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Abstract 
Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and 
molecules that change chromatin structure. Advances in sequencing-based assays have enabled 
investigation of these processes genome-wide, leading to large datasets that combine information on 
the dynamics of gene expression, transcription factor binding and chromatin structure as cells 
differentiate. While numerous studies focus on the effects of these features on broader gene regulation, 
less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we 
have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine 
ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics 
and transcription factor binding. Combining a novel strategy to identify communities of related control 
elements with a penalized regression approach, we developed individual models to identify the potential 
control elements predictive of the expression of each gene. Our models were compared to an existing 
method and evaluated using the existing literature and new experimental data using embryonic stem 
cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a 
gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for 
further testing.  

Author summary 
The inherited information in our DNA genomes is a code which defines both the functional units 
(proteins, nucleic acids etc.), and patterns of their usage, necessary to make life.  The genome in 
mammals, such as man and mouse, has genes which code for about 20000 different proteins, but the 
usage of these proteins differs in each different type of cell within these complex multicellular 
organisms. How this differential usage is controlled in known as genetic regulation, and that is what we 
study here.  We know that the details lie in how genes are turned on and off, but until the advent of 
high-throughput sequencing technology a genome-wide study was nearly impossible. Further 
complicating our efforts to understand genetic regulation is the involvement of parts of the genome that 
were previously deemed junk. In this work, we have focussed on how the genes are controlled at various 
developmental stages in mouse, by looking at the sequencing data from different regulatory mechanisms 
such as protein binding and local changes to DNA packaging etc. On a gene-by-gene basis, we have 
built statistical models that predict how genes are controlled when cells develop. These predictions 
provide a focus for future experimental studies of genetic regulation. 
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Introduction 
The fate of a cell is determined by dynamics in the expression of genes, a process that is regulated at 
the highest level by the control of transcription [1, 2]. Cell differentiation at the genome level involves 
a complex interplay of processes [3], including DNA binding by transcription factors (TFs) [4] and 
changes in the structure of chromatin and DNA, for example, DNA methylation and epigenetic 
modifications of amino acids of the histones [5]. With the recent developments in high throughput 
sequencing (HTS) researchers have been able to study the genome-wide implications of these processes 
in various cell types and organisms [6]. From these studies, we have gained global insights into 
transcriptional regulation, such as the relationship between chromatin accessibility around the promoter 
region and gene expression [7, 8], the prevalence of histone modifications such as H3K27ac and 
H3K9ac near expressed genes [9], the presence of H3K27me3 modification near transcriptionally 
repressed genes [10] and the binding of master regulators to genes that are often associated with lineage 
differentiation [11, 12].  

While patterns in regulatory mechanisms have been identified, much of the detail of the regulatory 
system still remains unknown, owing to the complex structure of the transcription machinery. Of note 
is the implication of non-coding regions of the genome of higher eukaryotes in transcriptional and post-
transcriptional regulation of protein coding genes [4, 13]. Equally, it is becoming increasingly clear that 
much of the dynamics in gene expression is governed not by the regulatory input at promoters but to 
distal sites including enhancers [14, 15]. Enhancers have been a subject of interest in recent years 
because of their major role in transcriptional control of tissue specific gene expression programmes [14, 
16, 17]. There are several proposed models for the mechanism of enhancer interaction with the RNA 
Polymerase II (RNAP) machinery over large distances to control gene expression [18], whereby the 
looping model is becoming widely accepted [19]. All the models propose binding of TFs to both 
enhancer and promoter regions and involve formation of multi-protein complexes. This aspect of 
combinatorial binding of TFs to control regions is well established [12, 20, 21]. 

Enhancer regions may be identified experimentally by reductionist approaches such as mutations in 
genomic regions associated with loss of expression of a nearby gene, and by using reporter assays to 
investigate transcriptional enhancement in cell lines or in vivo. There has also been significant interest 
in the identification of enhancers using theoretical methods. These can be based on characteristics of 
the DNA sequence, particularly conservation, and the large-scale availability of ChIP-seq data for well-
known enhancer characteristics (the H3K27ac and H3K4me1 chromatin marks, binding of the EP300 
coactivator protein etc.) has led to more sophisticated methods using machine learning to combine 
information from different sources. These efforts have been recently reviewed [2, 22-24], and it has 
been shown that binding by transcription factors is a highly specific indicator of enhancer activity. 

Extending the problem of identification is the issue of mapping those enhancer elements to the genes 
they regulate. It is now widely accepted that physical enhancer-promoter (EP) interactions are required 
for transcriptional control [25, 26]. A range of related experimental techniques (3C, 4C, HiC, ChIA-
PET, capture C) classed as chromosome conformational capture assays enable us to determine the three-
dimensional conformations of specified regions or the whole of the genome [26] and EP interactions 
are likely to be a subset of the numerous chromosomal interactions identified [4, 27]. These techniques 
are being rapidly developed and the increasing availability of data sets, particularly in human cells, is 
leading to interesting insights [28, 29]. 

The enhancer mapping problem has also received theoretical attention, and extending earlier work [30-
35] based on epigenetic activity correlations between enhancers and their putative target genes, more 
recent studies have taken advantage of the increasing availability of experimental data for three-
dimensional genome interactions [36, 37]. For human cells, projects like ENCODE [38] have made 
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available genome scale data on chromatin structure, transcription factor binding and gene expression, 
enabling the development of methods to predict EP interactions from them, with training and validation 
employing appropriate 3D interaction data [30-32, 39]. For example, RIPPLE uses a Random Forest 
classifier with 5C data and a selected set of highly predictive features for identification, and 
characterisation of enhancers, and further uses an ensemble approach for cell lines with no 5C 
information. Recently, Cao et al. [40] developed JEME which considers the joint effects of multiple 
predicted enhancers on gene expression whereas earlier similar methods based predictions on different 
features [37, 41, 42]. Recently, Xi and Beer [43] have raised concerns about the validation and estimated 
accuracy of machine learning methods that rely on 3D interactions such as Hi-C to predict enhancers. 
They have focussed on Target Finder [42] which uses Hi-C data, and while encouraging results have 
been reported, they advocate proper cross-validation method since the coarser resolution of Hi-C data 
can lead to groups of potential enhancers all exhibiting the same pattern of promoter interactions. 
Alternative approaches have employed the correlation of enhancer activity and bidirectional enhancer 
transcription [44]. In other model organisms such as Drosophila, the emphasis has been on sequence 
features of the predicted enhancers linking to developmental gene expression patterns [45-47]. 

In this study, we address the related problem of identifying those gene specific cis control elements, 
many of which are expected to be enhancers, which are most relevant in controlling the expression of 
key genes involved in cellular lineage specification and progressive lineage restriction. Our focus is a 
data set from mouse, where three-dimensional interaction data are not available in most of the cell types. 
This method integrates chromatin immunoprecipitation, DNaseI-seq and RNA-seq data, and analyse 
two branching pathways of in vitro cellular differentiation, leading from embryonic stem (ES) cells to 
the myeloid blood lineage (macrophages) in one branch and to cardiac cells (cardiomyocytes) in the 
other [11, 25].  Our method is based on correlating a measure of the activity of a candidate cis-regulatory 
element (CRE), as indicated by transcription factor occupancy and chromatin structure/modification, 
with the pattern of gene expression. We introduce a new concept of cis-regulatory element communities 
(coCREs), which are genomic regions that show correlated patterns of activity and transcription factor 
binding and are considered together for robust model building. We compare the observations with 
known and predicted sets of enhancers and furthermore with the results from JEME trained on 3D 
interaction data from mouse embryonic stem cells.  

Our study indicates a gene-specific coordinated binding of multiple master regulators during 
differentiation to control lineage specific expression of important genes, implying that the gene-centric 
approach may shed further light on the relationship between cell fate decisions and the underlying 
transcriptional landscape. We were able to successfully recapitulate regulation of cell type specific 
genes using previously known cis elements and also have been able to propose gene specific control 
mechanisms using novel regulatory regions identified through gene-specific expression modelling. 
Furthermore, we found that the genomic loci that are most predictive were characterised by high 
phylogenetic conservation, epigenomic activities and transcription factor binding. Finally, using 
reporter assays we were able to confirm two novel cis regulatory elements for genes Nfe2 and Sptbn1. 
This statistical approach that works with fewer assays and does not require topological data, is simple 
to apply, adapt and understand than machine learning approaches. Furthermore, by employing in vitro 
cell types and focussing on mouse, an important model organism for which relatively less information 
on enhancers are available, the data provided here is a valuable resource to the research community. 

Results and discussion 
In order to study the mechanism of transcriptional control of genes involved in lineage specific cell fate 
decisions, we integrated gene expression and regulatory data from the two in vitro mouse differentiation 
pathways described above. Details of the associated cell types and data sets employed are given in Table 
1. The results of integrating normalised expression data for protein coding transcripts are shown in 
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Figure S1(A-C): both clustering and principal components analysis indicate effective integration where 
related cell types from both series (ES cells, ESC and CESC; mesoderm cells, MES and CMES) show 
clear similarity, and terminally differentiated macrophages emerge as the most different cell type, 
nevertheless still showing clear lineage development from the intermediate haemopoietic cells. From 
this data, we identified 9854 differentially expressed genes (for details see Methods), and their patterns 
of expression were clustered using k-means to produce 391 clusters at the optimal BIC (Bayesian 
Information Criterion) score (Figure S1D). For the purpose of predictive modelling we considered 3 
sets of genes: the 17 TFs for which we have ChIP-seq data (the ‘TF set’), the 437 genes that co-cluster 
with the TF set (‘TF cluster set’) and finally the remaining differentially expressed genes (‘DE gene 
set’). Details of the gene sets and clustering are provided in Table S1 and Figure S2.  

Table 1: Datasets and cell types used in this study 
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CP Cardiac 
Progenitors ü û ü û 

CM Cardiomyocytes ü û ü û 

 

The essence of the method presented here is to identify for each gene studied, a small set of CREs that 
best explain its pattern of expression (the ‘Gene Expression Profile’ (GEP)) from a relatively large set 
of candidate CREs. The methodology is illustrated in Figure 1A and full details can be found below and 
in Methods. In summary, for each gene, initial candidate CREs are genomic regions within 100 kBases 
(kB) of the transcription start site (TSS) with significant enrichment in H3K27ac ChIP-seq (a mark of 
active enhancers) data and/or a DNaseI-seq hypersensitive site (DHS). Candidate CREs are 
characterised by a chromatin activity profile (CAP, see Methods) across the cell types, derived from 
H3K27ac and DNase1-seq data, and also a TF binding profile (TFBP). This information is integrated 
into a CRE network, from which community CREs (coCREs) are identified (see Methods). The CAP 
of a coCRE is the average of its constituent CREs. A gene-specific penalised regression is used to 
choose CREs that best predict the gene’s expression profile (GEP) from the set of singleton and 
community CREs.  

Figure 1: Gene-specific predictive models. (A) Schematic representation of the methodology involved 
in developing gene specific predictive models. 1. Integration of DNaseI-seq and H3K27ac to quantify 
the chromatin activity profile (CAP) in candidate cis regulatory elements (CREs). TF ChIP-seq data is 
used to generate the transcription factor binding profile (TFBP) to quantify the community effect of 
candidate CREs mapped to a specific gene. 2. Gene wise expression values are obtained as RPKMs to 
form gene expression profiles (GEPs). 3. CAPs, TFBPs and GEPs are generated for all the regions and 
genes in the analysis. 4. CAP and TFBP are integrated in order to generate gene specific CRE networks. 
A greedy community detection is performed in order to identify the communities of CREs (coCREs) in 
the networks. A new set of CAPs involving aggregate CAPs of the coCREs along with the individual 
CAPs for singleton CREs are used to predict the GEP for a specific gene. (B) Histogram showing the 
distribution of candidate CREs per gene within 100kB of the transcription start site over all genes in the 
study. (C) The plot shows the change in cross-validated Mean Squared Error (MSE) as a function of 
increasing λ for a predictive model of Runx1 gene expression. The two vertical dotted lines show the 
two cut offs λ"#$ and λ%&' . The total number of CREs with non-zero coefficients (β) at a given λ is 
shown above the plot. 

Active chromatin regions as candidate CREs 
The 262770 chromatin regions that are active (either H3K27ac enriched or a DNaseI Hypersensitive 
Site (DHS), see Methods sections), form our candidate CREs and are characterised in Figure S3. A 
‘chromatin event’ in a CRE is a H3K27ac peak or DHS peak in a particular cell type, and Figure S3A 
is a frequency plot for chromatin events in all candidate CREs. Many CREs have only one chromatin 
event over all cell types: in order to use only high confidence CREs we retained only those with more 
than one chromatin event (118688 regions given in Table S2), and with enrichment level (either 
H3K27ac or DNaseI-seq) in at least one cell type higher than the lower quartile in the distribution of 
enrichment levels (Figure S3D and E, 82165 regions). Figure S3B shows that the sizes of the CREs 
used in this study are around 1-2 kB in width and Figure S3C shows the distribution of their 
conservation scores. It can be seen that majority of CREs have low conservation across the vertebrates, 
while a selective subset of regions is highly conserved. From this initial set of CREs, coCREs are 
identified as given below. 
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Community CREs (coCREs) 
Figure 1B shows that genes may have many candidate CREs, ranging from zero to 100 with an average 
of around 18. This exemplifies the challenge of gene specific models that the number of potential 
predictors of gene expression exceeds the number of measurements, and calls for specific methods such 
as penalized regression (see below). However, preliminary data analysis revealed subsets of candidate 
CREs with highly correlated chromatin activity and TF binding profiles, and we developed a method to 
combine these first prior to model building. This served two purposes pertinent to model development; 
a technical complexity, where multiple correlated predictors can pose problems for penalized methods 
and a biological perspective, where correlated regions could represent collaborative regulation and 
could possibly be interacting in three-dimensional chromatin structure. Two candidate CREs were 
linked in a network graph (Figure 1A, step 4) if they had high correlations in both their chromatin 
activity and TF binding profiles, and from this graph we identified subsets of candidate CREs that form 
communities (dense sub-graphs), identifying these as coCREs (see Methods). The chromatin activity 
profile (CAP) of a coCRE is the mean of the CAPs of the community members. The coCREs along 
with the CREs near a gene were used to build a model predictive of the gene’s GEP. The models based 
on coCREs performed better than models with all CREs used separately, in terms of drop-in-variances 
(p ~ 10-16, see methods section) and model p-values (p ~ 10-13) (Figure S3F), and this methodology was 
retained for the remainder of the study. 

Gene specific predictive models 
In order to generate gene-specific predictive models the candidate CREs within 100 kb of the TSS of a 
given gene were considered, and were reduced to a set of coCREs and singleton CREs (those not in any 
community). To affect gene expression, distal CREs such as enhancers need to interact with protein 
complexes nearer to the TSS, therefore singleton CREs were reduced to those proximal (within 20kB) 
to the TSS, limiting distal CREs to those that occur in communities (coCREs). The CAPs of this mixed 
set were considered as the initial predictors in the model building. Since the total number of candidate 
CREs mapped to genes are generally more than the number of cell types used (Figure 1B), we have 
used a penalized regression model (LASSO) [48, 49], which employs an additive penalty term with 
weight λ on the sum of the absolute sizes of the regression coefficients. Appropriate λ values were 
determined by cross-validation (Figure 1C) and two models were computed for each gene at λ = 	λ"#$ 
(minimum cross-validated mean square error) and at the more conservative (fewer non-zero regression 
coefficients) value obtained by adding one standard error	λ = 	 λ%&' [50]. The CREs or coCREs with 
non-zero regression coefficients β, were deemed to be the most predictive of the gene expression by the 
model (λ%&')	and were termed ‘chosen CREs’ in this study. Statistical significance in LASSO models 
is an open area of research [48-51], since inference must account for the fact that the method 
sequentially chooses the most predictive variables from a set of candidates. We adopted the covariance 
test [51] as a means to give a p value to each non-zero coefficient in the model. 

An example of a predictive model for Runx1 is given in Figure 2 (see Figure 1C for the cross-validation 
plot). Runx1 is a gene encoding a transcription factor that is crucial for normal haematopoiesis [52] and 
is expressed during the later stages of the hematopoietic specification (Figure 2B). A set of 21 CREs 
and 3 coCREs were considered as the initial predictors, and two regions with non-zero β at λ%&'   (Figure 
2 A and D) were selected as chosen CREs by the model. One of these is a coCRE, a community of four 
CREs bound by a range of blood specific TFs in different haemopoietic cell types (Figure 2A) and the 
other a singleton. The expression that is predicted by the model correlates well with the predicted gene 
expression profile for Runx1 as shown in Figure 2C. The covariance test gives p values of 0.00 and 0.42 
(Table S3) for the chosen coCRE and singleton CRE above, showing strong evidence for a relationship 
between activity at the coCRE and gene expression.  
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Figure 2: Predictive model for an example gene, Runx1. (A) A network representation of the model, 
where the gene (here Runx1) for which the model is built (red octagon), chosen CREs (blue hexagons) 
and TFs bound to the chosen CREs (grey squares) are represented as nodes. Black arrows indicate the 
regulation of the gene by the CRE/coCRE and coloured arrows represent the binding of TFs to the CREs 
in different cell types. The colours corresponding to the cell types are given below the network. The 
TFBP of the CRE in a specific cell type is represented as a circular histogram and in the case of coCREs 
these represent the frequency of occurrence of a specific TF in the regions of that community (here the 
community comprises of 4 regions). The p-value of observing a combinatorial binding profile in that 
cell type is provided for each TFBP node and the methodology is given in Methods section. The 
abbreviations for the TFs in the circular histogram are: Esrrb (EB), Nanog (NG), Pou5f1 (O4), Sox2 
(S2), Cebpb (CB), Elk4 (E4), Gata2 (G2), Lmo2 (L2), Tal1 (T1), Fli1 (F1), Tead4 (T4), Meis1 (M1), 
Gata1 (GA1), Gfi1 (G1), Gfi1b (GB), Runx1 (R1), Spi1 (P1). It should be noted that not all TFs in the 
circular histogram have supporting ChIP-seq data in all cell types (Table 1). In the absence of ChIP-seq 
data for a specific cell type, the bar for that TF in the histogram of that cell type is zero. (B) The gene 
expression profile (GEP) of Runx1 with cell types along the horizontal axis and FPKM on the vertical 
axis. (C) The plot shows the best linear fit between the actual (X) and predicted (Y) GEP for Runx1. 
The spearman correlation coefficient is also provided. (D) The plot shows the tag density profile 
normalised as coverage per million aligned reads for the 10 cell types. Runx1 gene structure is provided 
in blue below the coverage tracks. The predictor CREs that were used in the lasso model are given as 
grey boxes and the chosen CRE and the coCRE are given in red and yellow respectively. The super 
enhancers (SE) identified by Whyte et al.[53] are given as green bars and the enhancers given by SEA 
is in blue. The experimental enhancers identified by Schütte et al. and Dogan et al. are provided as well. 
In the case of Runx1 there is no overlap with the Dogan et al. dataset, and hence the absence of any bars. 
It should be noted that the coCRE enhancer is represented as a composite of red boxes of member CREs.  

Following the example of Runx1, models were generated for each member of the TF set. Full details 
can be found in Table 2 and Table S3, and details of the chosen (co)CREs for the TF set are shown in 
Figure S4.  We chose to consider a model as potentially interesting if it had a least one non-zero β with 
adjusted Benjamini-Hochberg q-value based on the covariance test of < 0.05.  Focusing first on the TF 
set, models were successfully built with at least one predicted (co)CRE for 14 of the 17 TFs and 9 of 
these were considered interesting by this statistical criterion.  

Table 2: Generation of models 

Gene set Number of 
genes 

Number of 
models with 
at least one 

β≠0 

Number 
statistically 
significant1 

Number of 
coCREs 
with β≠0 

Number of 
singleton 

CREs with 
β≠0 

TF set 17 14 (82%) 9 (53%) 34 22 

TF cluster set 437 340 (78%) 226 (52%) 163 282 

DE gene set 9854 6715 (68%) 3212 (30%) 2592 5567 

1A model is considered statistically significant if it has at least one regression coefficient β with 
Benjamini-Hochberg q value < 0.05. The details of the model parameters and the CREs are given in 
Table S3. 

Considering the TFs associated with pluripotency (see Figure S4), Nanog is mapped to four singleton 
CREs and two coCREs, but only the coCREs are statistically significant. The coCREs are located on 
either side of the Nanog promoter with one coCRE (a community of 4) overlapping with its TSS and 
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bound by all the four pluripotent TFs. Pou5f1 that codes for OCT4 is mapped to one coCRE that 
includes the promoter region and a downstream region, and is bound to pluripotent TFs in ESC. Three 
CREs are mapped the Sox2 gene, two of which are coCREs comprising 2 and 3 regions respectively. 
One of the regions (the community of 3 CREs), although in this case not statistically significant, is 
almost 75kB away from the promoter, bound by the OCT4/NANOG/ESRRB TFs on all the three sites 
and was identified as a super-enhancer by Whyte et al. [53].  

Regarding TFs specific to the hematopoietic lineage, we commented on the chosen CREs for Runx1 
above (Figure 2A). The coCRE is related to the +23kb region that is experimentally verified [54]. It is 
bound mostly by LMO2 in HB, TAL1 in HE and the LMO2/TAL1/FLI1/GATA1/PU.1 complex in HP 
and the increasing recruitment of TFs and the increasing significances of the combinatorial binding 
closely follows its expression profile (Figure 2A). Tal1 has a single coCRE encompassing the promoter 
region and two downstream regions, separated by around 30kB [15]. The coCRE is primarily bound by 
LMO2/TAL1/GATA2/TEAD4 in HB, LMO2/TAL1/FLI1 in HE, FLI1/PU.1 in HP and PU.1 in 
macrophages (Figure S4). Gata2 has only one CRE mapped to it and it overlaps with its promoter region 
and is bound by LMO2/TAL1/FLI1 in HE and HP. It should be noted that although this locus fails to 
attain statistical significance (Figure S4 and Table S3) it is experimentally well-characterised [55]. 
Lmo2 is mapped to a CRE lying on the proximal promoter [56] and the other coCRE bound 
predominantly by PU.1/CEBPβ in macrophages lying on the distal promoter region. Spi1 (PU.1) is a 
macrophage specific TF that is mapped to two coCREs upstream of its TSS, with one coCRE 
overlapping with its promoter and is bound by LMO2/FLI1/ CEBPb in HP and with LMO2 possibly 
replaced by PU.1  in MAC. This coCRE comprises of the promoter and a -17kB upstream region, which 
has been shown to be involved in Spi1 expression control [28]. Cebpb is mapped to multiple CREs with 
one CRE mapped to the promoter region and a coCRE that spans around 50kB and is bound by 
PU.1/CEBPb TFs. The coCRE is the most significant predictor and it overlaps with one of the super-
enhancers upstream of Cebpb and with a region lying in an intron of the Tmem189 gene downstream of 
Cebpb that shows high H3K27ac activity specifically in macrophages. This indicates the involvement 
of PU.1 or PU.1/CEBPβ complex in upregulating Cebpb in macrophages.  

These results show that the proposed method has sufficient statistical power to discover at least one 
significant predictor, which is a potential regulatory element, for more than half (9/17) of this small set 
of key transcription factor genes. It is noteworthy that in many cases this element is a coCRE, suggesting 
that these CRE communities are more likely than singleton elements to be predictive of gene expression.  

Characteristics of the predicted cis-regulatory elements 
The TF cluster and the DE gene sets represent much larger sets and the data in Table 2 show that the 
method still generates a useful proportion of statistically significant models, although this falls to 30% 
of genes in the largest set. Full details of the models are in Table S3. Figure 3 shows an analysis of the 
characteristics of the chosen CREs within statistically significant models. The phylogenetic 
conservation scores of the chosen CREs are significantly high compared to the score distribution of the 
all CREs (Figure 3A). Similarly, the occurrences of H3K27ac peaks and DHS across all cell types are 
higher for chosen CREs (Figure 3B) as are TF binding events (Figure 3C). These observations suggest 
that regions that are predictive of expression are hotspots for epigenomic activities and TF occupancies, 
confirming earlier observations [57].   

Figure 3: Characteristics of chosen regions. Conservation, chromatin events and TF binding events 
in chosen CREs (red) compared to all candidate CREs (blue). Left is the TF gene set, middle the TF 
cluster set and right all differentially expressed genes (DE set). (A) The log of the phylogenetic 
conservation scores (see Methods), (B) the chromatin events (H3K27Ac peaks and DHS), and (C) TF 
binding events. The p values were obtained using student t-test for conservation and Kolmogorov-
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Smirnoff test for chromatin and binding events. All the p values were less than 0.01 except for 
conservation distribution in TF set (p=0.07). 

Selected regulatory regions as enhancers  
It is to be expected that a substantial number of the chosen (co)CREs are enhancers or include enhancers 
as sub-regions. In order to investigate this further, we considered existing datasets of enhancers from 
disparate sources including a dataset validated using in-vivo screening (VISTA) [58], two sets that were 
collated based on TF binding and further experimental validation (Schütte et al. and Dogan et al.) [22, 
24], a set of super-enhancers identified using genome-wide binding profiles of TFs along with Mediator 
(Whyte et al) [53] and a dataset generated through integrative selection from various different NGS 
resources (SEA) [59]. It is to be noted that any comparison is likely to be affected considerably by the 
type of data used for integration in genome-wide enhancer datasets, the type of cells used in 
experimental validation of enhancer activity, and the experimental or computational methodology used 
by the authors in compiling the dataset. In this analysis, we have therefore attempted a conservative and 
unbiased approach of studying genomic overlaps between the chosen CREs/coCREs with each of the 
known enhancer datasets. The results are shown in Figure 4A and the total number of regions that 
overlap is provided in Table S4. As expected there is a significant overlap with genome-wide methods 
(Whyte et al. and SEA) that follow a similar approach. The overlap with Schütte et al. is high but the 
selected CREs show no significant overlap with datasets by Dogan et al. and VISTA. The likely reason 
for this discordance is the fact that Schütte et al. examined enhancers active in haemopoietic 
stem/progenitor cells which will be similar to the enhancers activated during haemopoietic specification 
(our study). Furthermore, with reductionist approaches the analysis is influenced by the genes studied 
in the experiments. For example, VISTA database has only 0 (0%), 6 (1%) and 75 (14.5%) of genes 
that overlap with our TF, TF Cluster and DE gene sets respectively.  As a negative control, we chose to 
compare the overlaps of candidate CRE regions with similar H3K27ac levels that were not chosen as 
predictive by our method (Fig 4A, right hand panel). As expected, genome-wide data sets (SEA and 
Whyte) had significant overlaps with these negative control CREs. However, in the cell type specific 
data set of Schütte et al. we found that these negative control regions overlap less significantly with 
active elements and more significantly with inactive elements.  

Figure 4: Validation of predicted enhancers. (A) Overlap of genomic regions between published sets 
of enhancers (vertical axis) and the CREs/coCREs chosen for genes in the three gene sets (horizontal 
axis). The dot plot indicates the significance (-log10(p) with p adjusted for multiple testing) of the 
pairwise overlaps (red/large size = high significance, orange/small size = low significance). The absence 
of a dot signifies p > 0.05. The right panel (Enrich) shows a negative control of overlaps with candidate 
CREs that were not chosen as predictive by our method but with H3K27ac enrichment level similar to 
the chose (co)CREs.  (B) Expression of Sptbn1 across stages of haematopoietic and cardiac 
differentiation shown as a blue line chart. The inset plot shows the chromatin activity profile (CAP) for 
a CRE predicted to be associated with this gene. (C) A screenshot of the predicted CRE within the 
Sptbn1 gene body. The UCSC browser session shows this region shaded in blue, illustrating the 
dynamics of the active chromatin mark, H3K27ac (top), and chromatin accessibility (bottom) across 
the cell types. The coordinate considered for further validation is chr11:30166167-30166587 
highlighted in transparent cyan box. (D) A 5-day time course of haematopoietic differentiation, tracking 
the expression of a YFP reporter gene driven by the predicted CRE. Expression peaks on day 5 (D5), 
which is equivalent to the haemogenic endothelium. The controls are the ESC line HM1 (black) and 
HM1 cells targeted with the reporter construct containing the minimal promoter (MP) only (grey).  

We performed an in-depth gene-wise analysis of the overlap with Schütte et al. because of the 
significance of genomic overlap and also the similarity in the cell types mentioned provides us with an 
ideal, albeit small, dataset to check if the chosen CREs’ roles are enhancers (details in Table S4). The 
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dataset overlaps with enhancers of 9 genes with 5 of the lasso models having a q value ≤ 0.05. The 
coCRE predicted by our Runx1 specific model overlaps with 3 active and 1 inactive enhancers by 
Schütte et al. (Figure 2D). Only one active enhancer (Runx1+204 [24]) was rejected by our model 
because of the 100kB distance cut-off (see Methods). In Meis1 the singleton chosen CRE (Table S3) 
overlaps with the only active +48kB hematopoietic enhancer identified by Schütte et al. The coCRE of 
the Spi1 (PU.1) overlaps with one enhancer and one inactive region, where the latter is a promoter 
region (Figure S5A). The coCRE of Tal1 overlaps with all the six enhancers (3 active and 3 inactive) 
from Schütte et al. (Figure S5B). Interestingly one active enhancer was correctly mapped to the coCRE 
of Tal1 although the CRE is in close proximity with the neighbouring gene, Pdzk1ip1. Although this 
enhancer is located far away from the other active enhancers, being part of a single coCRE may be an 
indication of interaction. In Erg, the model was able to map all the active enhancers to the single chosen 
coCRE (Figure S5C). In Lyl1 the chosen CRE extends over a broad region comprising of one active 
and two inactive enhancers. However, in the case of Fli1 the singleton CRE overlapped with two 
haemopoietically inactive elements.  

While our method is intended to produce gene specific regulatory models, and does not aim directly to 
predict enhancer-promoter interactions, we considered that it would be useful to compare the 
information from our model with that from a contemporary method for the latter problem.  We trained 
the JEME method [40] on 3D interaction data from ESC cells with the reduced feature set available in 
our data, and used this to predict interactions in other cell types (see Methods), focusing here on 
predictions in HP cells. An example of the Runx1 gene is shown in Figure S5D and summary results 
over all nine Schutte et al. genes are in Table 3 and Figure S5E. In the case of Runx1, our retrained 
JEME predicts 10 potential enhancers within 100kB interacting with the promoter; these overlap all 
four identified as positive by Schutte et al., and only one of the four identified negatives. The remaining 
six JEME predictions represent untested regions, and may be false positives but equally could be 
regulatory. Our method on the other hand makes only five predictions, which overlap 3/4 positives and 
2/4 negatives. Results for other genes are similar (Table 3 and full detail in Table S5). Overall the 
retrained JEME makes more predictions (Figure S5E), some of which may be false positives, and over 
the tested regions it is slightly more accurate than our method, although the difference is not statistically 
significant.   

Table 3. Overlaps of predicted regulatory elements with experimentally tested regions 
Gene Predictions1 Overlap +ve2 Overlap –ve3 No overlap4 

JEME CRE JEME CRE JEME CRE JEME CRE 

Erg 12 4 1/3 3/3 1/2 0/2 10 2 

Fli 15 1 2/2 0/2 0/3 2/3 13 0 

Gata2 7 1 2/4 2/4 0/2 0/2 6 0 

Gfi1b 15 4 3/3 0/3 1/1 0/1 11 4 

Lyl1 13 4 1/1 1/1 1/2 2/2 12 3 

Meis1 10 1 1/1 1/1 2/3 0/3 6 0 

Spi1 14 4 0/1 1/1 0/2 1/2 14 2 

Runx1 10 5 4/4 3/4 1/4 2/4 6 1 
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Tal1 10 3 2/3 3/3 0/3 3/3 8 0 

Totals 106 27 16/22 14/22 6/22 10/22 86 12 

1. The number of predicted regulatory regions within 100kB of the TSS for each method 
2. ‘True positives’ – the number of regulatory regions experimentally verified as positive and 
overlapped by a predicted region. Numbers in the denominator indicate the number of experimentally 
verified positive regions for this gene.  
3. ‘False positives’ – the number of regions experimentally verified as negative and overlapped by a 
predicted region. Numbers in the denominator indicate the number of experimentally verified negative 
regions for this gene.  
4. The number of predicted regions that do not overlap experimentally tested regions. Either false 
positives or novel discoveries. 

Novel enhancers for Sptbn1 and Nfe2 genes verified experimentally 
We next sought to assess the utility of our gene specific chosen CREs by experimental testing of 
previously unknown potential enhancer elements contained within them. We selected two of our 
predicted CREs that exhibit discrete CAPs and that are associated with genes that are important for 
haematopoiesis, namely Nfe2 and Sptbn1. Nfe2 encodes for NF-E2 transcription factor expressed in 
HSCs, erythroid, myeloid and megakaryocytic lineages, and is known to be involved in epigenetic 
modification thereby regulating blood cell maturation programmes. Abnormal expression of this gene 
is linked to pathogenesis of myeloproliferative neoplasms (MPNs) [60]. Sptbn1 encodes for b spectrin, 
a cytoskeletal protein and has been implicated in the determination of cell shape, organelle organisation 
and cellular traffic [61]. A fusion gene SPTBN1-FLT3 has been observed in a small population of BCR-
ABL-negative CML [62].  

For both of these genes the CREs were obtained from their respective gene-specific models using λ%&' . 
We segmented the predicted CRE region into 500 bp windows and identified the window with the 
highest number of TF binding sites within it. This TF hotspot within the predicted CRE was then cloned 
upstream of a reporter gene and used for single site targeted integration into a mouse ESC line as 
described previously by Wilkinson et al. [63].  This enabled us to follow the dynamics of reporter gene 
expression during blood specification.   

Out of 11 possible predictors for CREs associated with Sptbn1, one is chosen within the gene body and 
it is evident that its H3K27ac and DHS profile across the cell types coincides with the expression profile 
of the gene (Figure 4 B and C). The TF hotspot for this CRE shows binding of TEAD4, TAL1, LMO2 
in HB, FLI1, TAL1, LMO2 in HE and RUNX1, GFI1, GATA2, TAL1, LMO2 in HP to this 500bp 
region (highlighted by cyan box in Figure 4C). Consistent with our CRE prediction, we see enhancer 
activity with the reporter gene assay (Figure 4D) and this shows an expression profile that reflects 
profile in Figure 4B with high expression in HE and HP cells. In the case of Nfe2 (see Figure S6) we 
find two predicted CREs and this presents an interesting case because the q value of the model unlike 
Sptbn1 is high (Table S3). CRE1 shows a promoter like profile, having a high H3K27ac peak showing 
a characteristic bimodal distribution that dips where there is enrichment for hypersensitive sites (Figure 
S6). CRE2 presents an interesting case because it does not have a strong H3K27ac signal, but has a very 
specific DHS at the HB stage that progressively opens up until HP. Also, the CAP correlates well with 
the GEP of Nfe2. Furthermore, its TF hot spot is bound by the LMO2, TAL1 complex from HB to MAC 
and is joined by the binding of GATA1, GATA2, GFI1 and GFI1B in HP where the chromatin activity 
is the highest. The reporter gene assay shows a very similar expression profile to the CAP, with 
expression as early as HB, peaking on day 5 when HPs begin to emerge. Therefore, both enhancer 
studies demonstrate that the dynamics of expression regulated by the predicted CREs follows the CAP 
used in the model building. 
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Combinatorial binding and transcriptional regulatory network 

The complex structure of transcriptional regulatory networks in higher eukaryotes reflects the 
combinatorial control of genes by multiple transcription factors. It is poorly understood owing to the 
multiplicity of potential regulatory elements and the associated difficulty in assigning distal elements 
to the genes they control. The methods introduced here allow the construction of networks where 
transcription factors link only to genes for which they bind to chosen CREs and with which they are co-
expressed. These networks contain putative causal regulatory relationships and here are called cis 
regulatory networks (CRNs); they are approximate and likely to reflect only the strongest aspects of 
control for each gene, but nevertheless they represent a substantial simplification compared to 
alternative approaches. Figure S7 illustrates this in comparison to simple co-expression networks 
(CENs, where TFs are connected to all genes whose expression is correlated). This shows that the CRN 
is simpler in terms of vertex degree and connectivity. It is also clear that those TFs with high betweeness 
centrality, a measure of the importance of the node to the overall network structure, stand out much 
more clearly in the CRN, and are enriched for known critical haemopoietic transcription factors, TAL1, 
RUNX1 and FLI1.  Figure 5 illustrates CRNs for the TF cluster set (Figure 5A) and the TF set (Figure 
5B). It is evident that the regulation involved in maintaining pluripotency is disconnected with other 
systems and that there are at least four different sub-graphs of regulation: (i) the pluripotency network 
controlled by Nanog, Oct4, Sox2 and Esrrb, (ii) the HE dominant network controlled by Fli1, (iii) the 
HP network comprising of the Runx1, Scl/Tal1-Lmo2 TFs and (iv) the MAC specific network with 
Pu.1 (Spi1) forming the nexus between the HE/HP networks and the Cebpb network. 

Figure 5. Cis regulatory networks (CRNs) and joint clustering of expression and regulation. (A) 
CRN for the TF cluster set. The genes are represented as nodes and directed edges show the genes that 
are co-expressed and also bound by the TF of one gene (source) to a predicted CRE of the other gene 
(target). The cell type at which the expression of the gene is highest is shown as colours on the node. 
(B) The CRN for the TF set (colours as A). (C) Joint clustering of genes in the TF cluster set. Genes 
cluster together according to the relatedness of both gene expression patterns (red-blue heatmap) and 
the binary pattern of TF binding (green-white heatmap) at their main predicted (co)CRE. Each cluster 
is distinguished by a colour coded bar above the GEP heatmap (highlighted as “Joint cluster ID”). For 
each cluster, the average of the TF binding profile is shown as the TF binding propensity, where 0 
represents absence of TF binding and 1 represents binding of that specific TF in all the regions 
belonging to that cluster (green=TF binding; white= no TF binding).  

Network complexity in higher eukaryotes has so far made it difficult to answer the fundamental question 
of how many different genes are regulated in the same way, or if a similar pattern of gene expression 
can be produced by different regulatory processes. Figure 5C shows a preliminary analysis of this 
question where genes are assigned to clusters where they share common patterns of both gene 
expression (GEP) and transcription factor binding (TFBP) to their single most significant/predictive 
(co)CRE, using a recently introduced joint clustering method [64] (see Methods section). This analysis 
uses the “TF cluster set” with genes having chosen (co)CREs bound to only one TF binding event 
removed, reducing the gene set from 437 to 222 genes, in order to focus on genes with clear 
combinatorial TF binding. 

Clusters obtained from joint clustering are rather different to those from “expression only” clustering 
shown in Figure S2B. Clusters based on joint information (TF binding and gene expression) are 
approximately two times larger than those based on gene expression only, and represent a broader range 
of expression patterns: in the case of using expression information only, most of the TFs lie in separate 
clusters (with the exception of Tal1 and Gfi1b), while including TF binding information draws together 
TFs into shared clusters. This suggests that shared TF regulation leads to a broad range of similar gene 
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expression profiles, and that other regulatory processes, beyond the information in this data set, could 
define the detailed differences shown between the smaller “expression only” gene clusters.  

Among the interesting aspects of biology suggested by joint clustering is that the pluripotency factors 
Esrrb and Sox2 form a separate cluster to Nanog and Oct4, which show an expression pattern that 
persists longer and is associated to different TF binding profiles. In relation to haematopoiesis, genes 
in the cluster containing Fli1, Lmo2 and Elk4 are bound predominantly by FLI1 at their CREs in HE 
and HP suggesting a tightly controlled regulatory mechanism by Fli1 underlining its importance in 
haemopoiesis and vasculogenesis [32]. Genes in the cluster with Runx1 express in the later stages of 
haemopoiesis (HE, HP, and MAC) and exhibit a more complex binding pattern of factors including 
FLI1, SCL/TAL1, RUNX1 and GATA2 in HB, HE and HP. Thus, the hematopoietic differentiation 
from HB to MAC seems to be tightly controlled by distinct regulatory mechanisms at various stages of 
the pathway that start with the FLI1 controlled genes co-expressing with Fli1 and Lmo2 in HB resulting 
in the initial activation of  hematopoietic genes, followed by the tightly controlled cluster of Runx1, 
Tal1, Gata2 and Meis1 involved in the formation of HE and later the transition from HE to HP dictated 
by CEBP/β bound genes and finally PU.1 specifying the macrophage transcriptional network. 

Conclusion 
Transcriptional regulation can be investigated at the level of a single gene, where studies lead to detailed 
understanding of all or most relevant cis-control elements, or at genome-scale where high-throughput 
studies can reveal many general aspects of regulation. Here we have attempted to create methodology 
that can bridge the gap between these contrasting types of study. One of the challenges of genome-scale 
study is that the data sets involved are indeed very large, but the information per gene is relatively small. 
Coupled with the plethora of potential regulatory elements for any gene in higher eukaryotes, it is a 
significant challenge to identify those elements most relevant to its regulation. We have shown that 
careful integration of high-throughput data of a range of types and sources, coupled with the building 
of gene specific predictive models, can identify a few (typically 1-4) statistically significant potential 
regulatory elements for a large proportion of genes. We view the method as a means of hypothesis 
generation that will feed into further detailed study of individual genes and regulatory elements, and 
here we have illustrated this with experimental confirmation for two example genes. 

The CREs identified by our method, show many of the expected characteristics, including higher than 
average conservation, binding of transcription factors and activity in multiple cell types. Counter-point 
to this is that many of the CREs are not conserved, perhaps reflecting the fact that regulation of genes 
may diverge more quickly than the genes themselves in closely related species, showing that 
conservation is not an effective way of reducing the number of candidate CREs in model building. 
Introducing the concept of a community of CREs, related by similar profiles of transcription factor 
binding and activity measures across the cell types involved, has aided this work technically by reducing 
the number of potentially predictive variables and reducing multi-co-linearity. Equally importantly, it 
may have deeper biological significance, for instance in three-dimensional genome structure, and this 
will be a subject of future investigations. This feature of using network-based construction of 
collaborating CREs prior to model building, to the best of our knowledge, is presented for the first time 
in this work. From our analysis of haemopoietic master regulators, we found that many of the chosen 
coCREs contain elements close to promoters, but also link in distal CREs (≥20 Kb) with similar 
profiles of transcription factor binding and activity.  

In comparison of regulatory regions chosen by the models with experimentally and computationally 
known enhancers we find that coCREs overlap more significantly than CREs, further emphasising that 
collaborations between distal regulatory elements could be a prevalent mode of transcriptional 
regulation. In addition, we were able to exploit the loci identified by the models to transform 
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incomprehensible co-expression networks (CENs) to tangible cis-regulatory networks (CRNs). The 
derived CRNs more clearly define the networks and subnetworks of TFs and master regulators 
responsible for different stages of differentiation.  

The comparison of our method with JEME provides an interesting perspective on two completely 
different computational approaches to predicting how genes are regulated, one (ours) designed to be 
independent of 3D chromosome interaction data and to identify a small number of the most predictive 
elements for the expression of a gene, and the other trained on, and designed to predict 3D interactions.  
Comparison of methods in this area for mouse is difficult owing to a lack of gold standard data for real 
regulatory relationships. Three-dimensional interaction is often used in this way, but not all interactions 
are regulatory [65]. Comparison on the Schutte et al. data set, albeit relatively small, showed the 
methods to have similar performance. The JEME related method produced more predicted elements for 
each gene and may have a higher false positive rate for this reason. On the other hand, for known 
elements, performance of our method was marginally worse, but this difference was not statistically 
significant. Overall these results show that our rather simple method, based on the limited data sets 
available for mouse cells in this case, is useful and able to perform comparably to a method developed 
for the larger data sets typically available for human cell lines.  

Materials and Methods 

Dataset 
For this study, high-throughput data from two in vitro differentiation pathways of mouse embryonic 
stem cells (ESCs) were considered: differentiation to macrophages [15] and to cardiomyocytes [66]. 
The fastq files for H3K27ac, DNaseI, RNA-seq and Transcription Factor (TFs) experiments were 
downloaded from Gene Expression Omnibus (GEO identifiers: GSE69101 and GSE47950 
respectively) [36]. Gene and transcript definitions from RefSeq [37] were obtained using the UCSC 
Table Browser utility [67, 68]. The conservation scores are the phastCons evolutionary conservation 
scores for 60 vertebrate species obtained from the UCSC genome browser using its Table Browser. 
Enhancers defined by Whyte et al. [53] [40], Schütte et al. [24] and Dogan et al. [22] were obtained 
from their respective publications. The enhancers from SEA [59] and VISTA [58] were downloaded 
from their respective websites.  

Data processing 
The sequences were processed uniformly by first trimming reads for sequence quality of 20 using 
Cutadapt [69]. The trimmed reads were aligned to mm10 (UCSC genome browser) using Bowtie2 [70] 
for letter-space reads and SHRiMP [71] for colour-space reads. Only reads aligned to unique 
chromosomal positions and with a mapping quality of at least 20 were retained for further calculations. 
Total reads that overlap the exons of the genes were calculated using HTSeq-count [72]. Gene level 
expression values were computed as reads per kilobase of exons per million mapped reads (RPKMs) 
[73] (equation 1), and a standardised expression value for a gene was computed as (x-µ)/σ where x is 
the expression value, µ the mean and σ the standard deviation over cell types. For the initial data 
analysis, the expression data for protein coding genes in each cell type were analysed by principal 
component analysis (PCA) and hierarchical clustering to confirm the expected biological relationships 
between the cell types (see Figure S1).   

     𝑅𝑃𝐾𝑀 =	𝑛	×	10
9

𝑠	×	𝑁 	     (1) 

where n = total number of reads aligned to exons of size s bp and N is the total reads aligned to the 
genome. 
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DNaseI Hypersensitive Sites (DHSs) were called using DFilter with default parameters (-bs=100 -
ks=50 –refine and FDR ≤ 0.05) while the TF peaks were called using MACS (default parameters) 
since the method of generating shifting tags is well suited for DNA binding proteins. For TF peaks 
manual assessed p-values were used and are described in Goode et al. [15]. H3K27ac enriched regions 
in hematopoietic lineage were the “gapped peaks” called by MACS2 [74] using q-value cutoffs of 0.01 
for narrow peaks and 0.1 for broad peaks [39] and the H3K27ac enriched regions in the cardiac lineage 
were obtained from Wamstad et al. [66]. DHSs and H3K27ac peaks that had an overlap of at least 125 
bps were merged and the read abundances in these peak regions were computed as RPKMs (equation 
1, where s is the size of the region in bp) using BedTools [75]. Conservation scores for the regions were 
obtained as the 3rd quartile value (top 75%) using bwtool [76]. 

Differentially expressed genes were identified by all against all pairwise cell type comparisons using 
DESeq [72]. A gene was defined as differentially expressed (DE) if its expression has changed at least 
four-fold with an adjusted p-value of less than 0.05 in at least one comparison. We identified 9854 
genes that were differentially expressed and with expression value greater than 1 in at least one cell 
type. The standardised expression values of these DE genes were then clustered using k-means and the 
Bayesian Information Criterion (BIC) scores were obtained as a function of k using the adegenet R 
package [77, 78]. The optimal number of clusters (K = 391) was thus determined as the k with the lowest 
BIC score (Figure S1D). For a given DE gene its Gene expression profile (GEP) is an m-dimensional 
vector where m is this the total number of cell types analysed (here m=10) standardized gene expression 
values over all cell types, GEPs) were generated for all the differentially expressed genes considered in 
this study. 

Identification of candidate cis regulatory elements (CREs) 
The DHS and H3K27ac peaks that had an overlap of at least 125 bps were merged to obtain the initial 
set of candidate cis-regulatory elements (candidate CREs). For each candidate CRE, a “chromatin 
activity profile” (CAP) is a m-dimensional vector representing the chromatin activity of the CRE in the 
m cell types (here m=10). For a given CRE and a given cell line the chromatin activity is the 
log2(RPKM) of H3K27Ac computed as given in equation 1 where s here is the width of the H3K27ac 
peak, and if DNaseI-seq data was available for the cell type, the average of the log2RPKM of the 
H3K27ac and the DNaseI-seq data (Table 1), since these two measures have been shown to be highly 
correlated in cell type specific DHSs [79]. For each gene the predictors are the set of candidate CREs 
within 100kb of a gene’s transcription start site (TSS) identified using ChIPpeakAnno [80].   

Identification of community CREs 
The CREs were overlapped with the 33 TF ChIP-seq peak sets (Table 1) and for each region the “TF 
binding profile” (TFBP) was generated as a binary vector indicating the overlap (1) or non-overlap (0) 
of the 33 peak sets (Figure 1A, Step: 2). For a given gene, we identified the N CREs with 100 kB of the 
gene and in order to generate community CREs (coCREs) two matrices of 𝑁 × 𝑁	dimensions were 
generated: (i) the activity correlation matrix (C) that represents the pairwise similarity between the 
CAPs of the N CREs, and (ii) the TFBP correlation matrix (B) that represents the pairwise similarity of 
the TFBPs of the N CREs. Each element of matrix C (Cij) is the Spearman correlation coefficient of the 
CAPs of the two CREs (i and j) and similarly Bij is the Jaccard index of the TF binding profiles of i and 
j. From these two matrices, an adjacency matrix (A) of 𝑁 × 𝑁 dimensions were computed as given in 
equation 2. A network then is a representation of A where CREs within 100kb of the gene represent the 
nodes and an edge between two nodes (if Aij = 1) represent highly correlated activity of both their CAPs 
and TFBPs.  
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   𝐴#7 = 	 8
1		if		𝐵#7. 𝐶#7 > 0.5,
0											otherwise.

      (2) 

For such a network, communities are the dense sub-networks of sets of nodes with relatively large 
numbers of edges among them and were identified using a greedy optimization of modularity score 
[81]. The coCREs are defined as communities of more than one region with at least two TFs binding to 
them. The CAP of a coCRE is the average of the activity profiles of the constituent CREs. To 
differentiate them from coCREs, candidate CREs not assigned to communities are referred to as 
‘singleton CREs’. 

Penalized linear models 
All coCREs within 100kB of a transcript’s start site (TSS), and singleton CREs within 20kb, were 
considered as potential predictor variables in building the linear model. The CAPs of the CREs were 
considered as a column in the independent term matrix (X). The response vector Y, consisting of 
expression values corresponding to the cell type in X was modelled using linear regression as 

   𝑦 = 𝛽J + ∑ 𝛽#$
#M% 𝑥# ,      (3) 

where 	𝛽#  are the regression coefficients. For a penalized linear model, the aim is to minimize the 
penalized likelihood (assuming a normal distribution),𝑚𝑖𝑛QR‖𝑦 − 𝑦U‖V

V + 	λ∑ |𝛽#|$
#M% X , where the 

penalty is on the summed absolute values of the regression coefficients and λ is the regularisation 
parameter. The 𝑙% norm form of the penalty leads to zero values for a subset of the β coefficients, 
depending on the size of this parameter. A leave-one-out cross validation was performed for a sequence 
of λ values to obtain the optimal value of λ where mean square error is minimized λ"#$ and also 	λ%&' =
λ"#$ + 1 × 𝑠𝑡𝑑𝑒𝑣, which is a more conservative estimate for λ (Figure 1C). The CREs/coCREs with β 
≠ 0 at the optimal λ are the most predictive for that gene, and are termed ‘chosen CREs’. If at the λ 
cutoff the total number of predictors with non-zero regression coefficients is zero, then the highest λ 
value at which at least one predictor has a non-zero coefficient was considered. The penalized 
regressions and cross-validations were performed using glmnet package in R [82]. In order to generate 
p values for the predictors with 𝛽 ≠ 0 we have used the covariance testing as implemented by the 
covTest package in R [51] and adjusted for multiple testing using Benjamini-Hochberg method (q 
values). The covariance test tests the significance of a predictor as it enters the active set at a given step 
in the lasso path [51]. The p-value for a predictor takes into account the adaptive nature of lasso and 
also the shrinkage effects due to the ℓ%-norm penalty. The q-value for each gene model is the q-value 
of the most significant predictor at λ%&' . The models generated, the λ values, the chosen predictors along 
with the q-values are provided in Table S3. It can be seen from Table S3 and Figure S8 that for the 
selected models there are non-zero beta with p > 0.05. They should be viewed with caution in 
comparison to better supported interactions, because on one hand the cross validation indicates they 
have a significant contribution to prediction accuracy but one the other hand the covariance test, which 
is more conservative, considers them insignificant. 

 

Apart from using covariance tests for assessing a model’s significance one can obtain empirical p-values 
by randomising either the CAP or GEP. Here for a given gene, we retained the CAP of the predictors 
and randomised the GEP N=10000 times and generating N models. The spearman’s correlation (Cr) 
between the randomised GEP and the GEP predicted by the model is calculated. If the correlation 
derived for the actual model is Ct, and x the total number of iterations where Cr ≥ Ct, then an empirical 
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p-value can be generated as x/N. The comparison between the two tests for model significance is given 
in Figure S7E. Although there is general agreement with the exception of Runx1 and Spi1, the 
randomisation approach the p-value is time consuming (limited by the number of iterations), and we 
preferred the covariance test method which is explicitly designed for LASSO models and therefore 
likely to be more powerful.  

It should be noted that if there are more than one highly correlated CREs for a given gene that are 
predictive of the expression, then LASSO is designed to select one of the CREs. In order to ascertain 
the ability of the model to accurately choose the best correlated regions, we removed the chosen regions 
from the list of predictors for a given gene and generated a new model. We performed this analysis for 
all the genes in the three gene sets and found only 15 new models with at least one chosen region (𝛽 ≠
	0) at λ%&'  and a p-value of less than 0.05 (Table S3). While this may remain an issue with LASSO 
regression, it indeed shows that in this study such effects are minimal possibly due to the construction 
of coCRE prior to model building.  

For each gene, two models (λ%&') were generated, one with regions before the construction (pre-coCRE) 
and the other with regions after the construction of community CREs (post-coCRE), as predictors. The 
difference in drop-in-variances (∆div = div(post-coCRE) – div(pre-coCRE)) and in p-values (∆pv= 
pv(post-coCRE) – pv(pre-coCRE)) for the best predictor (highest div), were computed for any given 
gene if p < 0.05 in at least one of the two models. In order to ascertain the technical impact of coCREs, 
we used paired Student t-tests for computing the significances for higher drop in variances (+∆div, 
Figure S3F, red), and decrease in p-values (-∆pv. Figure S3F, red) in post-coCRE models compared to 
pre-coCRE models. Figure S3F shows that in the TF Cluster set, both the div, and p-values for post-
coCRE models are significantly better than pre-coCRE models. This trend remains true when applied 
to all the genes considered in this study.  

Overlaps with data sets of experimentally determined enhancers 
We considered the overlap of the set of (co)CREs chosen in our models with several external data set 
of enhancers described above (see Figure 4A), using the hypergeometric test. To form a negative control 
set for these studies, for each gene, a set of CREs/coCREs were selected from the available set of 
rejected predictors (P) that match the chromatin activity level of the predictors chosen by the model (C). 
If CAPr is the chromatin activity profile vector of a CRE/coCRE (r), then mr = max(CAPr). The set of 
rejected regions with matching chromatin activity for that gene is {𝑟 ∈ 𝑃	|	𝑚c > 𝑚d − 0.5} where mc 
is the max(CAP) of any of the chosen predictors. Such sets were generated for the three gene sets (Table 
2) and their overlaps with known enhancers are given in Figure 4A.  

Application of JEME to the myeloid lineage data set 

Cao et al.’s Joint Effects of Multiple Enhancers (JEME) method employs a two-step machine learning 
framework to predict cell line specific enhancer-TSS interactions [40]. Firstly, LASSO linear regression 
models calculate the ability of DNase, H3K27ac, H3K27me3 and H3K4me1 signals to predict the 
expression of a TSS within 1Mb of an enhancer. Secondly, LASSO error terms are input, along with 
DNase and histone enhancer, promoter and window features, into a Random Forest classifier trained on 
chromosome conformation data.  

JEME was applied to the myeloid lineage (ESC to MAC) dataset, for which DNase-seq, ChIP-seq and 
RNA-seq data were available. As we did not have data for H3K4me1, this mark was substituted for 
H3K4me3. Input files were processed as described in Cao et al. 2015 [40]. TSS co-ordinates were 
obtained from the mm10 RefSeq Curated annotation [37] using the UCSC Table Browser [67, 68]. Cell 
specific active enhancers were defined by the 4-state ChromHMM predictions from Goode et al. 2016 
[15]. JEME code for Cao et al.’s ‘Roadmap + ENCODE’ dataset, was downloaded from 
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https://github.com/yiplabcuhk/JEME and adapted for our dataset. JEME’s Random Forest classifier 
was retrained in WEKA  [83] on a set of 18,353 positive and 122,353  background pairs, assembled 
from the ESC HiC data (GEO identifier: GSM2026260) [84] using the ‘random targets’ method [40]. 
Predictions were made for enhancer-TSS interactions in MES, HB, HE, HP and MAC cells, using the 
default threshold of 0.35. JEME predicted 64.2% of selected CRE-gene pairs, accounting for 7.9% of 
all JEME predictions within 100kb of a TSS considered by our method (p value for overlap ≪ 10-65). 
The results shown in Table 3 do not change significantly by varying the threshold. 

Joint clustering of TFBPs and GEPs 
In order to jointly cluster gene expression and regulatory input we employed a method we recently 
developed [64]. This adopts a probabilistic mixture model-based clustering with integration of binary 
(TF binding) and continuous (expression) data using Bernoulli and Gaussian distributions respectively. 
The mixture components (clusters) represent sets of genes with related TF binding and expression 
patterns. In this context, a TF binding pattern is a binary string reflecting binding (1) or not (0) for a set 
of TFs to the chosen (co)CRE in question in each cell type. A data matrix was constructed with the 
GEPs of the genes in the TF cluster set (Table 2) and the TF binding pattern (TFBP) of the statistically 
best predictive (co)CRE for each gene based on their p-values (Table S3). In case of ties between two 
or more predictors, the (co)CRE with the most regulatory input in terms of total number of bound TFs 
was considered. Gene-(co)CRE pairs with only one TF binding event were further removed. The 
method determines a clustering solution that minimizes an information criterion related to the standard 
Bayesian Information Criterion (𝐵𝐼𝐶 = 𝑘ln(𝑛) − 2ln(𝐿)	), where k is the number of parameters in the 
model, n the number of data points and L the maximized likelihood) or Akaike criterion (𝐴𝐼𝐶 = 2𝑘 −
2ln(𝐿)). In this case we used a criterion related to the latter, 𝐴𝐼𝐶2.5 = 2.5𝑘 − 2ln(𝐿), which was shown 
to be optimal in similar problems [64]. 

Statistical significance of combinatorial binding of TFs 
We calculated the statistical significance of multiple TF occupancy of M potential CREs as follows.  
Let the ith TF (TFi) have Ni  binding peaks overlapping the M CREs, then the probability that any CRE 

is occupied by at least one TFi peak is 1 − nop%
o
q
rs
. The probability a CRE is occupied by at least one 

peak of each of N independently binding TFs is ∏ u1 − nop%
o
q
rs
vr

#M% .  The expected number of CREs 

occupied by at least one peak of each of the N TFs is 𝑀 ×∏ u1 − nop%
o
q
rs
vr

#M%  and this was used with 

the Poisson distribution to obtain p values for the occurrence of CREs occupied by a combination of N 
TFs. 

Core regulatory network 
TF gene set and TF cluster gene sets were used for generating two different types of network, namely 
the co-expression network (CEN) and cis-regulatory network (CRN). For the CEN, a pairwise 
Spearman correlation matrix (M) was generated for the gene expression values (GEP) in the set and an 
adjacency matrix (A) was derived from M where Aij = 1 for the top 25% of the node pairs with highest 
correlation coefficient. The resultant matrix was represented by an undirected graph where an edge was 
drawn between two genes i and j if Aij = 1. CRNs were generated with a directed edge from gene i to 
gene j if and only if they were connected in the CEN and gene i is a TF that binds to a chosen (co)CRE 
in the expression model for gene j. For generation of CRNs only selected CREs/coCREs with q ≤ 0.05 
were used.  

For computing the network parameters both CRNs and CENs are considered as undirected. A degree 
of a node is the total number of edges incident on it. For a node “x” in a network of N nodes, if “o” is 
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the total number of all possible shortest paths, and if “m” is the total number of shortest paths from all 
N\x (all nodes except x) to N\x that traverse through x, then betweenness centrality is "

w
. A node is 

termed as a neighbour of another node if there exists an edge between them and connectivity of a node 
is the total number of neighbours of the node. Neighbourhood connectivity of a node “x” is the sum of 
the connectivities of its neighbours [85, 86]. 

Availability of data and materials 
All the datasets used in this study are publicly available from Gene Expression Omnibus (GEO) with 
GSE69101 and GSE47950 accession numbers. The code is available in github as an R package 
(https://github.com/vjbaskar/lenhancer) 

Supplementary Data 
Supplementary Data are available online. Table S1-S5 are given as separate Microsoft Excel sheets and 
Figure S1-S8 are provided as a single Microsoft Powerpoint file.  
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Supplementary Information 
S1 Table: The three gene sets for which predictive models were generated and the gene expression data. 

S2 Table: Table containing CREs used in this study. 

S3 Table: Gene-wise predictive models for the genes and the chosen CREs/coCREs. 

S4 Table: Overlap between chosen CREs/coCREs and known enhancers. 

S5 Table: (A) Positive enhancer elements for the genes in Schutte et al. data and their overlap with 
predictions from our (co)CRE method and retrained JEME method. (B) Negative enhancer elements 
for the genes in Schutte et al. data and their overlap with predictions from our (co)CRE method and 
retrained JEME method. 

S1 Figure: Gene expression analysis. (A) Principal components analysis of gene expression data where 
the cell types are projected on the first two principal components (PCs). (B) The cumulative contribution 
of the PCs to the variance observed. (C) Heatmap showing the hierarchically clustered cell types based 
on the correlation (Pearson) of their gene expression profiles. (D) BIC scores as a function of number 
of clusters (K) when clustering gene expression profiles for differentially expressed genes. The vertical 
line corresponds to the K with the lowest BIC score. 

S2 Figure: Gene sets used in this study. (A) The normalised expression values of the genes in the “TF 
set”. (B) shows the hierarchically clustered heatmap of the genes in the “TF cluster set”. (C) is a table 
containing the total number of genes that are differentially up (red) and down (blue) when comparing 
two cell types (rows to columns). See Table S1 for information on the genes used in this analysis.  

S3 Figure: Statistical overview of the cis-regulatory elements (CREs). Frequency of the CREs with 
a given number of chromatin events (A), size of CREs in (log10 of bp) (B), conservation scores (C), 
H3K27ac enrichment (D) and DNaseI-seq enrichment (E). (F) Gene specific models are built for the 
TF Cluster set with coCRE (post-coCRE) and without construction of coCREs (pre-coCRE, see 
Methods). A gene is considered if p < 0.05 in either of the two models. For a given gene the predictor 
with best drop in variance (div, from covariance test [49,50]) and p values (pv) for each of two models 
are considered and compared. The differences in the div and p values, ∆div and ∆pv respectively, were 
computed for each gene and the frequencies are plotted as bar charts (lower panel). The logged div and 
pv for both models for TF Cluster genes are plotted with lines coloured as given in the legend (upper 
panel). A +∆div or a –∆pv (red) indicates that the post-coCRE model is better than that of pre-coCRE 
and a –∆div or a +∆pv (blue) indicates vice versa. A paired t-test shows that post-coCRE models are 
significantly better than pre-coCRE models (div: 1.8e-06 and pv: 3.5e-06).  

S4 Figure: Gene expression models for the genes in the TF set. The gene-specific models showing 
the chosen coCREs and singleton CREs that are most predictive of the transcription factor’s gene 
expression profile. The method of generating the network and annotating the nodes and the edges is 
same as Figure 2A. Table S3 contains all the relevant details of the models and the CREs shown here. 
Please note that not all the TFs have supporting ChIP-seq data (Table 1). If a TF does not have ChIP-
seq data in a given cell type, the value in that histogram is zero (see also Figure 2A) 

S5 Figure: Comparison of CREs/coCREs of key genes with known enhancer datasets. The genome 
browser snapshot for the tag density tracks and the datasets of known enhancers are generated similar 
to Figure 1D. The overlap between chosen (co)CREs (red bar below the density tracks) for Spi1 (A), 
Scl/Tal1 (B) and Erg(C) with Schütte et al. (blue and purple bars) are shown. (D) Browser snapshot 
showing enhancers predicted by JEME in the Hematopoietic Progenitors (HP) in blue, alongside the 
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tested regions investigated by Schütte et al. in green and dark red, and CREs/coCREs selected by our 
method in red. (E) Overlap of predicted CREs of our method, and JEME, with Schütte et al (active). 

S6 Figure. Experimental testing of predicted enhancer for Nfe2. (A) Gene expression profile of Nfe2 
and chromatin accessibility profile of the predicted enhancer (inset). (B) Chosen CRE containing the 
predicted enhancer is highlighted as transparent cyan box. (C) Reporter gene investigation of the 
enhancer activity. 

S7 Figure: Network parameters for the GRNs. Network parameters such as the degree (A), 
Betweenness centrality (B) and Neighbourhood connectivity (C) for the key genes (TF set) (left) and 
all the genes (right) in the TF Cluster set. CRNs (yellow) and CENs (black) are generated as described 
in Methods section. (D) The co-expression networks (CEN) of genes in the TF set. The edges are drawn 
if the correlation coefficients (spearman) of GEP between two genes were in the top 25%. (E) 
Comparison of p values generated by the covariance test (covTest) and those from GEP randomisation 
for predictive models of the indicated TF genes. 

S8 Figure: Covariance tests’ significance values of CREs and coCREs in gene-wise models.    The 
–log2P (adjusted) cutoffs on the x-axis and the total number of CREs or coCREs with the –log2P 
(adjusted) better than a given cut off for all the gene models with at least one β≠0 in blue and only for 
the significant models in red i.e. with q ≤ 0.05 (Table 2), on the y-axis.  

 


