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Abstract 

 

Adult mesenchymal stem cells (MSCs) were first isolated from bone marrow by 

Friedenstein in 1976. These cells were clonogenic, non-haematopoietic, and able to 

replicate extensively in vitro. The fields of regenerative medicine and tissue engineering 

have grown dramatically since their inception. In the decades since, MSCs have been 

identified from mesoderm-, endoderm- and ectoderm-derived tissues. In light of our 

ageing population, the need for effective cell-based therapies for tissue repair and 

regeneration is ever-expanding.  

Online published articles were searched for using the PubMed/MEDLINE and Ovid 

databases, and relevant articles fulfilling the pre-defined eligibility criteria were analysed. 

To date, MSCs have been isolated from a number of adult tissues, including trabecular 

bone, adipose tissue, bone marrow, synovium, dermis, periodontal ligament, dental pulp, 

bursa and the umbilical cord. Bone marrow MSCs are currently considered the gold 

standard, with which newly discovered sources are compared on the basis of their renewal 

capabilities and multipotency. Furthermore, MSCs have been successful in the 

regeneration of osteonecrosis, osteoarthritis, bony defects, fracture remodelling and so on.  

Unfortunately, significant hurdles still remain and will need to be overcome before tissue 

engineering using MSCs becomes routine in clinical practice. Thus, further research and 

understanding is required into the safe and effective sourcing and application of 

mesenchymal stem cells in musculoskeletal applications.  

 

Keywords 

Mesenchymal stem cells, MSC, MSC applications, musculoskeletal applications, stem cells, 

tissue engineering.  
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Introduction 

 

Adult mesenchymal stem cells (MSCs) were first isolated from bone marrow,  described 

as mononuclear cells, similar to fibroblasts. These cells were clonogenic, non-

haematopoietic and they adhered to plastic in culture, replicating extensively in vitro [1, 2, 

3]. Evidence of their differentiation capacity was demonstrated by Friedenstein et al., [2] 

in seminal studies revealing the ability of MSCs to generate cartilage, bone, 

myelosupportive stroma, adipocytes, and fibrous connective tissue. The fields of 

regenerative medicine and tissue engineering have grown dramatically since their early 

inception in the 1960s [4]. In the decades since, MSCs have been identified from 

mesoderm-, endoderm, and ectoderm-derived tissues. These have been known by many 

different names other than the original ‘mesenchymal stem cells’ coined by Arnold 

Caplan [5], including; mesenchymal stream cells [6], bone marrow stromal cells [7] and 

marrow-isolated adult multipotent inducible cells [8]. 

 

Considering our ageing population, the need for effective cell-based therapies for tissue 

repair and regeneration will continue to increase. 1 in 2 adults older than 18 years (107.7 

million persons) reported experiencing a musculoskeletal condition lasting 3 months or 

longer [9]. Indeed, age-related musculoskeletal disorders represent a major cause of 

morbidity globally and result in enormous costs for health and social care systems [10]. 

The ability of MSCs to differentiate in vitro into chondrocytes, osteocytes and myocytes 

holds great promise for the future of tissue regeneration and repair in musculoskeletal 

diseases [11]. 

 

The purpose of this systematic review is to summarise evidence from the most recent 

studies outlining different sources of adult MSCs and their suitability in musculoskeletal 

applications. Studies were identified using Pubmed/MEDLINE database. Despite the 

existence of other comparable reviews, this area of medicine is growing at a significant 

pace, and therefore a more current review is called for.  

 

Stem cells are an undifferentiated population, capable of endless self-renewal and 

differentiation down one or more lineages to produce specialised cell types [12]. They can 

be categorised into two classes 1) embryonic stem cells (ESCs) and 2) adult stem cells. 

The earliest stem cell in the human body, the fertilised egg, is totipotent and has the 
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capacity to differentiate into any cell derivative of the ectoderm, endoderm and 

mesoderm, essentially into all cell types of the human body [13, 14]. However, their 

application in tissue engineering is greatly hindered by the risk of tumour formation, 

immune concerns and political and ethical considerations. In contrast, post-natal adult 

stem cells (somatic cells) are multipotent, immunocompatible, with no ethical concerns 

related to their use [15]. Located in many tissues of the human body, they are required to 

restore normal function via repair and regeneration of tissues in vivo. They exist in a 

quiescent state until activated by mediators of injury or disease [16]. MSCs are non-

haematopoietic cells of mesodermal derivation that are present in a number of post-natal 

organs, and connective tissues and are multipotent [17]. Hence, the use of  MCSs in 

clinical applications is being investigated further as they are not burdened by the same 

ethical concerns and restrictions associated with embryonic stem cells [18]. 

 

The term ‘mesenchymal stem cell’ has been applied to these cultured cells as they have a 

high capacity for self-renewal and the ability to differentiate into a number of different 

tissues of mesenchymal origin [19]. Today, they are described as ‘fibroblast-like’ cells 

that can mature along multiple different pathways according to their trophic activity [20].  

MSCs are defined by the International Society of Cellular Therapy as multipotent stromal 

cells on the basis of three agreed-upon characteristics [21]. Firstly, their adhesion and 

ability to form colonies when initially plated on tissue culture plastic; secondly, they must 

be capable of extended in vitro expansion, while maintaining the potential to differentiate 

along osteoblastic, adipocytic and chondrocytic pathways; thirdly, they must not exhibit 

CD14, CD34 and CD45 and human leukocyte antigen-DR (HLA-DR) which are 

characteristic epitope markers of haematopoietic stem cells (HSCs), and they must 

express the following set membrane molecules; CD73, CD90 and CD105 [21, 22, 23].  

 

Between all these tissues, bone marrow (BM) was the first source reported to contain 

hMSCs and is considered the main source of these stem cells for clinical and experimental 

applications. However, the percentage of hMSCs obtained from BM is very low, 

approximately 0.01–0.001% of total mononuclear cells [5, 24]. Furthermore, bone 

marrow aspirates seldom yield more than 5x104 cells per 20 mL of aspirate, which further 

diminishes as patients age [25]. This is a major limitation, as the volume of bone marrow 

that can be harvested is minuscule when compared with the number of cells necessary to 

regenerate the injured tissues [26]. What is more, the harvesting procedure is painful and 

associated with significant morbidity [27]. Consequently, new techniques of MSC 

isolation, expansion, and differentiation have been added to the therapeutic repertoire for 
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musculoskeletal regeneration, thus overcoming these issues [28]. Other sources of MSCs 

therefore hold great promise for regenerative therapies in the musculoskeletal system.  

 

An awareness of the dual role exhibited by MSCs in tissue repair has increased. It is now 

known that MSCs also release trophic factors that alter the local environment, facilitating 

replacement by local progenitors [29]. Furthermore, MSCs secrete numerous bioactive 

factors that influence resident precursor cells (with similar stromal origins) to undergo 

differentiation [30]. These factors mediate key aspects of tissue repair, including 

angiogenesis and secretion of neuroregulatory peptides and cytokines that have a crucial 

role in inflammation [30]. This in vivo role of MSCs in tissue repair is presumed to be 

initially dependent on signalling cascades initiated at sites of injury. Yet, what ensues 

thereafter is compelling. As platelets aggregate, they release densely packed alpha 

granules laden with cytokines. An influx of macrophages and neutrophils follows, hyper 

stimulating the inflammatory responses. Blood vessel permeability increases, setting the 

stage for MSC homing [31]. Homing is the mechanism by which MSCs migrate and 

aggregate to injured tissues [31]. Moreover, they produce essential cytokines such as 

transforming growth factor B, vascular endothelial growth factor and epidermal growth 

factor and secrete an array of bioactive molecules that stimulate local tissue repair [32]. It 

is suggested that MSCs secrete paracrine factors that elicit regenerative responses to 

enhance angiogenesis [33], promote skin wound healing [34], stimulate fracture healing 

[35], repair nervous degeneration [36], and treat cardiovascular disease [37]. These novel 

abilities exhibited by MSCs illustrate why this area of medicine has grown dramatically in 

the last decade. 

 

A fascinating feature of MCSs are their ability to modulate immune and inflammatory 

responses and their ability to release active molecules that affect cell migration, 

proliferation and survival at the site of the lesion [20]. Interest in MSCs have further 

expanded in recognition of their ability to release growth factors and to adjust immune 

responses [38]. MSCs are easily isolated from patients and can be used autologously and 

allogenically, allowing for re-implantation in human subjects without triggering an 

immune response [39]. Indeed, MSCs have been found to suppress inflammatory T-cell 

proliferation, and found to inhibit the maturation of monocytes and myeloid dendritic 

cells resulting in an immunomodulatory and anti-inflammatory effect [20]. Research 

highlighting the pro-inflammatory cytokines involved in the destruction of hyaline 

cartilage and development of degenerative osteoarthritis has identified the potential of 

MSCs as disease modifying agents [40]. Therefore it seems that MSCs have scope beyond 
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their multi-lineage potential such as treating graft-versus-host, cardiovascular, 

neurological and autoimmune disease [41]. 

 

 

Methods  

 

Online published articles were searched for using the PubMed/MEDLINE and Ovid 

databases.  

With a PubMed/MEDLINE database search, the following MeSH-terms (Medical Subject 

Headings) and controlled vocabulary thesaurus was used for indexing articles: 

‘mesenchymal stem cells’ [MeSH], OR ‘MSC [MeSH], OR ‘stem cells’ [MeSH],  OR 

‘MSC applications’ [MeSH], OR ‘musculoskeletal applications’ OR ‘tissue engineering’ 

[MeSH].  

Limits were set for: ‘English language’, ‘full text’, ‘adults 19+’ and a publication date in 

the last 5 years. Furthermore, the reference lists of relevant articles found were searched 

for additional studies deemed relevant.  

A total of 543 articles were identified through the PubMed/MEDLINE database search 

and were assessed for eligibility following the inclusion and exclusion criteria. 

With regard to the Ovid database, a search was conducted using the same key words with 

the addition of: bone marrow, adipose tissue, muscle, periosteum, synovial membrane, 

osteonecrosis, osteoarthritis, osteogenesis imperfecta and muscular dystrophy. A total of 

630 articles were identified and assessed for their relevance based on the eligibility 

criteria.  

 

 

 

Eligibility Criteria  

 

The following inclusion criteria was used to select appropriate studies.  

• Identification of sources of MSCs in human adult tissues 
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• Information about the suitability and applicability of MSCs in musculoskeletal 

conditions in adults  

Articles were excluded on the basis that they:  

• Did not include information about MSCs  

• Involved stem cells not found in adults, e.g. embryonic stem cells 

• Did not refer to potential uses of MSCs in musculoskeletal diseases.  

 

Figure 1 in the results section shows the stepwise selection procedure for this systematic 

review.  

Of the 543 articles identified on PubMed/MEDLINE, 27 met the predefined inclusion 

criteria and were analysed. 

Of the 630 articles identified on the Ovid database, 39 met the standards of the eligibility 

criteria and were analysed.  

In total, 66 articles met the standards of the eligibility criteria and were analysed in this 

systematic review.  

 

 

 

 

 

 

 

Results 
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Figure 1. 

 

 

 

 

 

Tables 1 and Table 2 summarise the most significant findings taken from the articles 

included in the review.  

Table 1 identifies the most recent research outlining the different sources of adult MSCs 

and their multilineage differentiation potential. MSCs have been identified and isolated 

from a multitude of adult tissues, albeit in small numbers. Based on their clonogenic and 

multipotent differentiation activities, MSCs have, to date, been isolated from bone 

Identification 

 

 

 

 

 

Screening 

 

 

 

 

 

Eligibility  

 

 

 

 

 

 

Included 

Articles identified through database search 

and review of reference lists 

(n=1173) 

Articles screened on abstract level 

(n=1173) 
Articles excluded with reason 

(n=1017) 

• No mention in abstract of MSCs 

(n=419) 

• Did not identify sources of 

MSCs (n=391) 

• MSCs not identified from adult 

human tissue (207) 
Full-text articles were assessed for eligibility 

(n=156) 

Studies included in Systematic Review 

(n=66) 

Full-text articles excluded with 

reason (n=90)  

• Did not identify sources of 

MSCs (n=61)  

• MSCs not identified from adult 

human tissues (n=14) 

• Other uses of MSCs  (other than 

musculoskeletal diseases) 

(n=15) 
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marrow [42],[43], adipose tissue [44], synovium [66], dermis [45], periodontal ligament 

[46], dental pulp [47], gingival tissues [48], bursa [49], ligaments [50], peripheral blood 

[51] as well as prenatal and perinatal sources such as the umbilical cord [52, 53]. Bone 

marrow MSCs are currently considered the gold standard, by which newly discovered 

sources of MSCs are compared on the basis of renewal and multipotency [43]. Bone 

marrow MSCs are typically isolated from the iliac crest, but they have also been found in 

bone marrow cavities such as the vertebrae bodies [54]. Interestingly, Cavallo et al found 

that multipotent MSCs could be harvested from the iliac crest bone marrow of cadaveric 

donors 24 hours after death [43]. These cells demonstrated similar or better 

musculoskeletal differentiation potential, but a lower frequency of colony forming units 

when compared to MSCs derived from adipose and term placenta tissues [43]. 

Nevertheless, MSCs derived from adipose tissue (aMSCs) are fast becoming a more 

attractive source and have been isolated from various locations in the body. The easiest 

source for aMSCs is the abdomen following liposuction plastic surgeries, due to the large 

quantities removed and otherwise discarded fatty tissue [43]. Adipose-derived MSCs are 

ubiquitously available and have been shown to be up to 500 times more prevalent than 

bone marrow MSCs when comparing an equivalent volume of tissue (lipo-aspirate vs 

bone marrow aspirate) [55]. Similarly, MSCs isolated from trabecular bone and synovium 

during total joint replacement procedures e.g. knee joint reconstruction, are easy to obtain 

and have comparable proliferative capabilities [56].  

It has been reported that cells isolated and cultured from the dermis exhibit characteristics 

of MSCs [42]. These cells were shown to be capable of undergoing in vitro differentiation 

into adipocytes and neurones [45]. Furthermore, a study by Vaculik and colleagues 

demonstrated the differentiation ability of dermal MSCs into adipogenic, osteogenic and 

chondrogenic lineage [57]. However, reports are still limited and further research is 

required to fully characterise and determine their capacity [58].  

The discovery of MSC-like cells deriving from induced pluripotent stem cells (iPSCs) is 

intriguing. This combines the advantage of the unlimited proliferative capacity of iPSCs 

with the well-known properties of bone marrow MSCs which could lead to the ability to 

generate large amounts of highly uniform batches of MSCs [41]. Furthermore, the 

possibility of reproducing patient specific multipotent human MSC-like cell preparations 

is a promising enterprise in the field of regenerative medicine.  

Peripheral blood MSCs are being increasingly studied, sharing similar biological 

characteristics with MSCs derived from bone marrow or adipose tissue [51]. They offer 

an autologous low-cost source of stem cells which may be easily harvested from patients’ 

blood via non-invasive procedures [51]. 
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Table 1. Sources of Adult MSCs and their Multilineage Differentiation. 

Adult MSCs Sources  Multilineage Differentiation 

Potential  

Reference 

Dermis Osteocyte, Adipocyte, 

Chondrocyte, Neuronal, Glial, 

Myofibroblast, Melanocyte, 

Schwann cell, Myocyte 

 Vapniarsky et al., 2015 [45] 

Adipose tissue Osteocyte, Adipocyte, 

Chondrocyte 

Yang et al., 2014 [44] 

Iwen et al., 2014 [59] 

Dental pulp, periodontal 

ligament, gingival tissues(dental 

tissues) 

Osteocyte  

Adipocyte, Chondrocyte 

Osteoblasts 

Di Benedetto et al., 2014 [47] 

Lei et al., 2014 [46] 

Rodriguez-Lozano et al., 2012 

[48] 

Inflamed gingival tissues Osteocyte, Adipocyte, 

Chondrocyte 

Ge et al., 2012 [60] 

Temporomandibular Joint (TMJ) 

Synovium 

Osteocyte, Chondrocyte, 

Adipocyte, Neurogenetic 

lineages   

Koyama et al., 2011 [61] 

Bone Marrow Osteocyte Gao et al., 2014 [42] 

Bone Marrow (Iliac Crest of 

cadaveric donors) 

Osteocyte, Chondrocyte Cavallo et al., 2011 [43] 

Muscle Osteocyte Gao et al., 2014 [42] 

Induced pluripotent stem cells 

(iPSCs) 

Osteoblast, Adipocyte, 

Chondrocytes 

Hynes et al., 2013 [62] 

 Tang et al., 2014 [63] 

Urine Smooth muscle cells, skeletal 

muscle cells  

Bharadwaj et al., 2013 [64] 

Synovium Chondrocytes Chang et al., 2014 [65] 

Bursa Tenocytes, Osteoblasts, 

Adipocytes, Chondrocytes 

Song et al., 2013 [49] 

Perivascular stem cells  Osteoblasts Askarinam et al., 2013 [66] 

Infrapatellar fat pad (IFP) Chondrocytes Liu et al., 2012 [67] 

Human intervertebral disc 

cartilage endplate (CEP) — 

degenerated human CEP 

Osteoblasts, Adipocytes, 

Chondrocytes  

Liu et al., 2011 [68] 

Synovial membrane Osteoblasts, Adipocytes, 

Chondrocytes 

Kim et al., 2011 [69] 

Facet joints & interspinous 

ligaments 

Osteoblasts, Adipocytes, 

Chondrocytes 

Kristjansson et al., 2016 [50] 
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Adult MSCs Sources  Multilineage Differentiation 

Potential  

Reference 

Peripheral blood Osteocyte Wu et al., 2015 [51] 

Total Knee Replacement (TKR) 

tissues (adipose; synovial tissue; 

subchondral trabecular bone, 

osteoarthritic cartilage) 

Osteocyte, Adipocyte, 

Chondrocyte  

Labusca et al., 2013 [56] 

 

 

With regard to the musculoskeletal applications of MSCs, Table 2 summarises the more 

recent available evidence. Skeletal defects are emerging as key targets for treatment using 

MSCs due to the high responsiveness of bone to interventions in animal models [38]. 

Musculoskeletal applications are of utmost importance as pathological or traumatic 

orthopaedic events are becoming one of the most recurrent causes of disability in the 

world [25]. Despite limited evidence-based trials supporting the use of MSCs in treating 

musculoskeletal disease, their clinical importance has been highlighted and a growing 

body of research is now emerging.  

To date, bone marrow-derived MSCs have been used as a regenerative therapy for 

cartilage regeneration in osteoarthritic knees [70], in the healing of  upper limb fractures 

and in bone non-union [71], and osteonecrosis of the femoral head [72] amongst other 

applications. Its potential for human tendon tissue engineering [73], bone defect and 

fracture regeneration and remodelling has also been demonstrated [71, 74].  Furthermore, 

injection of adipose-derived MSCs into the retro-patellar joints of three patients presents a 

new promising, safe and effective non-surgical method of treating patients with 

chondromalacia patellae [75]. The study revealed a continuous anterior knee pain 

improvement of 80-90% after 3 months [75].  Freitag et al., 2015 [76], are currently 

conducting a pilot randomised controlled trial with 40 participants investigating isolated 

femoral condyle chondral defects. The study aims to compare arthroscopic microfracture 

alone versus in combination with postoperative autologous adipose derived MSC 

injections. Intra-articular chondral defects remain a huge challenge, particularly where 

inadequate healing predisposes a patient to the development of osteoarthritis. Moreover, 

preclinical trials have indicted the capacity of MSCs to influence chondral repair, a major 

development in the management of chondral defects [76].  

Another notable discovery is the isolation of MSC’s from TMJ synovium, which has been 

shown to aid the repair of osteoarthritis and osteonecrosis of the TMJ in immunodeficient 

mice [77]. Furthermore, MSC’s derived from umbilical cords were found to alleviate, 
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effective and safely, the symptoms of Juvenile Idiopathic Arthritis [78].  Finally, a level II 

randomised controlled trial was conducted evaluating articular cartilage regeneration in 

patients with chondral lesions: these were treated with arthroscopic subchondral drilling 

followed by postoperative intra-articular injections of hyaluronic acid, with and without 

peripheral blood MSCs [79]. It was revealed that post-operative intra-articular injections 

of autologous MSCs from the peripheral blood in combination with hyaluronic acid 

resulted in an improvement of the quality of articular cartilage repair over the control 

group, shown by histology and MRI [79]. 

 

Table 2.  Sources of MSCs and their suitability in Musculoskeletal Applications. 

Adult MSCs Sources Musculoskeletal Application Reference 

Adipose Tissue Intra-articular injection of 1.0 x 10⁸  AD 

MSCs into the osteoarthritic knee improved 

function and pain of the knee joint without 

causing adverse events, reducing cartilage 

defects by regeneration of hyaline-like 

articular cartilage  
 

Jo et al., 2014 [70] 

Adipose Tissue (derived 

from osteoporotic 

patients) (opASCs) 

Osteogenic potency of opASCs to offer new 

possibilities for osteoporosis-related bone 

tissue engineering in male and female patients 

Jiang et al., 2014 

[80] 

Adipose Tissue Potential for human flexor tendon tissue 

engineering — following reseeding on human 

tendon scaffolds in vivo and aid in graft 

integration 

Schmitt et al., 2013 

[73] 

Adipose Tissue Creation of vascularised tendon equivalent in 

vitro, which could easily be detached from the 

bioreactor, thus facilitating implantation at the 

lesion site 

Vindigni et al., 2013 

[81] 

Adipose Tissue Chondrocytes from MSCs of adipose tissue 

grown in nodules were able to express 

lubricin, and collagen type I and II, indicative 

of hyaline cartilage formation. Chondrocyte 

nodules producing lubricin could be a novel 

biotherapeutic approach for the treatment of 

cartilage abnormalities.  

Musumeci et al., 

2011 [74] 

Adipose Tissue  Restoration of damaged tissue (softened 

cartilages) in patients with chondromalacia 

patellae (who have continuous anterior knee 

pain)  

Pak et al., 2013 [75] 

Adipose Tissue Case Series — Bone formation in 

osteonecrosis of femoral head & cartilage 

regeneration in knee osteoarthritis  

Pak et al., 2011 [72] 
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Adult MSCs Sources Musculoskeletal Application Reference 

Adipose Tissue, Bone 

Marrow 

 Potential cell-based intervertebral disc (IVD) 

regeneration when combined with GDF6 

growth factor.  

Clarke et al., 2014 

[82] 

Bone Marrow Highly autologous treatment can be effective 

and safe in long-term healing of bone non-

unions. This tissue engineering approach 

resulted in successful clinical and functional 

outcomes for all patients.  

Giannotti et al., 2013 

[71] 

Bone Marrow Allogenic bone scaffold loaded with MSC in 

the reconstruction of mandibular continuity 

defects (e.g. after tumour resection, 

maxillofacial injury, osteomyelitis) 

Zamiri et al., 2013 

[83] 

Bone Marrow Radiographic healing of 8 different types of 

upper limb fractures and pseudo-arthritis and 

delayed consolidation. No adverse events were 

highlighted. This is encouraging but not 

conclusive and further investigation needed.  

Giannotti et al., 2013 

[84] 

Bone Marrow Case Report — Adequate bone regeneration of 

alveolar bone atrophy in 58 year old patient — 

potential novel options in dental implant 

treatment with severe alveolar bone atrophy.  

Yamada et al., 2013 

[85]  

Bone Marrow Meta Analysis — Implantation of autologous 

MSCs into the core decompression track, 

particularly when employed at early (pre-

collapse) stages of osteonecrosis of the 

femoral head (ONFH), would improve the 

survivorship of femoral heads and reduce the 

need for hip arthroplasty  

Papakostidis et al., 

2015 [86]  

Bone Marrow Preliminary Report — Osteoarthritis of the 

knee improved in terms of walking time to 

pain, number of stairs, pain visual analogue 

scale, crepitus & range of movement. 

Davatchi et al., 2011 

[87] 

Periodontal Ligament, 

Gingival Tissues 

Suitable stem cell sources for tendon 

engineering 

Moshaverinia et al., 

2014 [88] 

TMJ Synovium  Potential use for TMJ repair and regeneration 

e.g. osteoarthritis, osteonecrosis  

Wu et al., 2014 [77] 

Induced pluripotent stem 

cells (iPSCs) 

iPSCs derived from adult marrow CD4+ cells 

— potential to promote bone regeneration in 

dental, craniofacial, and orthopaedic repairs 

Tang et al., 2014 

[63] 

Bursa Potential for application in tendon repair — 

formed tendon-like tissue in vivo.  

Song et al., 2013 

[49]  
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Adult MSCs Sources Musculoskeletal Application Reference 

Umbilical Cord UC-MSCs have the potential to reduce 

inflammatory cytokines, improve immune 

network effects, adjust immune tolerance, and 

effectively alleviate the symptoms and they 

might also provide a safe and novel approach 

for Juvenile Idiopathic Arthritis (JIA) 

Wang et al., 2015 

[78] 

Peripheral Blood Intra-Articular injections of peripheral blood 

MSCs following arthroscopic subchondral 

drilling of knee chondral defects resulted in an 

improvement of the quality of articular 

cartilage repair over the same treatment 

without peripheral blood MSCs.  

Saw et al., 2013 [79] 

 

 

Discussion 

 

A review of the current evidence regarding the sources of MSCs as well as their 

suitability in musculoskeletal applications has kindled the debate as to whether bMSCs or 

aMSCs is  the most valuable in terms of multilineage potential, proliferation ability and 

use in regenerative stem cell therapy.  

An ideal MSC source has yet to be identified where an MSC population could be easily 

harvested in abundance, with minimal morbidity and with high purity [89]. The most 

common source of MSCs to date has been bone marrow. Yet, aspirating bone marrow is 

an invasive and painful procedure, sometimes requiring general or spinal anaesthesia [90]. 

These limitations led to the exploration of alternative tissue sources and the possibility of 

niches containing undiscovered MSCs with similar characteristics to bone marrow derived 

MSCs.  

The discovery of adipose-derived stem cells in rodents by Rodbell in 1964 was a 

significant advancement in the field [91]. Multipotent stem cells within adipose tissue are 

one of the most promising MSC populations identified, since human adipose tissue is 

ubiquitous and can be easily obtained in large quantities with very little donor site 

morbidity or patient discomfort [92]. Furthermore, there is a greater yield from adipose 

tissue than from other stem cell reservoirs, a significant factor for use in regenerative 

medicine. As many as 1 x 107 aMSCs can be isolated from 300 ML of lipoaspirate [92]. 

To strengthen the debate for aMSCs, bMSCS have been shown to lose potency with age 

with certain disease states like osteoporosis, whereas aMSCs are thought to be a more 
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efficient regenerative cell course given their protection from physiological stress [93].  

Indeed, aMSCs have been shown to have a greater potential for proliferation, higher rates 

of colony formation, and greater tolerance to serum deprivation-induced apoptosis than 

their bone marrow counterparts [94].  

Peripheral blood MSCs are of increasing interest as they share similar characteristics with 

MSCs derived from bone marrow and adipose tissue. They offer an autologous low-cost 

source of cells which can be easily harvested from patients’ blood via a relatively non-

invasive procedure [51]. A recent trial, assessed the efficacy of intra-articular injections of 

peripheral blood MSCs following arthroscopic subchondral drilling of knee chondral 

defects. The trial found a statistically significant improvement in cartilage quality after 

histological and MRI analysis at 18 months, when compared to subchondral drilling 

without MSCs [79]. 

Interestingly, a recent study revealed that the age and BMI of patients has a strong 

influence on the differentiation pattern of MSCs. aMSCs proliferation isolated from 

individuals aged <30 years was greater than those individuals aged >50 years old [44]. 

Moreover, BMI correlated with osteogenic differentiation; an increased BMI seemed to 

enhance osteogenesis. Finally, bMSCs were strongly induced to differentiate along both 

osteogenic and adipogenic lineages, whereas aMSCs predominantly differentiated into the 

chondrogenic lineage. Thus, it seems that the type of regeneration required must be 

carefully considered when selecting MSCs for use in clinical tissue engineering [44].  

Another important finding is the MSCs capacity for immunomodulation. It has been 

demonstrated that these properties can be employed to alleviate inflammatory conditions 

[20]. Pre-clinical research has uncovered that MSCs derived from bone marrow, adipose, 

synovial and umbilical-cord are able to suppress the functions of different immune cells, 

thus highlighting their potential for therapeutic use in autoimmune disease such as 

rheumatoid arthritis [95].  

Another question of significance is their response to ageing. In the UK, our ageing 

population means that the prevalence of age-related musculoskeletal disorders are 

increasing [16]. It has already been established that MSCs are promising cell sources for 

regenerative therapies, but their application is likely to be complicated by patient factors 

such as age and specific illnesses [96]. Considering the fact that MSCs are being currently 

investigated for the treatment of disorders such as osteoarthritis, osteoporosis and 

osteonecrosis of the femoral head, it is paramount that the effects of ageing on MSCs are 

studied [96]. It has been demonstrated that bMSCs proliferation rate and differentiating 

potential decrease with donor age [97]. Despite the adverse affects of ageing on bMSCs, 

leading to impaired proliferation, senescence, and chondrogenic response, it seems 
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muscle- and adipose-derived MSCs exhibit no negative effects [96]. Not only that, age 

reduces the overall cell yield and adipogenic potential of all MSC populations, whilst 

osteogenesis and clonogenicity remain unchanged [96]. 

It has been established that high donor-to-donor variability exists between the pre-, peri- 

and post-menopausal age groupings. Interestingly, cell lines derived from postmenopausal 

donors demonstrate a relatively high propensity for osteogenic differentiation and a 

relatively low proclivity for adipogenic differentiation [98]. Indeed, it can be concluded 

that MSCs undergo a decline in their expansion capacity with physiological ageing, 

meaning that age-related change may be detrimental for their successful use in tissue 

regeneration therapies [99].  

Despite the promise of MSCs, it must be acknowledged that they possess characteristics 

that limit their usage. Firstly, MSCs exhibit significant heterogeneity between different 

sources, as well as amongst a single isolation of cells [100]. This heterogeneity can cause 

different behaviour with regard to their proliferation and differentiation patterns [101].  

Despite little published evidence supporting the clinical application of MSCs in treatment 

therapies, regenerative medicine clinics throughout the US are already offering ultrasound 

and fluoroscopy-guided, minimally invasive treatments using MSCs harvested via bone 

marrow and adipose tissue aspirations [102, 103]. The sudden proliferation of these 

treatments, at a stage where evidence-based studies are lacking, raises significant 

concerns. Indeed, major uncertainty still surround MSC-based therapies, notably 

abnormal growth and potential cancer evolution [83].  

 

Conclusion 

 

Mesenchymal stem cells provide promising therapeutic possibilities for tissue 

engineering. Their ability for repair and regeneration of a variety of tissues such as bone, 

cartilage and muscle is exciting for the field of tissue engineering in the context of the 

rising global burden of musculoskeletal disorders. Unfortunately, significant hurdles still 

remain before tissue engineering using MSCs becomes routine in clinical practice. The 

future of this rapidly growing field depends not only on technological advancements but 

more importantly on the continued proliferation of organised clinical trials to investigate 

in more detail their efficacy and safety. The process of transferring tissues from the 

laboratory into human recipients is still in its infancy. New scaffold materials and 

conditions are necessary to demonstrate successful clinical outcomes. Nevertheless, 
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research into the clinical application of mesenchymal stem cells will continue until safe 

and effective means of tissue engineering are fully understood.  
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