜋0|𝑁(0, 𝜎20)| prob = 1 − 𝜋0,
(33)

where𝑁(𝜇, 𝜎) is the normal distribution with mean 𝜇 and variance 𝜎2. Estimates 𝜋0, 𝜎0 of 𝜋0 and 𝜎0 can be readily made
using an expectation-maximisation algorithm (Dempster et al., 1977), using the values 𝑞𝑖 for which the corresponding 𝑝𝑖
is ≥ 1∕2. We then estimate the density 𝑓0(𝑝, 𝑞) of 𝑃,𝑄|𝐻𝑃

0 as

𝑓0(𝑝, 𝑞) = 𝟏𝑓
𝑞
0 (𝑞) = 𝜋0 + (1 − 𝜋0)

𝜙(Φ−1(𝑞∕2), 𝜎 = 𝜎0)

𝜙(Φ−1(𝑞∕2), 𝜎 = 1)
, (34)

where 𝜙 is the normal density function with SD 𝜎. If 𝑃,𝑄 have a known dependence under𝐻𝑝
0 , an alternative distribution

can be used for computing 𝑣(𝐿) (see Supporting Information Section 1.2). The PDF 𝑓
𝑞
0 could be estimated in other ways;

for example, a kernel density estimate (Sheather and Jones, 1991).
Type-1 error control is maintained under a relaxation of the assumption that 𝑃|𝐻𝑃

0 ∼ 𝑈(0, 1) if the distribution of 𝑃
dominates 𝑈(0, 1); that is, if 𝑃𝑟(𝑃 ≤ 𝑝|𝐻𝑃

0 ) ≤ 𝑝 for all 𝑝, since we will overestimate 𝑓0 inside L-regions in this case and
hence v-values will be conservative.

3.3 Correlation between v-values

Decision rules based on multiple p-values generally require adjustment if p-values are dependent (e.g. Benjamini and
Hochberg, 1995). If v-values are obtained by the leave-one-out procedure (25) they are slightly pairwise dependent.
The dependence is small; if 𝑋′ = 𝑋 − (𝑝𝑖, 𝑞𝑖) − (𝑝𝑗, 𝑞𝑗) the values 𝑣𝑋′(𝑝𝑖, 𝑞𝑖), 𝑣𝑋′(𝑝𝑗, 𝑞𝑗) are independent, so the pair-
wise dependence between v-values corresponding to (𝑝𝑖, 𝑞𝑖), (𝑝𝑗∕𝑞𝑗) only arises from the differences 𝑣𝑋′+(𝑝𝑗,𝑞𝑗)(𝑝𝑖, 𝑞𝑖) −

𝑣𝑋′(𝑝𝑖, 𝑞𝑖), 𝑣𝑋′+(𝑝𝑖 ,𝑞𝑖)(𝑝𝑗, 𝑞𝑗) − 𝑣𝑋′(𝑝𝑗, 𝑞𝑗); that is, the effect of a single point ((𝑝𝑗, 𝑞𝑗), (𝑝𝑖, 𝑞𝑖), respectively) on the map 𝑣𝑋′

defined by |𝑋′| = |𝑋| − 2 points. Indeed, we show that the expected change to v-values on adding a single new point is
small:

Theorem 3.5. Suppose we add a point (𝑝∗, 𝑞∗) to a set of 𝑛 points (𝑝𝑖, 𝑞𝑖), considered as realisations of 𝑃,𝑄 and conditions
are satisfied for convergence of v-values as above. Let Δ𝑣(𝐿(𝛼)) be the shift in a v-value corresponding to an L-curve 𝐿(𝛼) after
adding (𝑝∗, 𝑞∗). Then

𝐸𝛼∼𝑈(0,1)(|Δ𝑣(𝐿(𝛼))|) = 𝑂

(
1

𝑛2

)
. (35)

The proof is given in Appendix A.4. When v-values are defined using block-out as in (26), v-values are independent
within-block but dependent between blocks. The B-H procedure is also sensitive to higher order (non-pairwise) depen-
dence between v-values, but we show by simulation in Section 5 residual dependence does not generally lead to failure of
FDR control, even whenwe increase dependence by enforcing correlation between observations 𝑝𝑖, 𝑝𝑗 and between 𝑞𝑖, 𝑞𝑗 .

3.4 Algorithm

We can now present our final algorithm.
We can interpret 𝑣𝑖 as ‘the probability that a randomly chosen (𝑝, 𝑞) pair has a more extreme 𝑐𝐹𝐷𝑅 value than

𝑐𝐹𝐷𝑅(𝑝𝑖, 𝑞𝑖)’; that is, as a p-value. This allows straightforward FWER or FDR control, especially as v-values are almost
independent. The v-values order hypotheses such that a rejection rule {reject𝐻𝑃

0 𝑟(𝑖) if 𝑣𝑖 ≤ 𝛼} has near-optimal power, in



1106 LILEY andWALLACE

ALGORITHM 1 Controlling type-1 error rate in cFDR

Input: ‘principal’ p-values 𝑝1, 𝑝2, …𝑝𝑛; ‘conditional’ p-values 𝑞1, 𝑞2, … 𝑞𝑛; optionally fold assignment 𝑏 ∶ 1…𝑛 → 1…𝑘 such
that (𝑝𝑖, 𝑞𝑖) ⟂⟂ (𝑝𝑗, 𝑞𝑗)|𝑏(𝑖) = 𝑏(𝑗)

Output: v-values 𝑣1, 𝑣2 … 𝑣𝑛

1: Identify the set {𝑞𝑖 ∶ 𝑝𝑖 > 1∕2} and make estimates 𝜋0, 𝜎0 of 𝜋0, 𝜎0 as per (33)
2: Set 𝑓0(𝑝, 𝑞) as per Equation (34)
3: for 𝑖 ∈ 1…𝑛 do
4: Set 𝑆′ = {(𝑝𝑗, 𝑞𝑗) ∶ 𝑗 ≠ 𝑖} (leave-one-out) or 𝑆′ = {(𝑝𝑗, 𝑞𝑗) ∶ 𝑏(𝑗) ≠ 𝑏(𝑖)} (block-out)
5: Find 𝑐𝑖 = min{𝑐 ∶ (𝑝𝑖, 𝑞𝑖) ∈ 𝐿𝑆′ (𝑐)}

6: Set 𝑣𝑖 = ∫
𝐿𝑆′ (𝑐𝑖 )

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞

7: Return (𝑣1, 𝑣2, … , 𝑣𝑖)

terms of corresponding to near-optimal forms for rejection regions. Much of our methodology can also be used if values
𝑞𝑖 are not p-values for some second trait, as long as they fall in (0,1). However, approximation (33) may be inappropriate
if this is not the case.

4 RELATION TO OTHERMETHODS

Awide range of approaches have been proposed for the problem of high-dimensional association testing using an informa-
tive covariate. Given the correspondingly wide variation in problems of this type, the optimal method is likely to depend
on circumstance. In general, we will take 𝑃, 𝑝,𝐻𝑝

0 to refer to p-values and hypotheses for the trait of primary interest, and
𝑄, 𝑞 to refer to the covariate.

4.1 Determination of rejection region form

The simplest approach to covariate-based testing is ‘independent filtering’ (Bourgon et al., 2010) in which attention is
restricted to the set {(𝑝𝑖, 𝑞𝑖) ∶ 𝑞𝑖 ≥ 𝑞0}, with the B-H procedure then applied to the corresponding subset of values of 𝑝𝑖 .
This procedure is equivalent to rejection regions which are a series of rectangles with upper border at 𝑞 = 𝑞0. Independent
filtering is clearly non-optimal, but is well-suited to some problem types (Bourgon et al., 2010).
As discussed above, a range of approaches aim to approximate the optimal rejection regions based on 𝑓0∕𝑓. In Du et al.

(2014) and Lei and Fithian (2018), parameterisation leads to rejection regions constricted to a particular parametric class;
in Du et al. (2014) that of oracle rejection regions under mixture-Gaussian forms of 𝑓0 and 𝑓. In Alishahi et al. (2016) and
Zablocki et al. (2014), boundaries of rejection regions are necessarily smooth at a scale corresponding to the smoothing
kernelwidth, but can take otherwise arbitrary forms. An alternative approach is to ‘bin’ covariates (Ferkingstad et al., 2008;
Ignatiadis et al., 2016) which leads to L-curves which are step functions with steps spaced according to the resolution of
the bins.
An approach in Li andBarber (2016) estimates𝑃𝑟(𝐻𝑝

0 |𝑄 = 𝑞) for each 𝑞 tomodulate a B-H type test for each observation.
The entire effect of the covariate in this method is encompassed through the value of 𝑃𝑟(𝐻𝑝

0 |𝑄 = 𝑞), which necessarily
relies on point-estimates of the PDF 𝑓(𝑄 = 𝑞|𝐻𝑝

0 ), and hence the method is dependent on the accuracy of this estimate.
Another common approach to covariate modulation is the weighted B-H procedure (Benjamini et al., 2006), in which

each p-value 𝑝𝑖 is reweighted to a value 𝑝𝑖∕𝑤𝑖 (where
∑

𝑤𝑖 = 1) and the standard B-H procedure is then applied to the
values 𝑝𝑖∕𝑤𝑖 . Our method can be interpreted in these terms, setting 𝑤𝑖 = 𝑣𝑖∕𝑝𝑖 , but this is rather unnatural; there is
no clear way to interpret what the ratio 𝑣𝑖∕𝑝𝑖 means, and this approach does not make use of the ‘p-value property’ in
Equation (20).
The use of ECDFs to generate rejection regions has the advantage of making use of the global distribution of 𝑃,𝑄,

while spline- and kernel-density based estimates can generally only use local observations. The cFDR-based method has
the obvious disadvantage of not converging to the optimum rejection region, and it can be less powerful than parametric
approaches if parametric assumptions hold. However, using CDFs rather than PDFs allows faster convergence of rejection
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regions with 𝑛, and this favours the cFDR approach if 𝑛 is small, particularly if CDF- and PDF- based regions are similar
and PDFs are difficult to model well.
Under certain circumstances, contours of CDF- and PDF-based methods are similar. A precise statement, proof and

demonstration is given in Appendix A.5.

4.2 Censoring of points

In general terms, the process determining a decision rule to be used on observation (𝑝𝑖, 𝑞𝑖) cannot easily make use of
the datapoint (𝑝𝑖, 𝑞𝑖) itself, since the use of the point biases the choice of decision rule in some way. Approaches by Du
et al. (2014) and Alishahi et al. (2016) censor the points used in the decision rule to those already rejected in a stepwise
approach, and a method in Lei and Fithian (2018) masks the information available for the decision rule by effectively
adding the point (1 − 𝑝𝑖, 𝑞𝑖) to the dataset.
Since cFDR uses the entire dataset to estimate ECDFs, complex censoring can require that the cFDR estimator be

changed in a non-trivial way. In particular, there is no obvious way to apply the methods proposed by Alishahi et al. (2016)
or Lei and Fithian (2018). We propose avoiding the problem by leaving out the point (𝑝𝑖, 𝑞𝑖) directly (Equations (25) and
(26)), at the cost of residual correlation in resultant v-values.While crude, this corresponds to a near-minimum censorship
of points, and the resultant correlation tends to be small enough to ignore (see Appendix A.4).

4.3 Asymmetry and management of extreme outliers

An important property of the cFDR-basedmethod is asymmetry, in that𝐻𝑝
0 cannot generally be rejected based on a low 𝑞𝑖

alone (this can be seen by noting that 𝑐𝐹𝐷𝑅(𝑝𝑖, 𝑞𝑖) ≥ 𝑝𝑖 , and 𝑝𝑖 can only exceed 𝑐𝐹𝐷𝑅
𝑛
in rare circumstances). Parametric

approaches such as those in Du et al. (2014) and Lei and Fithian (2018) are not generally robust to this; for example, in
Du et al. (2014), an extremely low 𝑞𝑖 could lead to rejecting𝐻

𝑝
0 even if the corresponding 𝑝𝑖 were close to 1 and 𝑃,𝑄 were

independent (given that the degree of dependence is estimated). This property of the cFDR is very important when 𝑝𝑖
and 𝑞𝑖 are derived from genome-wide association studies (GWAS) on different diseases; it is entirely possible and even
expected that a very strong association in the conditional trait is not an association with the principal trait. This property
also differentiates our approach from meta-analysis of two sets of p-values.

4.4 Relation to original FDR-controlling method for cFDR

In a paper in 2015 (Liley andWallace, 2015), we identified the problem of failure of FDR control at 𝛼when using a rejection
rule 𝑐𝐹𝐷𝑅 ≤ 𝛼 and proposed a rough solution. We proposed identifying L-curves and estimating 𝑓0 as above, and for
each L-region 𝐿𝑆(𝛼

∗), identifying a rectangle 𝑅(𝛼∗) contained within it with vertices (0,0), (0, 𝑞𝑟), (𝑝𝑟, 0), (𝑝𝑟, 𝑞𝑟). Since
𝑅(𝛼∗) ⊆ 𝐿𝑆(𝛼

∗), we have

𝑃𝑟((𝑃, 𝑄) ∈ 𝐿𝑆(𝛼
∗)) ≥ 𝑃𝑟((𝑃, 𝑄) ∈ 𝑅(𝛼∗)) (36)

and ˆ(𝑝𝑟, 𝑞𝑟) ≤ 𝛼∗, so the FDR associated with rejecting any (𝑝, 𝑞) pairs falling in 𝐿𝑆(𝛼∗) was approximately

𝐸

( |{𝑖 ∶ 𝑝𝑖, 𝑞𝑖 ∈ 𝐿𝑆(𝛼
∗),𝐻

𝑝
0 }|

min (|{𝑖 ∶ 𝑝𝑖, 𝑞𝑖 ∈ 𝐿𝑆(𝛼∗)}|, 1)
)

≈
𝑃𝑟

(
(𝑃, 𝑄) ∈ 𝐿𝑆(𝛼

∗)|𝐻𝑝
0

)
𝑃𝑟((𝑃, 𝑄) ∈ 𝐿𝑆(𝛼∗))

≤ 𝑃𝑟
(
(𝑃, 𝑄) ∈ 𝐿𝑆(𝛼

∗)|𝐻𝑝
0

)
𝑃𝑟

(
(𝑃, 𝑄) ∈ 𝑅(𝛼∗)|𝐻𝑝

0

) 𝑃𝑟
(
(𝑃, 𝑄) ∈ 𝑅(𝛼∗)|𝐻𝑝

0

)
𝑃𝑟((𝑃, 𝑄) ∈ 𝑅(𝛼∗))

≈
𝑃𝑟

(
(𝑃, 𝑄) ∈ 𝐿𝑆(𝛼

∗)|𝐻𝑝
0

)
𝑃𝑟

(
(𝑃, 𝑄) ∈ 𝑅(𝛼∗)|𝐻𝑝

0

) 𝑐𝐹𝐷𝑅𝑆(𝑝𝑟, 𝑞𝑟) (37)
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TABLE 1 Variables used in simulations

Variable Description Sampling distribution
𝑛 Total number of variables 10𝑈(3,4) (rounded)
𝑛
𝑝𝑞

1 Number of variables assoc. with 𝑃, 𝑄 𝑈(0, 200) (rounded)
𝑛
𝑝

1 Number of variables associated with 𝑃 𝑈(0, 200) (rounded)
𝑛
𝑞

1 Number of variables associated with 𝑄 𝑈(0, 200) (rounded)
𝑠𝑝 Scale for distribution of 𝑃 (see below) 𝑈(

3

2
, 3)

𝑠𝑞 Scale for distribution of 𝑄 𝑈(
3

2
, 3)

𝑑 Form of alternative distributions 1: Normal, 2: t (3df), 3: Cauchy, eq. prob.

≤ ∫
𝐿𝑆(𝛼∗)

𝑓0𝑑𝑝𝑑𝑞

∫
𝑅(𝛼∗)

𝑓0𝑑𝑝𝑑𝑞
𝛼∗. (38)

To approximately control FDR at 𝛼, our procedure found 𝛼∗ so that expression (38) was ≤ 𝛼 and rejection 𝐻
𝑝
0 whenever

(𝑝𝑖, 𝑞𝑖) ∈ 𝐿𝑆(𝛼
∗).

As well as being approximate, this procedure was conservative due to inequality (36). Our new method avoids this
conservative assumption and is on firmer theoretical ground. Furthermore, our old method precluded use of 𝑐𝐹𝐷𝑅

𝑛

given approximation (37). We show by simulation below that this results in substantial improvement in power in our
new method.

5 ASSESSMENT OF PERFORMANCE

In this section, we address five main points. Firstly, we demonstrate that our newmethod controls type-1 error rate (FDR)
appropriately and that the censoring approach of (25) and (26) is necessary. Secondly, we demonstrate that power is sub-
stantially improved relative to our previous method for fixed level of FDR control, and that use of 𝑐𝐹𝐷𝑅

𝑛
over 𝑐𝐹𝐷𝑅

improves power further. We then demonstrate that in settings where parametric assumptions are not satisfied, rejection
regions based on 𝑐𝐹𝐷𝑅

𝑛
can correspond to a more powerful procedure than rejection regions based on alternative CDF or

PDF estimators. We examine the effect of correlation between observations 𝑝𝑖, 𝑞𝑖 on our main FDR-controlling methods
and demonstrate that the disadvantage of using our leave-one-out method (Equation (25)) instead of the leave-out-block
method (Equation (26)) out method in the presence of correlation is loss of power rather than loss of FDR control. Finally,
we assess the degree of shared association between 𝑃 and 𝑄 which is necessary for our method to give an advantage over
p-values alone.
In each simulation, we sampled a set of values 𝑆 = (𝑝𝑖, 𝑞𝑖), 𝑖 ∈ 1…𝑛. The sampling schema we used itself depended

on a series of underlying parameters, which were themselves sampled from a joint distribution specified in Table 1, or a
conditional distribution of it. We also separately considered several fixed values of parameters.
We first chose a fixed total number of hypotheses𝑛, then split these into four classes of fixed size:𝐶1 of size𝑛

𝑝𝑞
1 associated

in both 𝑃 and 𝑄, 𝐶2 of size 𝑛
𝑝
1 associated only with 𝑃, 𝐶3 of size 𝑛

𝑞
1 associated only with 𝑄 and 𝐶4 associated with neither

𝑃 nor 𝑄. Within each class, samples (𝑝𝑖, 𝑞𝑖) were identically distributed.
For 𝑖 ∈ 𝐶1, 𝐶2, we sampled 𝑝𝑖 (determined by 𝑑, 𝑠𝑝) by first simulating Z scores:

d = 1: −Φ−1(
𝑝𝑖

2
)
1

𝑠𝑝
∼ 𝑁(0, 1)

d = 2: −Φ−1(
𝑝𝑖

2
)
1

𝑠𝑝
∼ 𝑡(df = 3,ncp = 0)

d = 3: −Φ−1(
𝑝𝑖

2
)
1

𝑠𝑝
∼ Cauchy(location = 0, scale = 1),

where−Φ−1(
𝑝𝑖

2
) can be considered a 𝑍-score corresponding to 𝑝𝑖 , and 𝑠𝑝 a scaling factor for the distribution. We set the

distribution of 𝑞𝑖 ∈ 𝐶1, 𝐶3 similarly, with 𝑠𝑞 in place of 𝑠𝑝. The values 𝑝𝑖 , 𝑞𝑖 for 𝑖 ∈ 𝐶4 were sampled from 𝑈(0, 1).
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Although effect sizes are often assumed to follow normal distributions, real data are often noisier, with longer tails,
and recent work suggests non-normal distributions may be a better fit in the case of GWAS data (Walters et al., 2019).
We chose the alternative distributions (normal, t (3df), and Cauchy) to span behaviours from ‘well-behaved’ (normal) to
‘long-tailed’ (t) to ‘chaotic’ (Cauchy) to survey a wider range of possibilities.
Samples 𝑝𝑖, 𝑝𝑗 and 𝑞𝑖, 𝑞𝑗 were generally independent (unless otherwise specified), but we also sampled under two

patterns of dependence. Firstly, we simulated a ‘block’ correlation structure in which we divided samples into three
blocks, and within each block sampled z-scores 𝑧𝑝𝑖 , 𝑧𝑝𝑗 , 𝑧𝑞𝑖 , 𝑧𝑞𝑗 corresponding to 𝑝𝑖, 𝑝𝑗 and 𝑞𝑖, 𝑞𝑗 such that cor(𝑧𝑝𝑖 , 𝑧𝑝𝑗 ) =
cor(𝑧𝑞𝑖 , 𝑧𝑞𝑗 ) = 𝜌 if 𝑖, 𝑗 were in the same block and class, and cor(𝑧𝑝𝑖 , 𝑧𝑝𝑗 ) = cor(𝑧𝑞𝑖 , 𝑧𝑞𝑗 ) = 0 otherwise. Secondly, we sim-
ulated an equicorrelation structure in which cor(𝑧𝑝𝑖 , 𝑧𝑝𝑗 ) = cor(𝑧𝑞𝑖 , 𝑧𝑞𝑗 ) = 𝜌 whenever 𝑖 and 𝑗 were in the same class.
When 𝑑 ∈ 2, 3, we used the off-diagonal elements of the normalised dependence matrix in the multivariate T distribution
in place of correlation.
When relevant, we also sampled parameters from the distribution specified in Table 1 conditional on 𝑛𝑝1 + 𝑛

𝑝𝑞
1 = 0; that

is, no associations with 𝑃. We plotted results from these simulations separately to those with parameters drawn from the
unconditional distribution.
Given a rejection procedure, we defined

𝐹𝐷𝑃 =

⎧⎪⎨⎪⎩
0 if no rejections
number of falsely rejected null hypotheses

total number of rejections
if ≥ 1 rejection

𝑇𝐷𝑃 =

{
0 if no rejections
number of correctly rejected null hypotheses

true number of associations
if ≥ 1 rejection.

We analysed type 1 error in terms of the estimated FDR, 𝐹𝐷𝑅 = 𝐸(𝐹𝐷𝑃) ≈ 𝐹𝐷𝑃 and power in terms of the correspond-
ing true-discovery rate 𝑇𝐷𝑅 = 𝐸(𝑇𝐷𝑃) ≈ 𝑇𝐷𝑃. We compared 𝐹𝐷𝑃 and 𝑇𝐷𝑃 between samples by estimating them via a
Gaussian-weighted moving average across the independent variable (usually 𝑛𝑝1 + 𝑛

𝑝𝑞
1 ). We show 95% pointwise confi-

dence envelopes derived as per Gatz and Smith (1995), except in cases where such envelopes obstruct viewability of the
plot. In these cases, we state that values 𝑇𝐷𝑅(𝐴) for one method 𝐴 ‘exceed’ paired values 𝑇𝐷𝑅(𝐵) of another method
𝐵 if in at least six of eight equal subdivisions of the x-axis range the following three conditions hold: 𝑇𝐷𝑅(𝐴) > 𝑇𝐷𝑅(𝐵)

more than𝑇𝐷𝑅(𝐵) > 𝑇𝐷𝑅(𝐴), themean ̄𝑇𝐷𝑅(𝐴) − 𝑇𝐷𝑅(𝐵) is positive and aWilcoxon test of ranks on𝑇𝐷𝑅(𝐴) − 𝑇𝐷𝑅(𝐵)

rejects the null hypothesis of a symmetric distribution around 0 with 𝑝 < 5 × 10−3 (or the equivalent with 𝐹𝐷𝑅 in place
of 𝑇𝐷𝑅). Each line on each plot corresponds to > 5000 simulation runs. All raw simulation results and analytic code are
publically available at https://github.com/jamesliley/cfdr_pipeline.

5.1 New FDR-controlling procedure leads to greater power than previous method, and
adjustment improves power further

We first compared FDR control amongst five methods, aiming to control the FDR at either 𝛼 = 0.1 or 𝛼 = 0.01:

1. the B-H method applied to the values 𝑝𝑖 , labelled ‘P-val’
2. the B-H method applied to ‘naive’ v-values 𝑣(𝑝𝑖, 𝑞𝑖) = 𝑣𝑆(𝑝𝑖, 𝑞𝑖) as per Equation (27) for reference, labelled ‘Naive’
3. the B-H method applied to ‘leave-one-out’ v-values 𝑣(𝑝𝑖, 𝑞𝑖) = 𝑣𝑆−(𝑝𝑖,𝑞𝑖)(𝑝𝑖, 𝑞𝑖) as per Equation (25), labelled ‘LOO’
4. the B-H method applied to block-out v-values (after randomly separating observations into three equally sized subdi-

visions, so (𝑝𝑖, 𝑞𝑖) is in subdivision 𝑏(𝑖), defining v-values 𝑣𝑆−𝑏(𝑖)(𝑝𝑖, 𝑞𝑖)) as per Equation (26), labelled ‘LOB’
5. our previous method for FDR control applied to (𝑝𝑖, 𝑞𝑖), labelled ‘Orig.’

We sampled simulation parameters according to Table 1 or the corresponding conditional distribution of Table 1 with
𝑛
𝑝
1 + 𝑛

𝑝𝑞
1 = 0.

Expected 𝐹𝐷𝑃 was consistent with the FDR control level when using leave-one-out v-values or ‘block-out v-values
(rejection procedures 3,4). When using the ‘naive’ v-values 𝑣𝑆(𝑝𝑖, 𝑞𝑖) (rejection procedure 2), FDR was not controlled at
the requisite level. The FDR using methods 3 and 4 exceeded the FDR of our original method (rejection procedure 5),

https://github.com/jamesliley/cfdr_pipeline
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F IGURE 2 FDR control of various methods against 𝑛𝑝1 + 𝑛
𝑝𝑞

1 , the total number of variables associated with 𝑃 (the primary study under
consideration). The horizontal line shows 𝛼 = 0.1, the desired FDR control level. Simulations in the left panel integrate L-regions over the
true distribution 𝑓0; simulations in the right panel integrate over the estimated distribution as per Equation (33). Shaded regions indicate 95%
confidence envelopes. Curves show moving weighted averages using a Gaussian kernel with SD 15% of the x axis range. Lines on the left
indicate FDR control with 𝑛𝑝1 + 𝑛

𝑝𝑞

1 = 0. A corresponding plot with 𝛼 = 0.01 is shown in Supplementary Figure 7

F IGURE 3 TDR of various methods against 𝑛𝑝1 + 𝑛
𝑝𝑞

1 , the total number of variables associated with 𝑃 (the primary study under
consideration), at FDR control level 𝛼 = 0.1. Shaded areas show 95% pointwise confidence envelopes. A corresponding plot with 𝛼 = 0.01 is
shown in Supplementary Figure 8. Curves show moving weighted averages using a Gaussian kernel with SD 15% of the x axis range

indicating that our original method was conservative. FDR control was maintained when using the approximation of 𝑓0
in Equation (33). Results are shown in Figure 2.
Having established the validity of rejection methods 3 and 4, we compared the power of ‘adjusted’ cFDR (𝑐𝐹𝐷𝑅

𝑛
) and

non-adjusted cFDR (𝑐𝐹𝐷𝑅) using the leave-one-out v-value (rejection procedure 3) and the power of our previousmethod,
rejection procedure 5, applied to 𝑐𝐹𝐷𝑅 (labelled ‘Orig’). The TDR of 𝑐𝐹𝐷𝑅

𝑛
exceeded the power of 𝑐𝐹𝐷𝑅, which in turn

exceeded the power of our previous rejection procedure on 𝑐𝐹𝐷𝑅 (Figure 3).
We report FDR and TDR for p-values, 𝑐𝐹𝐷𝑅

𝑛
and oracle cfdr for a range of fixed simulation parameters in Table 2
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TABLE 2 FDR and TDR of p-value, 𝑐𝐹𝐷𝑅
𝑛
, and oracle cfdr (best possible procedure) using leave-one-out v-values (Equation (25)) for a

range of simulation parameters, controlling FDR at 𝛼 = 0.1. All descriptions are relative to ‘Reference,’ which has the following parameter
values: 𝑛 = 5000, 𝑛𝑝1 = 𝑛

𝑞

1 = 𝑛
𝑝𝑞

1 = 100, 𝑠𝑝 = 𝑠𝑞 = 2, 𝑑 = 2. TDR is undefined if 𝑛𝑝1 + 𝑛
𝑝𝑞

1 = 0. ‘Negative information’ means fewer-than
random shared associations, rather than more (𝑛𝑝1 = 𝑛

𝑞

1 = 2000, 𝑛𝑝𝑞1 = 0). Complete parameter values, confidence intervals and more detailed
results are shown in Supplementary Table 1

Description TDR(P) FDR(cFDR) TDR(cFDR) TDR(oracle)
Reference 0.194 0.0955 0.208 0.212
No effects 0.0973
Weak effects 0.00803 0.0814 0.00795 0.00904
Large variance in effect sizes 0.493 0.0957 0.517 0.527
Larger n 0.173 0.0995 0.189 0.193
Smaller n 0.26 0.0795 0.265 0.269
No non-null shared hypotheses 0.188 0.102 0.178 0.187
All non-null hypotheses shared 0.195 0.0963 0.26 0.309
Negative information 0.302 0.0585 0.314 0.319
Block correlation 0.2 0.0974 0.213 0.217
Equicorrelation 0.191 0.0897 0.205 0.209

F IGURE 4 TDR of PDF-based methods against 𝑛𝑝1 + 𝑛
𝑝𝑞

1 , the total number of variables associated with 𝑃 (the primary study under
consideration), controlling FDR at 𝛼 = 0.1. In the left panel, parametric assumptions were satisfied (i.e. 𝑑 = 1 in Table 1) and in the right
panel, they are not (𝑑 = 2, 3). Shaded regions show pointwise 95% confidence intervals. A corresponding plot with 𝛼 = 0.01 is shown in
Supplementary Figure 8. Curves show moving weighted averages using a Gaussian kernel with SD 15% of the x axis range

5.2 PDF-based estimation leads to a less powerful procedure than CDF-based
estimation

As 𝑛 → ∞, consistent estimators of 𝑃𝑟(𝐻𝑝
0 |𝑃 = 𝑝,𝑄 = 𝑞) will converge to optimal rejection regions while estimators of

𝑃𝑟(𝐻
𝑝
0 |𝑃 ≤ 𝑝,𝑄 ≤ 𝑞)will not, and hence the former will ultimately be more powerful. However, we found that under the

distribution of simulation parameters in Table 1, the ECDF-based estimator 𝑐𝐹𝐷𝑅
𝑛
is considerably more powerful than

two PDF-based estimators of 𝑃𝑟(𝐻𝑝
0 |𝑃 = 𝑝,𝑄 = 𝑞).

Results are shown in Figure 4. We considered parametric (labelled ‘PDF param’) and KDE-based (labelled ‘PDF KDE’)
estimators of 𝑃𝑟(𝐻𝑝

0 |𝑃 = 𝑝,𝑄 = 𝑞). The parametric model was based on a four-Gaussian model detailed in Supporting
Information, Section 1.4. We separated cases in which parametric assumptions were satisfied (i.e. 𝑑 = 1 in Table 1) and
in which they were not (𝑑 = 2, 3). The TDR of 𝑐𝐹𝐷𝑅

𝑛
exceeded the TDR of both estimators of 𝑃𝑟(𝐻𝑝

0 |𝑃 = 𝑝,𝑄 = 𝑞). The
performance of an oracle CDF procedure (using exact contours of 𝐹0∕𝐹 as rejection regions, labelled ‘CDF oracle’) and an
oracle PDF procedure (using exact contours of 𝑓0∕𝑓 as rejection regions, labelled ‘PDF oracle’) are shown for comparison.
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F IGURE 5 TDR of various methods against 𝑛𝑝1 + 𝑛
𝑝𝑞

1 , the total number of variables associated with 𝑃 (the primary study under
consideration), restricting to simulations in which parametric assumptions were satisfied (left panel) or were not satisfied (right panel), at
FDR control level 𝛼 = 0.1. A corresponding plot with 𝛼 = 0.01 is shown in Supplementary Figure 9. Confidence intervals are omitted for
visual clarity Curves show moving weighted averages using a Gaussian kernel with SD 15% of the x axis range

5.2.1 Parametric- and KDE-based cFDR estimators are less powerful than the ECDF-based
estimator

We also examined PDF- and KDE-based estimates of the cFDR rather than the cfdr. Details of the alternative estimators
are given in Supporting Information Section 1.4.
When parametric assumptions were satisfied (Figure 5, left panel), performance of the ECDF-based 𝑐𝐹𝐷𝑅

𝑛
, parametric

(labelled ‘CDF param’) and KDE-based (labelled ‘CDF KDE’) cFDR estimators was equivocal. When parametric assump-
tions were not satisfied (𝑑 = 2, 3 as per Table 1; Figure 5, right panel), the TDR of the ECDF estimator exceeded the TDR
of the parametric and KDE estimators. The performance of an oracle CDF procedure (using exact contours of 𝐹0∕𝐹 as
rejection regions) is shown for comparison.

5.3 Correlated samples lead to lower TDR but FDR control is maintained

When 𝑝𝑖, 𝑞𝑖 had either block correlation or equicorrelation, we found that FDR control wasmaintained when using leave-
one-out v-values (Equation (25)) and when using leave-out-block v-values (Equation (26)). Under equicorrelation, the
TDR of leave-out-block exceeded the TDR of leave-one-out v-values. Under block correlation, although TDR of leave-out-
block did not formally exceed the TDR of leave-one-out, a pairedWilcoxon rank-sum test on TDR values rejected the null
hypothesis of a symmetric distribution around 0 with 𝑝 < 1 × 10−6 in favour of leave-out-block.
Maintenance of FDR control is expected, as the B-H procedure controls FDR more conservatively when p-values are

positively correlated than when independent. Figure 6 shows FDR and TDR controlling at 𝛼 = 0.1 in the case 𝜌 = 0.01,
including performance of p-values 𝑝𝑖 under the B-H procedure for comparison. The case 𝜌 = 0.1 is similar and is shown
in Supplementary Figure 11.

5.4 TDR of 𝒄𝑭𝑫𝑹
𝒏
becomes higher than TDR of p-value alone when ≈ 20% of

hypotheses are shared

Finally, we assessed the proportion of non-null hypotheses for 𝑃 which needed to be shared with 𝑄 in order for 𝑐𝐹𝐷𝑅
𝑛

to have an advantage in TDR over only considering 𝑃. When no non-null hypotheses are shared, the values 𝑞𝑖 confer no
information on𝐻𝑃

0 , so we expect that use of v-values will add only noise and the TDR of the p-value will be larger than that
of the v-value. We plotted the difference in TDR between 𝑐𝐹𝐷𝑅

𝑛
(using leave-one-out v-values) and p-values 𝑝𝑖 against
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F IGURE 6 FDR (left) and TDR (right) of FDR-controlling methods leave-out-block (Equation (26)) and leave-one-out (Equation (25))
applied to 𝑐𝐹𝐷𝑅

𝑛
, and the B-H procedure applied to p-values, under several models of correlation between observations (𝜌 = 0.01).

Confidence envelopes are omitted for visual clarity. Vertical lines show FDR with 95% confidence intervals at 𝑛𝑝1 + 𝑛
𝑝𝑞

1 = 0 (the p-value
appears not to control FDR under equicorrelation, but it is well-known to do so theoretically). A corresponding figure with 𝜌 = 0.1 is shown
in Supplementary Figure 11. Curves show moving weighted averages using a Gaussian kernel with SD 15% of the x axis range

F IGURE 7 Difference in TDR between 𝑐𝐹𝐷𝑅
𝑛
(assessed by leave-one-out v-values) and p-values, controlling FDR at 𝛼 = 0.1, against

𝑛
𝑝𝑞

1 ∕(𝑛
𝑝𝑞

1 + 𝑛
𝑝

1 ) (proportion of non-null hypotheses for 𝑃 which are shared with 𝑄). The performance of the oracle CDF method is shown for
comparison. Shaded areas show pointwise 95% confidence intervals. Points and lines at the leftmost edge show TDR values and 95%
confidence intervals when 𝑛𝑝𝑞1 ∕(𝑛

𝑝𝑞

1 + 𝑛
𝑝

1 ) = 0. A corresponding figure with 𝛼 = 0.01 is shown in Supplementary Figure 12. Curves show
moving weighted averages using a Gaussian kernel with SD 15% of the x axis range

𝑛
𝑝𝑞
1 ∕(𝑛

𝑝𝑞
1 + 𝑛

𝑝
1 ) and found that this difference became positive when around 20% of hypotheses were shared (Figure 7).

This figure is dependent on our simulation parameters: a smaller percentage of hypotheses may lead to an advantage of
𝑐𝐹𝐷𝑅

𝑛
if, for instance, effect sizes were very large.

5.5 Iterated cFDR

Since our proposed method for type-1 error rate control maps p-value/covariate pairs to v-values preserving the p-value
property, we are free to use the resultant v-values in a second cFDR-based analysis against a second covariate. This enables
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F IGURE 8 Iterated cFDR. The left part of plot shows where non-null hypotheses fall in 𝑝/𝑞𝑗 (blue vertical lines for 𝑝, red for 𝑞𝑗).
Non-null hypotheses are shared more-than-randomly in only every second set 𝑞𝑗 . The right part shows 𝑝/𝑣𝑗 values (blue/red lines,
respectively) plotted in an ascending order under𝐻𝑝

1 ,𝐻
𝑝

0 , and the number of 𝑝/𝑣𝑗 values which reach the Bonferroni-corrected significance

immediate and simple adaptation to a setting in which more than one set of covariates are available. In our motivating
example, this would allow us to subsequently ‘condition’ on other potentially related diseases as well as OCA.
We simulated a set of p-values {𝑝} = {𝑝𝑖, 𝑖 ∈ 1… 1000}, with 100 true associations (𝐻𝑝

1 ) in which p-values were sampled
from 2Φ(−|𝑁(0, 32)|) (where Φ is the normal CDF) and 900 non-associations (𝐻𝑝

0 ) in which p-values were sampled from
𝑈(0, 1). We then similarly simulated sets of covariates {𝑞𝑗} = {𝑞

𝑗

𝑖
, 𝑖 ∈ 1… 1000} with 100 true associations (𝐻𝑞

1 ), which
for even 𝑗 were randomly spaced amongst the 1000 variables (uninformative covariates) and for odd 𝑗 overlapped more-
than-randomly with associations with principal p-values (informative covariates), with around 54 shared associations on
average (strictly, such that 𝑃𝑟(𝐻𝑞

1 |𝐻𝑝
1 ) = 15𝑃𝑟(𝐻

𝑞
1 |𝐻𝑝

0 )).
Starting with 𝑣0 = 𝑝, we conditioned on each set of {𝑞𝑗} in succession, so 𝑣𝑖+1 = 𝑣(𝑣𝑖, 𝑞

𝑖). We used 𝑐𝐹𝐷𝑅
𝑛
as an

estimator and used leave-one-out v-values. Originally 19 of 100 null hypotheses were correctly rejected using 𝑝 alone
(𝑝 < 5 × 10−5 = 0.05∕1000). On repeated conditioning, almost all v-values when 𝐻𝑝 = 1 tended to 0: 99 null hypotheses
were correctly rejected using 𝑣500. Under 𝐻

𝑝
0 , v-values remained uniform on (0,1) (Figure 8). This indicated the potential

to greatly strengthen the power of a high-dimensional association analysis by repeated conditioning in this manner, even
when only half of the sets of covariates are informative.

5.6 Summary of BRCA analysis

Finally, we return to the motivating example. cFDR rejects more null hypotheses for BRCA (724) than B-H on BRCA data
alone (678, Figure 1a) or the subset of variables with OCA association (280, Figure 1b). The procedure is asymmetrical in
that it will not reject a BRCA null hypothesis for a low OCA p-value alone and can readily be reversed: Supplementary
Figure 6 shows a similar analysis analysing association with OCA.

6 DISCUSSION

We present an improvement to the cFDRmethod, a widely used procedure in genetic discovery. Our newmethods essen-
tially involve computing an analogy of the p-value corresponding to the ranking of hypotheses defined by the cFDR esti-
mator. Our method enables the cFDR to be used definitively in the discovery phase of -omics studies with control of a
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type-1 error rate. The general procedure of multiple p-value testing with a covariate has wide scientific application; see Du
et al. (2014), Alishahi et al. (2016) and Li and Barber (2016) for example.
The 𝑐𝐹𝐷𝑅 and 𝑐𝐹𝐷𝑅

𝑛
estimators make no distributional assumptions on 𝑃,𝑄. The type-1 error rate controlling method

requires modelling of the PDF of 𝑃,𝑄|𝐻𝑝
0 , but this requires approximating a univariate PDF𝑄|𝐻𝑝

0 . Furthermore, this PDF
is only used as an integrand rather than for direct point estimates. It is reasonable to expect that for approximations to
complex PDFs, relative average errors over intervals will be smaller than relative errors at individual points; parametric
approximations tend to be smoother than the true distribution at a fine scale, and KDE-based approximations rougher. An
obvious shortcoming of cFDR-basedmethods is the lack of asymptotic optimality. Methods based on consistent estimators
of 𝑓0∕𝑓 will eventually outperform any estimator of 𝐹0∕𝐹 for large enough 𝑛 (see Supporting Information, Section 1.5).
However, the ECDF-based cFDR estimator was far stronger than PDF-based estimators at the values of 𝑛 we simulated at
(103 − 104). In practical terms, it is important to note that 𝑛, being the number of variables, cannot generally be increased
indefinitely, as opposed to, for instance, sample size. Essentially, the fitting of L-curves corresponds to a procedure by
which the similarity between 𝑃,𝑄 is assessed, and the degree of modulation whenmoving from 𝑝 to 𝑣 values corresponds
to this similarity. Moreover, this assessment of similarity occurs intrinsically on the basis of the joint CDF rather than
relying on a parametric description.
L-curvesmay not changemonotonicallywith𝑄; that is, itmay be possible to reject a null hypothesiswith p-values (𝑝, 𝑞1)

and not reject a null hypothesis with p-values (𝑝, 𝑞2), 𝑞2 < 𝑞1 (see the lower-left panel of Figure 1). It would be possible
within our framework of FDR control (Theorem 3.1) to force L-curves to bemonotonic with𝑄, and indeed since this would
result in straight-up-and-down segments on L-curves, the loss of power due to noise when𝑃 and𝑄 are unrelated (Figure 7)
may be reduced in this case. However, non-monotonicity of L-curves is potentially advantageous in a biostatistical setting.
Between TWAS or GWAS for similar diseases, it may be the case that shared non-null hypotheses have ‘moderately’ small
p-values, corresponding to commongeneral sharedmedium-risk pathological causes, but non-shared non-null hypotheses
have ‘extremely’ small p-values, corresponding to specific high-risk pathologies. Non-monotonic L curves allow this effect
to be modelled. Unrestricted L-curves also allow use to be made of q-values such that 𝑃𝑟(𝐻𝑃

0 |𝑄 = 𝑞) is lower with low 𝑞,
rather than higher: we show this in Table 2, row ‘negative information’.
Our proposed ‘iterated cFDR’ procedure can be thought of as a meta-analysis of a series of experiments 𝐸𝑃, 𝐸𝑄1

, 𝐸𝑄2
, …

giving rise to p-value sets {𝑝𝑖}, {𝑞1𝑖 }, {𝑞
2
𝑖
}, …when only the first set ({𝑝𝑖}) is known to test the correct hypotheses; that is, be

𝑈(0, 1) for null hypotheses. It enables us to find the set of non-null hypotheses corresponding to 𝐸𝑃 (denoted {𝐻
𝑝
1 }), even

though the set of non-null hypotheses corresponding to 𝐸𝑄𝑗
(denoted {𝐻

𝑄𝑗

1 }) may only partly overlap {𝐻𝑝
1 }, may contain

hypotheses not in {𝐻
𝑝
1 } and (half the time) may even carry no information about 𝐻

𝑝
1 at all. This could be used to refine

the set of association statistics {𝑝𝑖} for a disease of interest by using sets of association statistics {𝑞1𝑖 }, {𝑞
2
𝑖
}, … at the same

variables for a range of separate traits. It could also be used to improve power when repeating an -omics study in a new
ethnic group by levering on previous studies in different ethnicities.
In summary, our method improves the power of cFDR analyses and allows it to be used confidently in the setting of

multiple hypothesis testing. This can enable more efficient use of data, and more information to be gained from the same
datasets. Our method contributes to a set of tools for high-dimensional statistical analysis and has wide application across
a range of fields in biomedicine and elsewhere.

7 CODE AVAILABILITY

All functions necessary to apply the methods detailed in this work are available in the R package
https://github.com/jamesliley/cfdr
A full pipeline to generate the results in this paper is available in the git repository
https://github.com/jamesliley/cfdr_pipeline
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APPENDIX
A.1 Optimal procedure
In this section, we show the following result. This is not original; it is shown in various forms in (at least) Alishahi et al.
(2016), Du et al. (2014) and Lei and Fithian (2018).
Theorem A.1. Let 𝑓0 and 𝑓1 be positive Lesbegue-integrable functions of (𝑝, 𝑞) on some region Ω. Suppose a Lesbegue-
measurable region 𝑅0 satisfies:

1. 𝑅0 = {(𝑝, 𝑞) ∶ 𝑓0(𝑝, 𝑞)∕𝑓1(𝑝, 𝑞) ≤ 𝑘, (𝑝, 𝑞) ∈ Ω}

2. ∫
𝑅0
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 𝛼

3. ∫
𝑅0
𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 1 − 𝛽.

Then no Lesbegue-measurable region 𝑅 ⊂ Ω satisfies both

∫
𝑅

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 𝛼 (A.1)

and

∫
𝑅

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 > 1 − 𝛽. (A.2)

Proof. Suppose such a region existed. Then given condition (A.1), we must have 𝑓0(𝑝, 𝑞)∕𝑓1(𝑝, 𝑞) > 𝑘 in 𝑅 ⧵ 𝑅0, and since
the integral of 𝑓0 over 𝑅 is equal to its integral over 𝑅0,

∫
𝑅⧵𝑅0

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = ∫
𝑅0⧵𝑅

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 𝛼 − ∫
𝑅0∩𝑅

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞. (A.3)

Hence

∫
𝑅

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = ∫
𝑅⧵𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + ∫
𝑅∩𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞

https://doi.org/10.1002/bimj.201900254
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≤ 𝑘 ∫
𝑅⧵𝑅0

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + ∫
𝑅∩𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞

= 𝑘 ∫
𝑅0⧵𝑅

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + ∫
𝑅∩𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞

≤ ∫
𝑅0⧵𝑅

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + ∫
𝑅∩𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞

= ∫
𝑅0

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 1 − 𝛽 (A.4)

a contradiction of (A.2). Regions 𝑅 ≠ 𝑅0 can satisfy (A.1) and

∫
𝑅

𝑓1(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 1 − 𝛽 (A.5)

if and only if 𝑅0 ⧵ 𝑅 and 𝑅 ⧵ 𝑅0 have Lesbegue measure 0. □

Corollary A.2. If 𝑓0(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞|𝐻𝑃
0 ) and 𝑓1(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞|𝐻𝑃

1 ) (where 𝐻
𝑃
1 is the alternative) then

amongst all rejection regions 𝑅 with fixed type-1 error rate 𝛼 = ∫
𝑅
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞, power is maximised on a region inside a

contour of 𝑓0∕𝑓1, if such a region exists.
Denoting 𝑓(𝑝, 𝑞) = 𝜋0𝑓0(𝑝, 𝑞) + (1 − 𝜋0)𝑓1(𝑝, 𝑞), it is clear that a contour of 𝑓0∕𝑓1 is also a contour of 𝑓0∕𝑓 and of

𝑃𝑟(𝐻
𝑝
0 |𝑃 = 𝑝,𝑄 = 𝑞), so an optimal rejection region is given by{

(𝑝, 𝑞) ∶ 𝑃𝑟(𝐻
𝑝
0 |𝑃 = 𝑝,𝑄 = 𝑞) ≤ 𝑘𝛼

}
(A.6)

for some 𝑘𝛼 .

A.2 Failure of FDR control with 𝑐𝐹𝐷𝑅 < 𝛼

As described in Section 2, rejection procedure (9) is similar to the B-H procedure, and it may be naively thought that it also
controls the FDR at 𝛼. This is not the case, and indeed the FDR of such a procedure (and the corresponding procedure
with 𝑐𝐹𝐷𝑅

𝑛
) may exceed 𝛼 by an arbitrary factor depending on 𝛼 and 𝜋0.

This is most easily seen by considering the extreme case in which

𝑃,𝑄|𝐻𝑝
0 ∼ 𝑈(0, 1)2 (A.7)

𝑃,𝑄|𝐻𝑝
1 ∼ (0, 0), (A.8)

where 𝜋0 = 𝑃𝑟(𝐻
𝑝
0 ) as usual. In this case we show:

Theorem A.3. Under the above distribution of 𝑃,𝑄, as 𝑛 → ∞, the FDR 𝛼𝑇𝑅𝑈𝐸 of rejection procedure (9) for 𝑐𝐹𝐷𝑅 satisfies

𝛼𝑇𝑅𝑈𝐸(1 − 𝛼)

𝛼(1 − 𝛼𝑇𝑅𝑈𝐸)
= 𝑂𝑅(𝛼𝑇𝑅𝑈𝐸, 𝛼) → log

(
1 − 𝛼𝜋0

1 − 𝜋0

)
(A.9)

and the corresponding procedure for 𝑐𝐹𝐷𝑅
𝑛
satisfies

𝛼𝑇𝑅𝑈𝐸

𝛼
→

1 − log
(

𝛼

1−𝛼

1−𝜋0

𝜋0

)
1 − 𝛼 log

(
𝛼

1−𝛼

1−𝜋0

𝜋0

) . (A.10)
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F IGURE A . 1 Rejection regions for rejection procedure (9) under assumptions in Section A.2. FDR is not controlled for either of the
cFDR-based rejection regions. For reference, the B-H procedure applied to the set of (𝑝, 𝑞) pairs with 𝑞 ≤ 𝑞0 would reject everything in the
dark grey rectangle, which includes all true positives, and this would control FDR at 𝛼. The cFDR-based rejection regions reject the same
number of true positives, but far more false positives, so FDR control is lost

Corollary A.4. For 𝑐𝐹𝐷𝑅, the relative error in FDR (relative to 𝛼) can grow arbitrarily large as 𝜋0 → 1, 𝛼 → 0. For 𝑐𝐹𝐷𝑅
𝑛
,

the error can grow arbitrarily large as 𝛼 → 0, regardless of 𝜋0.

Proof. Suppose that we have a dataset 𝑆 = {(𝑝𝑖, 𝑞𝑖)}, 𝑖 ∈ 1…𝑛 of draws from 𝑃,𝑄 under (A.7) and (A.8). Due to assumption
(A.7) we have 𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞|𝐻𝑝

0 ) = 𝑝𝑞, and due to (A.8) we have 𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞|𝐻𝑝
1 ) = 1. Now

𝑐𝐹𝐷𝑅(𝑝, 𝑞) = 𝑃𝑟(𝐻
𝑝
0 |𝑃 ≤ 𝑝,𝑄 ≤ 𝑞)

=
𝜋0𝑝𝑞

(1 − 𝜋0) + 𝜋0𝑝𝑞
.

Now

𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞) =

𝑃𝑟(𝑄 ≤ 𝑞|𝐻𝑝
0 )𝑃𝑟(𝐻

𝑝
0 )

𝑃𝑟(𝑄 ≤ 𝑞|𝐻𝑝
1 )𝑃𝑟(𝐻

𝑝
1 ) + 𝑃𝑟(𝑄 ≤ 𝑞|𝐻𝑝

0 )𝑃𝑟(𝐻
𝑝
0 )

=
𝜋0𝑞

(1 − 𝜋0) + 𝜋0𝑞
.

The estimate 𝑐𝐹𝐷𝑅(𝑝, 𝑞) is proportional to a consistent estimator of

𝑐𝐹𝐷𝑅(𝑝, 𝑞)

𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞)

= 𝑝
(1 − 𝜋0) + 𝜋0𝑞

(1 − 𝜋0) + 𝜋0𝑝𝑞
(A.11)

and since 𝑃 > 1∕2 ⇒ 𝐻
𝑝
0 , approximation (7) in the main paper is consistent and 𝑐𝐹𝐷𝑅

𝑛
(𝑝, 𝑞) is a generally consistent

estimator of 𝑐𝐹𝐷𝑅(𝑝, 𝑞).
The FDR of the rejection procedure 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≤ 𝛼 converges to the FDR of the rejection region 𝑅𝛼 = {(𝑝, 𝑞) ∶

𝑐𝐹𝐷𝑅(𝑝, 𝑞)∕𝑃𝑟(𝐻
𝑝
0 |𝑄) ≤ 𝑞) < 𝛼} as 𝑛 → ∞ (see diagram in Figure A.1). Since this rejection region contains (0,0), all

(1 − 𝜋0)𝑛 non-null hypotheses will be rejected, and the proportion of the total null hypotheses rejected will converge
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by the law of large numbers to

∫
𝑅𝛼

𝑓(𝑃, 𝑄|𝐻𝑝
0 )𝑑𝑝𝑑𝑞 = ∫

𝑅𝛼

𝑑𝑝𝑑𝑞

=
𝛼

1 − 𝛼

1 − 𝜋0

𝜋0
log

(
1 − 𝛼𝜋0

1 − 𝜋0

)
, (A.12)

and thus the FDR 𝛼𝑇𝑅𝑈𝐸 converges to

𝛼𝑇𝑅𝑈𝐸 →
Number of null (𝑝𝑖, 𝑞𝑖) in 𝑅𝛼
Total number of (𝑝𝑖, 𝑞𝑖) in 𝑅𝛼

=
𝜋0𝑛 ∫𝑅𝛼 𝑑𝑝𝑑𝑞

(1 − 𝜋0)𝑛 + 𝜋0𝑛 ∫𝑅𝛼 𝑑𝑝𝑑𝑞

= 𝛼
log

(
1−𝛼𝜋0

1−𝜋0

)
1 − 𝛼 + 𝛼 log

(
1−𝛼𝜋0

1−𝜋0

) , (A.13)

which can be written as

log

(
1 − 𝛼𝜋0

1 − 𝜋0

)
=

𝛼𝑇𝑅𝑈𝐸(1 − 𝛼)

𝛼(1 − 𝛼𝑇𝑅𝑈𝐸)
= 𝑂𝑅(𝛼𝑇𝑅𝑈𝐸, 𝛼), (A.14)

where OR is the odds ratio. Hence 𝛼𝑇𝑅𝑈𝐸 can exceed 𝛼 by an arbitrary degree when 𝑝𝑖0 is close to 1.
The second part of the proof can be shown similarly. The RHS of Equation (A.10) rises as − log(𝛼) as 𝛼 → 0, whatever

the value of 𝜋0. □

A.3 Convergence results
In these appendices, we omit the𝑋 from 𝑐𝐹𝐷𝑅𝑋(𝑝, 𝑞) and other functions when it is clear.We consider 𝑝, 𝑞 to be in (0, 1)2.
Set 𝑛 = |𝑋|, 𝐹𝑛(𝑞) = min(1, |{𝑖 ∶ 𝑞𝑖 ≤ 𝑞, (𝑝𝑖, 𝑞𝑖) ∈ 𝑋}|), 𝐹𝑛(𝑝, 𝑞) = min(1, |{𝑖 ∶ 𝑝𝑖 ≤ 𝑝, 𝑞𝑖 ≤ 𝑞, (𝑝𝑖, 𝑞𝑖 ∈ 𝑋)}|), 𝐹(𝑞) =

𝑃𝑟(𝑄 ≤ 𝑞), 𝐹(𝑝, 𝑞) = 𝑃𝑟(𝑃 ≤ 𝑝,𝑄 ≤ 𝑞), and

𝐶(𝑝, 𝑞) =
𝑐𝐹𝐷𝑅(𝑝, 𝑞)

𝑃𝑟(𝐻
𝑝
0 |𝑄 ≤ 𝑞)

=
𝑝𝐹(𝑞)

𝐹(𝑝, 𝑞)
. (A.15)

We will assume 𝜕𝐹(𝑝, 𝑞)∕𝜕𝑝 exists on (0, 1)2.
We define 𝑐𝐹𝐷𝑅𝑡𝑋(𝑝, 𝑞) = min𝑝′≥𝑝 𝑐𝐹𝐷𝑅𝑋+(𝑝′,𝑞)(𝑝

′, 𝑞), and 𝑐𝐹𝐷𝑅𝑡
𝑛

𝑋(𝑝, 𝑞) similarly for 𝑐𝐹𝐷𝑅
𝑛

𝑋 (‘t’ for ‘truncated’), so

𝐿𝑋(𝛼) =
{
(𝑝, 𝑞) ∶ 𝑐𝐹𝐷𝑅𝑡𝑋(𝑝, 𝑞) ≤ 𝛼

}
. (A.16)

The boundary of 𝐿𝑋(𝛼) is continuous and piecewise differentiable.
In this section, we show a series of results relating to convergence of cFDR estimates. We show results relating

to convergence of 𝑐𝐹𝐷𝑅 and 𝑐𝐹𝐷𝑅𝑡 on a line 𝑞 = 𝑞0, along with convergence of the co-ordinates of L-curves on
such lines. We then show slightly weaker results regarding convergence across two-dimensional regions of the unit
square.

Theorem A.5. Suppose that on a line segment 𝑞 = 𝑞0, 𝑝𝛾 < 𝑝 < 1, we have 𝐹(𝑝, 𝑞) ≥ 𝛾 > 0 and 𝐹(𝑞0) > 0. Then on this
segment, 𝑐𝐹𝐷𝑅(𝑝, 𝑞) converges uniformly to 𝐶(𝑝, 𝑞) as 𝑛 → ∞. If additionally we have 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 0, then 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞)
converges uniformly to 𝐶(𝑝, 𝑞) also.



1122 LILEY andWALLACE

Proof. Condition on 𝑞 = 𝑞0, and (for the moment) 𝐹𝑛(𝑞) = 𝑚. Set 𝜖 < 𝛿 and let

𝑔−(𝑝, 𝜖) = 𝑝

𝑚

𝑛

𝐹(𝑝, 𝑞) + 𝜖
𝑔+(𝑝, 𝜖) = 𝑝

𝑚

𝑛

𝐹(𝑝, 𝑞) − 𝜖
. (A.17)

From the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, we have

𝑃𝑟

(
𝐹(𝑝, 𝑞) − 𝜖 ≤ 𝐹𝑛(𝑝, 𝑞)

𝑚
≤ 𝐹(𝑝, 𝑞) + 𝜖

||||𝑞 = 𝑞0, 𝐹𝑛(𝑞0) = 𝑚

)
≥ 1 − 𝑒−2𝑚𝜖2

⇒ 𝑃𝑟

(
𝑔−(𝑝, 𝜖) ≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞)) ≤ 𝑔+(𝑝, 𝜖)

||||𝑞 = 𝑞0, 𝐹𝑛(𝑞0) = 𝑚

)
≥ 1 − 𝑒−2𝑚𝜖2 . (A.18)

If 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 0, then (A.18) also holds for 𝑐𝐹𝐷𝑅𝑡. To see this, note 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≥ 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞), so if 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) ≥
𝑔+(𝑝, 𝜖) then 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≥ 𝑔+(𝑝, 𝜖) also. Now

𝜕

𝜕𝑝
𝐶(𝑝, 𝑞) ≥ 0 ⇒ 𝐹(𝑝, 𝑞) ≥ 𝑝

𝜕

𝜕𝑝
𝐹(𝑝, 𝑞)

⇒ 𝐹(𝑝, 𝑞) + 𝜖 ≥ 𝑝
𝜕

𝜕𝑝
𝐹(𝑝, 𝑞)

⇒ 𝑔−(𝑝, 𝜖) > 0.

Suppose that for some 𝑝 we had 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) ≤ 𝑔−(𝑝). Then either 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) = 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) or 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) =
𝑐𝐹𝐷𝑅(𝑝′, 𝑞0) for some 𝑝′ > 𝑝. In the first case 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) ≤ 𝑔−(𝑝), and in the second, 𝑐𝐹𝐷𝑅(𝑝′, 𝑞0) = 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) ≤
𝑔−(𝑝) ≤ 𝑔−(𝑝′); in either case, 𝑐𝐹𝐷𝑅(𝑝, 𝑞) escapes the bound 𝑔−(𝑝) somewhere. Thus the probability on the LHS of (A.18)
can only increase if 𝑐𝐹𝐷𝑅𝑡 replaces 𝑐𝐹𝐷𝑅, and 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) is contained within the bounds 𝑔−(𝑝), 𝑔+(𝑝)with probability
at least 1 − exp(−2𝑚𝜖2).
We now move to remove the condition 𝐹𝑛(𝑞0) = 𝑚. Denote the events

𝐴 ∶
{
𝑔−(𝑝, 𝜖) ≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≤ 𝑔+(𝑝, 𝜖)

}
(A.19)

𝐵 ∶ {𝑞 = 𝑞0}

and, for some 𝜖2 < 𝐹(𝑞0)

𝐶 ∶

{
𝑝
𝐹(𝑞) − 𝜖2
𝐹(𝑝, 𝑞) + 𝜖

≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≤ 𝑝
𝐹(𝑞) + 𝜖2
𝐹(𝑝, 𝑞) − 𝜖

}
. (A.20)

Denote by 𝑆(𝜖2), the set of integers in [𝑛(𝐹(𝑞0) − 𝜖2), 𝑛(𝐹(𝑞0) + 𝜖2)] (and assume 𝑛 is large enough that 𝑆(𝜖2) is nonempty).
If𝑚 = 𝐹𝑛(𝑞0) ∈ 𝑆(𝜖2), the interval in event 𝐴 is a subinterval of that in event 𝐶. Thus

𝑃𝑟(𝐶|𝐵) = ∑
𝑚

𝑃𝑟(𝐶|𝐵, 𝐹𝑛(𝑞0) = 𝑚)𝑃𝑟(𝐹𝑛(𝑞0) = 𝑚)

≥ ∑
𝑚∈𝑆(𝜖2)

𝑃𝑟(𝐶|𝐵, 𝐹𝑛(𝑞0) = 𝑚)𝑃𝑟(𝐹𝑛(𝑞0) = 𝑚)

≥ ∑
𝑚∈𝑆(𝜖2)

𝑃𝑟(𝐴|𝐵, 𝐹𝑛(𝑞0) = 𝑚)𝑃𝑟(𝐹𝑛(𝑞0) = 𝑚)

≥ (1 − 𝑒−2min{𝑆(𝜖2)}𝜖
2
)𝑃𝑟(𝑚 ∈ 𝑆(𝜖2))

≥ (1 − 𝑒−2𝑛(𝐹(𝑞0)−𝜖2)𝜖
2
)(1 − 𝑒−2𝑛𝜖

2
2 ), (A.21)
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where the last inequality comes from the DKW inequality on 𝐹𝑛(𝑞). Since 𝑝 ≥ 𝑝𝜖 and 𝐹(𝑝, 𝑞) ≥ 𝛾 the widest part of the
interval in event 𝐶 can be made arbitrarily small on the interval (𝑝𝜖, 1) and 𝑐𝐹𝐷𝑅(𝑝, 𝑞) converges uniformly to 𝐶(𝑝, 𝑞). If
𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 0, then so does 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞). □

Corollary A.6. Under the assumptions in Theorem A.5, 𝑐𝐹𝐷𝑅(𝑝, 𝑞) and 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) are bound with fixed probability on
the line segment 𝑞 = 𝑞0, 𝑝𝛾 < 𝑝 < 1 in intervals of width 𝑂(𝑛−1∕2).

Proof. In inequality (A.21), set

𝜖 =
𝑟√

𝐹(𝑞0) − 𝜖2
𝜖2 =

𝑟2√
𝑛
. (A.22)

Then the RHS is (1 − exp(−2𝑟2))(1 − exp(−2𝑟22)), whichmay bemade arbitrarily small by varying 𝑟, 𝑟2, and the difference
between the upper and lower bounds in event 𝐶|𝐵 is

𝑝
𝐹(𝑞0) + 𝜖2
𝐹(𝑝, 𝑞0) − 𝜖

− 𝑝
𝐹(𝑞0) − 𝜖2
𝐹(𝑝, 𝑞0) + 𝜖

= 2𝑝

√
𝐹(𝑞0)𝑟 + 𝐹(𝑝, 𝑞0)𝑟2

𝐹(𝑝, 𝑞0)2
1√
𝑛
+ 𝑂

(
1

𝑛

)
. (A.23)

□

TheoremA.7. Suppose that on a line segment 𝑞 = 𝑞0, 𝑝𝛾 < 𝑝 < 1, we have 𝐹(𝑝, 𝑞) ≥ 𝛾 > 0, 𝐹(𝑞0) > 0, and 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥
𝛾2 > 0. Denote by 𝑙(𝛼) the value of 𝑝 at the intersection of the L-curve 𝐿(𝛼) with the line 𝑞 = 𝑞0, so

𝑙(𝛼) = sup{𝑝 ∶ 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) ≤ 𝛼}, (A.24)

and 𝑐(𝛼) the value of 𝑝 such that 𝐶(𝑝, 𝑞0) = 𝛼 (unique if it exists). For any 𝛿 > 0, the function |𝑙(𝛼) − 𝑐(𝛼)| converges uni-
formly to 0 for 𝛼 ∈ [𝐶(𝑝𝜖, 𝑞0) + 𝛿, 1].

Proof. Since 𝐶(𝑝, 𝑞0) is continuous and increasing on [𝑝𝜖, 1], the value 𝑐(𝛼) exists for 𝛼 ∈ [𝐶(𝑝𝜖, 𝑞0), 𝐶(1, 𝑞0)] ⊃

[𝐶(𝑝𝜖, 𝑞0) + 𝛿, 1] by the intermediate value theorem. The function 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) is continuous and nondecreasing on [0,1]
and hence 𝑙(𝛼) exists for 𝛼 ∈ [𝑐𝐹𝐷𝑅𝑡(0, 𝑞0), 𝑐𝐹𝐷𝑅𝑡(1, 𝑞0)] = [0, 1].
Given arbitrarily small positive 𝜖3, 𝛿2 < 𝛿 choose 𝑛 large enough that 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) is contained in [𝐶(𝑝, 𝑞0) −

𝛿2, 𝐶(𝑝, 𝑞0) + 𝛿2] for 𝑝 ∈ [𝑝𝜖, 1] with probability at least 1 − 𝜖3. Then with probability ≥ 1 − 𝜖3, whenever the curve
𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) is in the region bounded by the rectangle 𝑝𝜖 ≤ 𝑝 ≤ 1, 𝐶(𝑝𝜖, 𝑞0) + 𝛿 ≤ 𝑞 ≤ 1, it is bounded by the curves
𝐶(𝑝, 𝑞0) − 𝛿2), 𝐶(𝑝, 𝑞0) + 𝛿2. The distance between the two curves in the 𝑞-direction is at most 2𝛾2𝛿2. Thus, if for some
𝛼 ∈ [𝐶(𝑝𝜖, 𝑞0) + 𝛿, 1], we have |𝑙(𝛼) − 𝑐(𝛼)| > 𝛾2𝛿2, the curve 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) must escape the region bounded the curves
𝐶(𝑝, 𝑞0) − 𝛿2), 𝐶(𝑝, 𝑞0) + 𝛿2.
So with probability at least 1 − 𝜖3, we have

∀𝛼 ∈ [𝐶(𝑝𝜖, 𝑞0) + 𝛿, 1] ∶ |𝑙(𝛼) − 𝑐(𝛼)| ≤ 𝛾2𝛿2, (A.25)

which proves the statement. This is illustrated in Figure A.2. □

We now proceed to the proof of Theorem 3.3, restated here:

Theorem3.3. Let𝑅 be the region of the unit square forwhich𝐹(𝑝, 𝑞) ≥ 𝛾 > 0and𝐹(𝑞) > 0. Then on𝑅, 𝑐𝐹𝐷𝑅(𝑝, 𝑞) converges
uniformly to 𝐶(𝑝, 𝑞), and if 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 0, then so does 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞).

Proof. We proceed very similarly to Theorem A.5. We employ a result from Kiefer (1961) that for any 𝜖 > 0

𝑃𝑟

(
sup |𝐹𝑛(𝑝, 𝑞) − 𝐹(𝑝, 𝑞)| ≥ 𝑟√

𝑛

)
≤ 𝑐(𝜖)𝑒(2−𝜖)𝑟

2 (A.26)
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F IGURE A . 2 Convergence of intersections of L-curves with a line 𝑞 = 𝑞0. Functions 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0), 𝐶(𝑝, 𝑞0) and 𝐶(𝑝, 𝑞0) ± 𝛿2 are
shown. The vertical distance between dashed red lines is 2𝛿2, and since 𝜕𝐶(𝑝, 𝑞0)∕𝜕𝑝 ≥ 𝛾2 the horizontal distance is at most 2𝛿2𝛾2. We must
restrict the proof to 𝛼 > 𝐶(𝑝, 𝑞0) + 𝛿 because we cannot assert the behaviour of 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) left of the line 𝑝 = 𝑝𝜖

from which, wherever 𝐹(𝑝, 𝑞) > 𝑓𝑚𝑖𝑛 >
𝑟√
𝑛

𝑃𝑟
⎛⎜⎜⎝

1

𝐹(𝑝, 𝑞) +
𝑟√
𝑛

≤ 1

𝐹𝑛(𝑝, 𝑞)
≤ 1

𝐹(𝑝, 𝑞) −
𝑟√
𝑛

⎞⎟⎟⎠ ≥ 1 − 𝑐(𝜖)𝑒(2−𝜖)𝑟
2

𝑃𝑟
⎛⎜⎜⎝

𝑝
𝐹𝑛(𝑞)

𝑛

𝐹(𝑝, 𝑞) +
𝑟√
𝑛

≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≤ 𝑝
𝐹𝑛(𝑞)

𝑛

𝐹(𝑝, 𝑞) −
𝑟√
𝑛

⎞⎟⎟⎠ ≥ 1 − 𝑐(𝜖)𝑒(2−𝜖)𝑟
2
. (A.27)

The values 𝐹𝑛(𝑝, 𝑞) and 𝐹𝑛(𝑞) are dependent. However, given some 𝑟2 > 0, we have for all 𝑞 (by the DKW inequality)

𝑃𝑟

(
𝐹(𝑞) −

𝑟2√
𝑛
≤ 𝐹𝑛(𝑞)

𝑛
≤ 𝐹(𝑞) +

𝑟2√
𝑛

)
≥ 1 − 2𝑒−2𝑟

2
2 . (A.28)

Denoting the event in (A.27) by 𝐴, the event in (A.28) by 𝐵, and 𝐶 as

𝑝(𝐹(𝑞) −
𝑟2√
𝑛
)

𝐹(𝑝, 𝑞) +
𝑟√
𝑛

≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞) ≤
𝑝(𝐹(𝑞) +

𝑟2√
𝑛
)

𝐹(𝑝, 𝑞) −
𝑟√
𝑛

(A.29)

we have, since the interval in 𝐴 is a subinterval of that in 𝐶 when conditioning on 𝐵:

𝑃𝑟(𝐶) = 𝑃𝑟(𝐶|𝐵)𝑃𝑟(𝐵) + 𝑃𝑟(𝐶|¬𝐵)𝑃𝑟(¬𝐵) (A.30)

≥ 𝑃𝑟(𝐶|𝐵)(1 − 2𝑒−2𝑟
2
2 ) (A.31)

≥ 𝑃𝑟(𝐴|𝐵)(1 − 2𝑒−2𝑟
2
2 ) (A.32)

≥ (1 − 𝑐(𝜖)𝑒(2−𝜖)𝑟
2
)(1 − 2𝑒−2𝑟

2
2 ). (A.33)

As before, this bound also holds for 𝑐𝐹𝐷𝑅𝑡 as long as 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 > 0. □
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Corollary A.8. Under the assumptions in 3.3, 𝑐𝐹𝐷𝑅 and 𝑐𝐹𝐷𝑅𝑡 are bound with fixed probability in 𝑅 in intervals of width
𝑂(𝑛−1∕2)

Proof. The difference between the upper and lower bounds in (A.29) is

2𝑝(𝑟𝐹(𝑞) + 𝑟2𝐹(𝑝, 𝑞))

𝐹(𝑝, 𝑞)2
1√
𝑛
+ 𝑂

⎛⎜⎜⎝
1√
𝑛
3

⎞⎟⎟⎠. (A.34)

□

Our final result describes errors on v-values. Given an L-region 𝐿(𝛼), we define the M-region as the ‘expected’ L-region:

𝑀(𝛼) = {(𝑝, 𝑞) ∶ 𝐶(𝑝, 𝑞) ≤ 𝛼}, (A.35)

and the ‘error’ on the v-value 𝑣 = ∫
𝐿(𝛼)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 as

|Δ𝑣| = |||||∫𝐿(𝛼) 𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 − ∫
𝑀(𝛼)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞
|||||. (A.36)

We now are now in a position to prove Theorem 3.4.

Theorem 3.4. Define 𝑅 as in Theorem 3.3, and further assume that 𝑓0(𝑝, 𝑞) = 𝑓(𝑃 = 𝑝,𝑄 = 𝑞|𝐻𝑃
0 ) is known and on 𝑅 we

have 𝜕𝐶(𝑝, 𝑞)∕𝜕𝑝 ≥ 𝛾2. Write 𝑅𝑐 = [0, 1]2 ⧵ 𝑅. Then the maximum error on any v-value is

∫
𝑅𝑐
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 + 𝑂

(
1√
𝑛

)
. (A.37)

Proof. Using Theorem 3.3, bound 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) between 𝐶(𝑝, 𝑞) − 𝛿, 𝐶(𝑝, 𝑞) + 𝛿 with probability ≥ 1 − 𝜖3, where 𝛿 =

𝑂(1∕
√
𝑛).

Since 𝐹(𝑝, 𝑞) is non-decreasing with 𝑝, we can describe 𝑅 = {(𝑝, 𝑞) ∶ 𝐹(𝑝, 𝑞) ≥ 𝛾} as the union of line segments 𝑞 = 𝑞0,
𝑝𝜖(𝑞0) ≤ 𝑝 ≤ 1.Wenowdefine𝑅1 as the union of all line segments 𝑞 = 𝑞0,𝑝𝜖(𝑞0) + 𝛿𝛾2 ≤ 𝑝 ≤ 1; that is,𝑅with the leftmost
border shifted 𝛿𝛾2 to the right.
We show the result by firstly noting that if an L-curve intersects a line segment 𝑞 = 𝑞0 at 𝑙(𝛼) > 𝑝𝜖(𝑞0) + 𝛿𝛾2, and

we have that |𝑙(𝛼) − 𝑐(𝛼)| > 𝛿𝛾2 (where 𝑐(𝛼) is the intersection of the border of𝑀(𝛼) with 𝑞 = 𝑞0), then event 𝐶 (Equa-
tion (A.29))must have occurred in𝑅, by the same argument as for TheoremA.7. Thuswith probability at least 1 − 𝜖3, every
segment of a right-most border of an L-region 𝐿(𝛼) in 𝑅1 is at a horizontal distance from the corresponding rightmost-
border of𝑀(𝛼) of at most 𝛿𝛾2
We now write

Δ𝑣 =

(
∫
𝐿(𝛼)∩𝑅𝑐

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 − ∫
𝑀(𝛼)∩𝑅𝑐

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞

)

+

(
∫
𝐿(𝛼)∩(𝑅⧵𝑅1)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 − ∫
𝑀(𝛼)∩(𝑅⧵𝑅1)

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞

)

+

(
∫
𝐿(𝛼)∩𝑅1

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 − ∫
𝑀(𝛼)∩𝑅1

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞

)
. (A.38)

The first term is atmost ∫
𝑅𝑐
𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞. The region𝑅 ⧵ 𝑅1 has constant width 𝛿𝛾2, and since 𝑓0 only varies with 𝑞, hence

the second term is at most ∫
𝑅⧵𝑅1

𝑓0(𝑝, 𝑞)𝑑𝑝𝑑𝑞 = 𝛿𝛾2 = 𝑂(𝑛−1∕2). Within 𝑅1, if the horizontal separation between curves
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at the rightmost border of 𝐿(𝛼) and𝑀(𝛼) is greater than 𝛿𝛾2, then C has occurred, so this can happen with probability at
most 𝜖3. Thus with probability 1 − 𝜖3, the third term is also bounded by 𝛿𝛾2 = 𝑂(𝑛−1∕2), establishing the result. □

A.4 Influence of a single point
Intuitively, adding a single point to a map defined by 𝑛 other points should have a small effect on that map, and hence on
the resultant v-values. We show the following:
Theorem 3.5. Suppose we add a point (𝑝∗, 𝑞∗) to a set of 𝑛 points (𝑝𝑖, 𝑞𝑖), considered as realisations of 𝑃,𝑄, and conditions
are satisfied for convergence of v-values as above. Let Δ𝑣(𝐿(𝛼)) be the shift in a v-value corresponding to an L-curve 𝐿(𝛼) after
adding (𝑝∗, 𝑞∗). Then

𝐸𝛼∼𝑈(0,1)(|Δ𝑣(𝐿(𝛼))|) = 𝑂

(
1

𝑛2
.

)
. (A.39)

Proof. Consider the profile of 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) on a line 𝑞 = 𝑞0, and how this changes with the addition of (𝑝∗, 𝑞∗). The
functions 𝐹𝑛(𝑞), 𝐹𝑛(𝑝, 𝑞) will be taken to be with respect to the 𝑛 points (𝑝𝑖, 𝑞𝑖) but not (𝑝∗, 𝑞∗).
For 𝑞0 < 𝑞∗, the addition of (𝑝∗, 𝑞∗) changes neither 𝐹𝑛(𝑞0) nor 𝐹𝑛(𝑝, 𝑞0), so on lines 𝑞 = 𝑞0 < 𝑞∗ the profile of 𝑐𝐹𝐷𝑅𝑡

will remain the same.
Denote

𝑐+(𝑝) = 𝑝
𝐹𝑛(𝑞) + 1

𝐹𝑛(𝑝, 𝑞)
𝑐−(𝑝) = 𝑝

𝐹𝑛(𝑞) + 1

𝐹𝑛(𝑝, 𝑞) + 1
. (A.40)

For 𝑞0 > 𝑞∗, 𝑝 < 𝑝∗, the value of 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) will increase by

𝑐+(𝑝) − 𝑝
𝐹𝑛(𝑞)

𝐹𝑛(𝑝, 𝑞)
=

𝑝

𝐹𝑛(𝑝, 𝑞0)
, (A.41)

and for 𝑞0 > 𝑞∗, 𝑝 > 𝑝∗, it will decrease by

𝑝
𝐹𝑛(𝑞)

𝐹𝑛(𝑝, 𝑞)
− 𝑐−(𝑝) = 𝑝

𝐹𝑛(𝑞0) − 𝐹𝑛(𝑝, 𝑞0)

𝐹𝑛(𝑝, 𝑞0)(𝐹𝑛(𝑝, 𝑞0) + 1)
. (A.42)

In either case, 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) changes by𝑂(
1

𝑛2
). The behaviour of 𝑐𝐹𝐷𝑅𝑡 is a littlemore complex. Ifwe define 𝑐+𝑡 (𝑝) and 𝑐

−
𝑡 (𝑝)

analogously to 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0), then for 𝑝 > 𝑝∗ 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) shifts to 𝑐−𝑡 (𝑝), and for 𝑝 < 𝑝∗ it shifts to min(𝑐+𝑡 (𝑝), 𝑐
−
𝑡 (𝑝

∗)

(see example in Figure A.3).
We can show that the absolute difference in 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) is always less than the absolute difference in 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) after

adding (𝑝∗, 𝑞∗). Denote these differences Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0) and Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0). Since 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) always shifts to between
𝑐−𝑡 (𝑝) and 𝑐

+
𝑡 (𝑝), it suffices to show that

𝑐+𝑡 (𝑝) − 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) ≤ Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0) (A.43)

𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) − 𝑐−𝑡 (𝑝) ≤ Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0). (A.44)

Inequality (A.43) follows from the observation that 𝑐+(𝑝) ∝ 𝑐𝐹𝐷𝑅(𝑝, 𝑞0), so order relations between 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) and
𝑐+(𝑝, 𝑞0) are preserved. Thus

|Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0)| = min
𝑝′≥𝑝 Δ|𝑐𝐹𝐷𝑅(𝑝′, 𝑞0)| ≤ |Δ𝑐𝐹𝐷𝑅(𝑝′, 𝑞0)|. (A.45)

Order relations are not preserved between 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) and 𝑐−(𝑝), but the denominators increment at the same values
of 𝑝. The functions 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) and 𝑐−(𝑝) both rise linearly in 𝑝 between successive increment points 𝑝𝑎, 𝑝𝑑 of 𝐹𝑛(𝑝, 𝑞0),
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F IGURE A . 3 Behaviour of 𝑐𝐹𝐷𝑅 and 𝑐𝐹𝐷𝑅𝑡 on a line 𝑞 = 𝑞0 after adding a point (𝑝∗, 𝑞∗) to a set of 𝑛 points (𝑛 is considerably smaller
in this example than in Figure A.2). In the left panel, curves of 𝑐𝐹𝐷𝑅 and 𝑐𝐹𝐷𝑅𝑡 before and after adding (𝑝∗, 𝑞∗) are shown. Adding (𝑝∗, 𝑞∗)

may have a substantial impact on the intersection of an L-curve with 𝑞 = 𝑞0, such as that in the horizontal line: the black and red points show
the intersection points of a curve before and after adding (𝑝∗, 𝑞∗). However, the average effect across all curves is limited to the integral of the
difference between the black and red lines, which is 𝑂(1∕𝑛2). The right panel demonstrates that |Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞)| ≤ |Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞)|
with 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) having the higher gradient, since

𝐹𝑛(𝑞)

𝐹𝑛(𝑝, 𝑞)
>

𝐹𝑛(𝑞) + 1

𝐹𝑛(𝑝, 𝑞) + 1
. (A.46)

At 𝑝𝑑, both functions are discontinuous and drop in value. On (𝑝𝑎, 𝑝𝑑), the values of 𝑐−𝑡 (𝑝) and 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) are either
equal to 𝑐−(𝑝), 𝑐𝐹𝐷𝑅(𝑝, 𝑞0), or ‘censored’ at some values 𝑐−(𝑝′), 𝑐𝐹𝐷𝑅(𝑝′, 𝑞0) with 𝑝′ > 𝑝 (see the right-hand part of
Figure A.3 for an example of this). We note that 𝑐−(𝑝) > 𝑐−(𝑝′), 𝑝′ > 𝑝 ⇒ 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) > 𝑐𝐹𝐷𝑅(𝑝, 𝑞0), so the first point
at which 𝑐−𝑡 (𝑝) is censored on (𝑝1, 𝑝2) is further right than the first point at which 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) is censored. Denote
the leftmost point at which 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) is censored as 𝑝𝑏 and the leftmost point at which 𝑐−𝑡 (𝑝) is censored as 𝑝𝑐, so
𝑝𝑎 ≤ 𝑝𝑏 ≤ 𝑝𝑐 ≤ 𝑝𝑑.
On (𝑝𝑎, 𝑝𝑏), where neither are censored, 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) − 𝑐+(𝑝) = 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) − 𝑐−𝑡 (𝑝) and Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0) =

Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0). On (𝑝𝑏, 𝑝𝑐), when only 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) is censored, 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) − 𝑐−𝑡 (𝑝) = 𝑐𝐹𝐷𝑅(𝑝𝑏, 𝑞0) − 𝑐−(𝑝) <

𝑐𝐹𝐷𝑅(𝑝, 𝑞0) − 𝑐−(𝑝), so Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0) ≤ Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0). On (𝑝𝑐, 𝑝𝑑), we have 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) − 𝑐−𝑡 (𝑝) = 𝑐𝐹𝐷𝑅(𝑝𝑏, 𝑞0) −

𝑐−(𝑝𝑐) ≤ 𝑐𝐹𝐷𝑅(𝑝𝑐, 𝑞0) − 𝑐−(𝑝𝑐) ≤ 𝑐𝐹𝐷𝑅(𝑝, 𝑞0) − 𝑐−(𝑝), so again, Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) ≤ Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0). Thus, for all 𝑝,

|Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0)| ≤ |Δ𝑐𝐹𝐷𝑅(𝑝, 𝑞0)| = 𝑂

(
1

𝑛2

)
, (A.47)

where the multiplicative factor in 𝑂(1∕𝑛2) is independent of 𝑞0. This inequality is demonstrated in the right panel of
Figure A.3.
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Denote by 𝑙𝛼 the value of 𝑝 at the intersection of an L-curve corresponding to 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) ≤ 𝛼 with the line 𝑞 = 𝑞0. We
have 𝑙𝛼 = max{𝑝 ∶ 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) = 𝛼}. The value 𝑙𝛼 may shift substantially when adding 𝑝∗, 𝑞∗, as shown in Figure A.3
However, the effect is small on average. The plot of the function 𝑙(𝛼) before and after adding (𝑝∗, 𝑞∗) is identical to the

plot of the function of 𝑝 given by 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0) before and after adding (𝑝∗, 𝑞∗) rotated by 𝜋∕2. The average difference in
movement of 𝑙𝛼 is the integral of the difference in 𝑙𝛼 with and without (𝑝∗, 𝑞∗). However, this is simply the area between
the two curves, which is invariant under rotating 𝜋∕2. Hence

∫
1

0

Δ𝑙𝛼𝑑𝛼 = ∫
1

0

Δ𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞0)𝑑𝑝 = 𝑂

(
1

𝑛2

)
. (A.48)

Denote the region 𝐿(𝛼) ∶ 𝑐𝐹𝐷𝑅𝑡(𝑝, 𝑞) ≤ 𝛼 and the co-ordinates of its rightmost border (L-curve) (𝑞, 𝑙𝛼(𝑞)), 𝑞 ∈ (0, 1).
Then, denoting the indicator function by 𝐼

𝑣(𝐿(𝛼)) = ∫
1

0
∫

1

0

𝐼((𝑝, 𝑞) ∈ 𝐿(𝛼))𝑓0(𝑝, 𝑞)𝑑𝑝 𝑑𝑞

= ∫
1

0
∫

1

0

𝐼((𝑝, 𝑞) ∈ 𝐿(𝛼))𝑓
𝑞
0 (𝑞)𝑑𝑝 𝑑𝑞

= ∫
1

0

𝑓
𝑞
0 (𝑞)∫

1

0

𝐼((𝑝, 𝑞) ∈ 𝐿(𝛼))𝑑𝑝 𝑑𝑞

= ∫
1

0

𝑓
𝑞
0 (𝑞)𝑙𝛼(𝑞)𝑑𝑞, (A.49)

and the average error in v-values 𝑣(𝐿(𝛼)) over 𝛼 ∼ 𝑈(0, 1) is

𝐸𝛼∼𝑈(0,1)(|Δ𝑣(𝐿(𝛼))|) = ∫
1

0

Δ𝑣(𝐿(𝛼))𝑑𝛼

= ∫
1

0
∫

1

0

𝑓
𝑞
0 (𝑞)Δ𝑙𝛼(𝑞)𝑑𝑞 𝑑𝛼

= ∫
1

0

𝑓
𝑞
0 (𝑞)∫

1

0

Δ𝑙𝛼(𝑞) 𝑑𝛼𝑑𝑞

= 𝑂

(
1

𝑛2

)
∫

1

0

𝑓
𝑞
0 (𝑞)𝑑𝑞

= 𝑂

(
1

𝑛2

)
(A.50)

as required. □

A.5 Asymptotic equivalence of PDF- and CDF- based L-regions
We show in this section that under a fairly common condition L-regions based on the PDF of 𝑝, 𝑞 are similar to L-regions
based on the CDF. In this section, we generally work on the Z-scale rather than the p-value scale for convenience.
Denote a ‘fast-decreasing’ function as a function 𝑔 such that for each 𝜖1, 𝜖2 > 0, there exists 𝛿 such that for all 𝑋,𝑌 of

distance at least 𝛿 from the origin, we have

∬
𝑥 ≤ 𝑋, 𝑦 ≤ 𝑌

(𝑥 − 𝑋)2 + (𝑦 − 𝑌)2 ≤ 𝜖21

𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦 > (1 − 𝜖2) ∬
𝑥≤𝑋,𝑦≤𝑌

𝑔(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (A.51)
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F IGURE A . 4 These plots show contours of CDF- based and PDF-based L-regions for a range of distributions of 𝑃,𝑄. Plots are on the
Z-score scale (e.g., rejection regions in terms of 𝑍𝑃, 𝑍𝑄). The distributions are parameterised in terms of the mixture-Gaussian distribution
detailed in Supporting Information, Section 1.4.1; parameters (𝜋0, 𝜋1, 𝜋2, 𝜏1, 𝜏2, 𝜎1, 𝜎2) were (0.7,0.1,0.1,2,3,1.5,1.5), (0.7,0.1,0.1,2,2,3,3),
(0.99,0.0005,0.0003,2,3,4,3) and (0.7,0.1,0.05,3,2,2,2), respectively. Curves are generated passing through the points 𝑍𝑃, 𝑍𝑄 = (3, 2… 6), with
curves further to the right corresponding to smaller 𝛼. As 𝛼 gets smaller, contours 𝐹0(𝑥, 𝑦)∕𝐹(𝑥, 𝑦) = 𝛼 (black lines) become closer to
contours of 𝑓0(𝑥, 𝑦)∕𝑓(𝑥, 𝑦) = 𝛼 (blue lines) under reasonably general circumstances

so for 𝑥 ≤ 𝑋, 𝑦 ≤ 𝑌, the function 𝑔 falls off rapidly enough as 𝑥, 𝑦 decrease that we can disregard its value except when it
is close to 𝑋,𝑌.
We show the following:

Theorem A.9. Denote 𝑐(𝑥, 𝑦) = 𝑓0(𝑥, 𝑦)∕𝑓(𝑥, 𝑦) and 𝐶(𝑥, 𝑦) = 𝐹0(𝑥, 𝑦)∕𝐹(𝑥, 𝑦). Given a region of the (−,−) quadrant
𝐴𝜖 = (−∞, 0] × (𝐼1 − 𝜖, 𝐼2 + 𝜖) (where 𝜖 > 0 is arbitrarily small), suppose that for 𝑥, 𝑦 ∈ 𝐴𝜖 and for sufficiently small 𝛼 we
have

1. 𝑓0 and 𝑓 are fast-decreasing continuous positive functions,
2. Along horizontal rays in 𝐴, 𝑐(𝑥, 𝑦) satisfies 𝜕2 log(𝑐(𝑥, 𝑦))∕𝜕𝑥2 > 0 and
3. The contour 𝑐(𝑥, 𝑦) = 𝛼 is continuous and bounded, and the rightmost bound increases to∞ as 𝛼 → 0.

Then for each 𝜖3 > 0, there exists an 𝜖1 as above and an 𝛼1 such that whenever 𝛼 < 𝛼1, there is a contour of 𝐶(𝑥, 𝑦) is never
further than 𝜖3 from the contour 𝑐(𝑥, 𝑦) = 𝛼 in the region 𝐴0.

Proof. Set 𝑅3 as the region defined by the union of all circles of radius 𝜖3 with centres on points 𝑦, 𝑙𝛼(𝑦). Choose 𝜖1 = 𝜖3∕2

(supposing that 𝜖1 < 𝜖), and define 𝑅1 similarly to 𝑅3 with radii 𝜖1. Let 𝛼+ be theminimum value of 𝑓0∕𝑓 on the rightmost
border of 𝑅1, and 𝛼− the maximum value on the leftmost border so 𝛼+ > 𝛼 > 𝛼−.
Condition 2 implies that for fixed 𝑦

𝑑

𝑑𝑥

(
𝑐(𝑥 + 𝜖1, 𝑦)

𝑐(𝑥, 𝑦)

)
< 0. (A.52)

Since the horizontal distance between the rightmost border of 𝑅3 and the curve is at least 2𝜖1 and similarly from the
leftmost border of 𝑅3, the values 𝛼+ − 𝛼, 𝛼 − 𝛼− must increase for fixed 𝜖1 as we move left. Thus, for some fixed 𝜖2 > 0,
choose 𝛿2 large enough that 𝛼+∕𝛼− > 1∕(1 − 𝜖2)

2 and larger than the 𝛿 corresponding to 𝜖1, 𝜖2 by assumption, and 𝛼1
large enough that the contour 𝑐(𝑥, 𝑦) is entirely left of the line 𝑥 = −𝛿2.
Let𝑋,𝑌 be a point in𝐴0 to the right of 𝑅3, so a circle of radius 𝜖1 centred at𝑋,𝑌 is in𝐴𝜖 but does not intersect 𝑅1. Thus

across such a circle, the value of 𝑐(𝑥, 𝑦) is at least 𝛼+. Similarly, across a circle of radius 𝜖1 centred to the left of 𝑅3, the
value of 𝑐(𝑥, 𝑦) is at most 𝛼−
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For 𝑥, 𝑦 to the right of 𝑅3, denote by 𝐻 the circle of radius 𝜖1 centred at 𝑥, 𝑦. Now by the fast-decreasing property of 𝑓0
and 𝑓, we have

𝐹0(𝑥, 𝑦) > ∫
𝐻

𝑓0(𝑥, 𝑦)𝑑𝑥𝑑𝑦 > 𝛼+ ∫
𝐻

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 > 𝛼+(1 − 𝜖2)𝐹(𝑥, 𝑦) (A.53)

so 𝐶(𝑥, 𝑦) > 𝛼+(1 − 𝜖2). Similarly for 𝑥, 𝑦 to the left of 𝑅3, we have 𝐶(𝑥, 𝑦) < 𝛼−∕(1 − 𝜖2). By our choice of 𝛼1, we have
𝛼+(1 − 𝜖2) > 𝛼−∕(1 − 𝜖2), so any contour of 𝐶(𝑥, 𝑦) at a level between these values must pass within 𝑅3 through 𝐴0. □

Contours of 𝐹0∕𝐹 correspond to contours of 𝑐𝐹𝐷𝑅, and contours of 𝑓0∕𝑓 correspond to contours of 𝑃𝑟(𝐻
𝑝
0 |𝑃 = 𝑝,𝑄 =

𝑞). Theorem A.9 has obvious analogies in other quadrants, and for the p-value rather than z-score scale.
The conditions in the theorem may seem restrictive, but they are satisfied by many distributions; for instance, when

𝑓0 and 𝑓 are mixture Gaussian, and 𝑓 dominates 𝑓0 as |𝑥| → ∞. Figure A.4 shows the similarity of a range of shapes of
contours of 𝐶 and 𝑐.
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