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Abstract
For rheumatic diseases, Minimal Disease Activity (MDA) is usually defined as a
composite outcome which is a function of several individual outcomes describing
symptoms or quality of life. There is ever increasing interest in MDA but relatively
little has been done to characterise the pattern ofMDAover time.Motivated by the aim
of improving the modelling of MDA in psoriatic arthritis, the use of a two-state model
to estimate characteristics of the MDA process is illustrated when there is particular
interest in prolonged periods of MDA. Because not all outcomes necessary to define
MDA are measured at all clinic visits, a partially hidden multi-state model with latent
states is used. The defining outcomes are modelled as conditionally independent given
these latent states, enabling information from all visits, even those with missing data
on some variables, to be used. Data from the Toronto Psoriatic Arthritis Clinic are
analysed to demonstrate improvements in accuracy and precision from the inclusion
of data from visits with incomplete information onMDA. An additional benefit of this
model is that it can be extended to incorporate explanatory variables, which allows
process characteristics to be compared between groups. In the example, the effect of
explanatory variables, modelled through the use of relative risks, is also summarised
in a potentially more clinically meaningful manner by comparing times in states, and
probabilities of visiting states, between patient groups.
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1 Introduction

For studies in rheumatic diseases, and in other medical contexts, the outcome variable
of interest is often composite. Such an outcome will be defined based on the observed
values of a set of separate variables that all reflect some aspect of a patient’s disease
activity. Sometimes the composite outcome is a mathematical function of the values of
the constituent variables and sometimes it may be a categorical variable representing
disease states defined in terms of the constituent variables. In this paper, we focus on
the latter situation.

It may also be the case that clinical interest focuses on a patient being in a dis-
ease state for a prolonged period of time. For example, the concept of minimal disease
activity (MDA) in rheumatic disease was conceptually defined as “that state of disease
activity deemed a useful target of treatment by both the patient and physician, given
current treatment possibilities and limitations” by The OutcomeMeasures in Rheuma-
tology Clinical Trials 6 Conference (Wells et al. 2005). This reflects the fact that the
complete absence of disease is not a realistic goal for many patients. For psoriatic
arthritis (PsA), an inflammatory arthritis associated with the skin disease psoriasis,
this has been operationally defined in terms of 7 criteria related to physician, patient
and laboratory measures of disease activity, that is, disease symptoms that are poten-
tially reversible through treatment or other factors. However, short term MDA is of
little clinical interest as it is MDA of extended duration, typically one year or more,
that has been linked with reducing the risk of permanent joint damage, a major aspect
of disease progression in PsA (Coates et al. 2010a).

There are challenges to the analysis of events that are defined by prolonged observa-
tion of a condition (Farewell and Su 2011) and relatively simple approaches are often
adopted in practice. For example, Coates et al. (2010a) divided a longitudinal cohort
of patients into two groups, those who achieved the criteria for MDA at consecutive
visits for a minimum of 12 months and those who did not over their periods of fol-
lowup. These two groups were then compared in various ways in terms of explanatory
variables. This approach does not appear to take full advantage of the longitudinal
follow-up of the patients or reflect the intermittent observation patterns of the cohort.
Along with the need for more comprehensive longitudinal modelling reflecting inter-
mittent observation of patients, typically at clinic visits, a sizeable number of clinic
visits may not provide information on a sufficient number of MDA criteria to unam-
biguously determine whether a patient is in the MDA state. In this paper, we examine
how these challenges may be met when adopting a simple two-state model for the
presence and absence of MDA in PsA. The primary aim is to provide a means to
characterise the MDA process in PsA. An additional benefit is that this model can be
extended to incorporate explanatory variables, which allows process characteristics to
be compared between groups. The effect of explanatory variables, modelled through
the use of relative risks, can also be summarised in a potentially more clinically mean-
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ingful manner by comparing times spent in states, and probabilities of visiting states,
between patient groups.

As in Sweeting et al. (2010), features of the observation process suggest the use of
a partially hidden multi-state model. Aalen (2010) commented on this previous work
that the model formulation was needed to address the nature of the available data.
He commented on the use of Markov formulations as “a simple way of introducing
dynamics into the system” and that while “the Markov assumption is often criticized
as being too strong … a simple Markov assumption will, for many purposes be good
enough”. In addition, our incorporation of available data from visits when MDA can
not be unambiguously determined, is also similar to the use of an auxiliary variable
in Sweeting et al. (2010) to address the problem of informative observation, another
consideration highlighted in Aalen (2010). Thus the modelling approach discussed in
this paper is, we hope, taking account of the issues raised in Aalen (2010) and it is a
great pleasure to contribute the paper to this special issue of the journal prepared in
honour of Odd Aalen’s long and distinguished research career.

2 The clinical example

Our motivating example is based on data from 7024 clinical visits from 856 patients
seen at the University of Toronto PsA Clinic since 2003. Patients were evaluated using
a standard protocol every 6–12months. Patients were followed up for a median time of
3 years (maximum 10 years), with a median 6 visits (maximum 27). This intermittent
observation pattern needs to be reflected in analyses, as discussed earlier, but it is
important to note that visits occurring within 3 months of a regularly scheduled visit,
perhaps to address clinical needs identified at the previous visit, are not included in the
database. Clinical assessments included the number of (out of 68) tender joints and the
count of (out of 66 excluding hips) swollen joints, a measure of enthesitis reflecting
the number of inflamed locations where tendons or ligaments insert into bones, and a
dactylitis score reflecting the extent to which entire digits are inflamed, a characteristic
symptom of PsA. Skin assessment included both the body surface area (BSA) and the
Psoriasis Area and Severity Index (PASI) which has a range 0–72. A clinically count
of permanently damaged joints was also recorded at each visit. A physician global
assessment on a 10 cm scale was to be completed at every visit and patients completed
self-reported questionnaires including the Health Assessment Questionnaire (HAQ),
which has a range of 0–3, and patient global assessments, on a 10 cm scale, usually
at every other visit.

The criteria for the definition of MDA used by Coates et al. (2010b) were 5 or more
out of 7 of the following:

1. Tender joint count (TJC) ≤1
2. Swollen joint counts (SJC) ≤ 1
3. PASI score ≤1 or BSA ≤ 3%
4. Patient pain visual analog score (PTPPAINV) ≤ 1.5 cm
5. Patient global disease activity visual analogue score (PTPSA) ≤ 2 cm
6. HAQ score ≤ 0.5
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Table 1 Numbers of visits, by number of MDA-defining criteria observed and number of these which were
positive, by MDA status

Number of criteria positive Number of criteria observed

0 1 2 3 4 5 6 7

No MDA

0 0 0 0 79 15 19 40 13

1 0 0 0 0 119 137 210 74

2 0 0 0 0 0 294 411 151

3 0 0 0 0 0 0 619 224

4 0 0 0 0 0 0 0 266

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

MDA

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 174 566 226

6 0 0 0 0 0 0 344 211

7 0 0 0 0 0 0 0 202

Indeterminate MDA status

0 8 1 56 0 0 0 0 0

1 0 15 14 76 0 0 0 0

2 0 0 26 89 229 0 0 0

3 0 0 0 113 346 474 0 0

4 0 0 0 0 215 351 617 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

7. Entheseal points (ENTH_TOT) ≤1

All but 8 clinic visits provided information on at least one of the MDA criteria,
and the numbers with 0 to 7 criteria missing were 1367, 2807, 1449, 924, 357, 96, 16
and 8 respectively. The HAQ and patient global scores were missing approximately
50% of the time as per their scheduled administration at every other visit and the
rest were missing at 10% to 20% of visits. The MDA status could be determined at
63% of the visits comprising 38% when at least 5 out of 7 criteria were observed and
satisfied and 25% when at least 3 out of 7 were observed and not satisfied. There were
1390 and 195 occasions when MDA was observed followed by no MDA and MDA,
respectively, at the next visit, and there were 144, and 825 occasions when no MDA

123



Partially hidden multi-state modelling

Fig. 1 Simple two-state MDA
model

No MDA MDA

was observed, followed by no MDA, and MDA, respectively, at the next visit. Table 1
presents the number of positive criteria observed by MDA status and the number of
criteria observed.

For the purposes of regression analyses, in which the effect of baseline explanatory
variables on MDA is subsequently examined, if no treatment information is recorded
for a patient then it has been assumed that neither disease modifying anti-rheumatic
drugs (DMARDs) or biologic agents were given. Patients with missing information on
any baseline explanatory variable were excluded. The highest fraction of missingness,
9%, was seen with the binary indicator for the involvement of axial joints. The other
indicator variables used in our example analyses were for polyarthritis (the involve-
ment of five or more joints), sex, an elevated sedimentation rate (ESR) and previous
damaged joints. Age and disease duration prior to clinic entry were also included as
continuous variables.

3 A partially hiddenmulti-state model

3.1 Themodel

Figure 1 presents the simple two-state model with states ‘MDA’ and ‘No MDA’. The
model is characterised by two transition rates, one for the transition from ‘No MDA’
to ‘MDA’ and the other for ‘MDA’ to ‘No MDA’. Specifically, we will fit a time-
homogeneous Markov multi-state model with constant transition intensities for the
MDA process.

For each patient, let S j represent their MDA status at clinic visit j , and let y jk
represent the observed value of the kth variable used to defineMDAstatus at clinic visit
j . Because two variables may be used to determine the third MDA criterion described
in Sect. 2, there are 8 defining variables in total. Additionally, let x j represent a row
vector of explanatory variables associated with the patient at visit j . The transition
rates can then be specified as

λ(No→MDA)(x j ) = λ(No→MDA,0) exp(x jβ) (1)

and

λ(MDA→No)(x j ) = λ(MDA→No,0) exp(x jγ ), (2)

where λ(No→MDA,0) and λ(MDA→No,0) are baseline intensities, β and γ are column
vectors of regression coefficients associated with the explanatory variables in the two
models. Note that the model is specified in continuous time although observation is
intermittent at clinic visits.
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Equations (1) and (2) reflect the necessary simplifying assumptions for a time-
homogeneous Markov multi-state model with constant transition intensities, although
this may be relaxed. The time-homogeneity assumption can be relaxed easily with
available software through the use of piece-wise constant transition intensities. This
might be needed, for example, if the introduction of new treatments resulted in variation
ofMDA frequencywith calendar time. Departures from theMarkov assumptionwould
introduce more complications since state entry times are unknown, though some non-
Markov models can be fitted to data of this kind in available software using phase-type
sojourn distributions (Titman and Sharples 2010). This is expanded upon in Sect. 5.
The Markov assumption is particularly useful for fitting a partially hidden multi-state
model and for calculating summary characteristics of the MDA process. It is not
expected that the Markov assumption which introduces the dependence of the future
on the past through conditioning on current state would be an undue simplification in
the context of PsA. With respect to the use of this model, in comparison to the very
simple models used previously (Coates et al. 2010b), we would regard the multi-state
model structure to be a critical assumption to adequately model the MDA process, but
the specific Markov assumption to be a simplifying assumption regarding a secondary
aspect of the model, following the approach to assumptions outlined by Cox and Snell
(1981).

Because MDA status can not be determined at all visits, it is convenient to regard
this model as a partially hidden multi-state model. At some visits the MDA status is
known but at others it is unknown or hidden. This essentially extends the usual multi-
state modelling approach to allow information from the y jk variables to provide extra
information on MDA status at visits when the binary classification of MDA based
on the y jk variables cannot be unambiguously determined. This could be done by
incorporating modelling of the conditional distributions of the binary criteria derived
from the y jk variables, given MDA status, but we will focus only on the somewhat
more general approach of directly modelling the conditional distributions of the 8 y jk
variables that determine these binary criteria. A comparison of these two approaches
can be found in Jackson et al. (2016) where there is some evidence that modelling
the y jk variables can provide greater precision for estimation of parameters in the
multi-state model, as might be expected.

It is assumed that given the (observed or latent) MDA status, the distributions of
the y jk variables are independent from each other. In other words, we assume that
the marginal distributions of y jk variables help to discriminate the MDA status, but
the associations between y jk variables will not provide additional information for
this discrimination. Without this conditioning, an independence assumption would be
unreasonable but it is less problematic given the conditioning, although it is unlikely
to be exactly true.

In terms of missing data for y jk , we assume that the unobserved y jk variables are
missing at random given the observed y jk′ (k �= k′) values at visit j . Therefore, we
don’t model missing indicators of y jk and relate them to the latent MDA status. If
missingness depends on the unobserved y jk values after conditioning on the observed
data, then the missing indicators should also inform the latent MDA status and need
to be modelled. This will correspond to a latent ignorability assumption discussed
in Harel and Schafer (2009). Because a substantial amount of partially missing data
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in the PsA clinic are due to different schedules for data collection, e.g., HAQ is
only measured every other visit, we reckon that the missing at random assumption is
reasonably plausible in this context.

To specify the probabilities Pr(y jk |S j = r), the patient pain and global activity
scores are rounded to integers and assumed to arise from Binomial(10, pkr ) dis-
tributions while the remaining variables, which are all integers if HAQ and PASI
are multiplied by 100, are specified to arise from negative binomial distributions,
NegBin(nk, pkr ). Heuristically, information on the set of all nk and pkr parameters
will arise primarily from visits when S j is observed, while for latent or hidden values
of S j , the subset of y jk values observed will provide information on the possibleMDA
status. Low values of y jk variables are more likely to be associated with an underlying
MDA state.

3.2 Estimation

The proposed model, with its Markov assumption, can be fitted by full maximum
likelihood. Introducing an additional subscript i for patients, let yi j represent the vector
of MDA defining variables observed at visit j from patient i , where j = 1, . . . , ni
and i = 1, . . . ,m.

Let Pr(Si j | Si, j−1,q, xi j ) be the transition probability from state Si, j−1 to state
Si j over the time interval separating visits j − 1 and j , given explanatory variables
xi j , where q = (λ(No→MDA,0), λ(MDA→No,0), β, γ ) represents both the transition rates
governing the hidden Markov chain and the effects of explanatory variables on these.
Let Pr(Si1 | f) be the distribution of (potentially unknown) MDA states at the initial
visit, with vector of probabilities f . Finally, let f (yi j | Si j , α) be the conditional
distribution of yi j given the states Si j = 0 (“no MDA”) and Si j = 1 (“MDA”), with
the parameter vector α. Then, assuming that the yi j are conditionally independent
given Si j , the full likelihood can be represented as

l(θ | {S}, y, x) =
∏

i

∑

{Si }
{Pr(Si1 | f) f (yi1 | Si1, α)

×
∏

j>1

Pr(Si j | Si, j−1,q, xi j ) f (yi j | Si j , α)}, (3)

where the parameters are θ = (q, f, α), {S} is the set of all observed MDA states, and
the product over visits j is summed over all possible latent state pathways {Si } for
each patient i (Satten and Longini 1996).

Note that the “data” in thismodel implicitly includes the observations ofMDAstatus
Si j at times j when this is known, which constrains the set of latent state pathways
to be summed over. Satten and Longini (1996) showed further that the likelihood
contribution from a patient i in this model can be expressed as a product of ni K × K
matrices, where K is the number of states in theMarkovmodel structure (K = 2 in our
example), which facilitates computation. Our model generalises the model in Satten
and Longini (1996) to composite outcomes given the hidden state, and a combination
of observed and hidden states Si j .
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Maximum likelihood estimation is implemented in the msm R package (Jackson
2011; R Development Core Team 2010) for continuous-time Markov and hidden
Markov modelling. The package allows general state-transition structures with tran-
sition intensities depending on explanatory variables. There can be any number of
outcomes linked to a hidden state, with a variety of distributional assumptions pos-
sible. The implementation is based on derivatives of the log-likelihood (Lystig and
Hughes 2002) and uses the R optim BFGS method.

3.3 Complete case analysis

If the possible information from yi j values observed at visits when MDA status can
not be determined is ignored, then the two-state model in Fig. 1 can simply be fitted
using the standard likelihood for a continuous-time Markov model for panel data
(Kalbfleisch and Lawless 1985),

l(q|{S}, xi j ) =
∏

i, j

Pr(Si j |Si, j−1,q, xi j ),

where Pr(Si j |Si, j−1,q, xi j ) is the transition probability from observed state Si, j−1 to
state Si j over the time interval separating visits j−1 and j given xi j , and the likelihood
contribution for each person is conditioned on their initial observation Si1. This can
again be implemented in the msm package. Note that in this model, the observations
include only the 63% of patient visits at which MDA can be determined. This analysis
will be termed a complete case analysis. The comparison of this with the analysis
based on the partially hidden multi-state model analysis will provide some indication
of whether the latter can provide any gains in precision or any bias reduction relative
to the former.

3.4 Analyses related to sustainedMDA

As well as parameter estimation of a multi-state model, there is often interest in
summary measures related to state occupancy. Estimation of quantities such as the
expected duration of time in a state and total time in a state or the number of times
in a state over a fixed time period can be derived as analytic functions of transition
rates from continuous-time Markov chain theory. However, there is clinical interest
in prolonged durations of state occupancy for MDA, such as the one year duration
to define sustained MDA. For the estimation of these, simple analytic calculations of
relevant measures are not possible.

Therefore, in order to provide information on sustained MDA, estimated expecta-
tions can be calculated by simulation of state histories over a period of time, say 10
years, for 100,000 patients under the fitted multi-state model. Specifically, the history
of a patient with explanatory variable vector x j is simulated as a series of periods alter-
nately spent in No MDA and MDA, starting with No MDA, and each with duration
simulated from an exponential distribution with rate λNo→MDA(x j ) or λMDA→No(x j )

respectively, until a censoring point of 10 years. Then the probability of visiting sus-
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Fig. 2 Histograms of MDA defining variables with binary cutpoints and corresponding fitted probabilities
(vertical bars) from a simple two-state model: TJC: Tender joint count, SJC: Swollen joint count, PASI: Pso-
riasis Area and Severity Index, PTPAINV: Patient pain visual analog score, PTPSA: Patient global disease
activity visual analog score, HAQ: Health Activity Questionnaire, ENTH_TOT: Inflamed entheseal points

tained MDA, for example, can be estimated as the proportion of simulated patients
with sojourns of one year or more in the MDA state starting before 10 years. If the
patient is in MDA at 10 years, then they are followed up further until the end of the
MDA sojourn, so that this sojourn can be categorised as sustained or not. Furthermore,
as done in Aalen et al. (1997) for simpler functions of parameters from a multi-state
model, confidence intervals and standard errors for these estimates can be determined
by simulating from the distribution of parameter values, say 1000 times, and repeating
the simulation of state histories for 100,000 patients for each of these 1000 sets of
parameter values.
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Table 2 Estimates and standard errors from two-state model with no explanatory variables

Complete cases Data from all visits

Mean years in one period of

No MDA (1/λ̂(No→MDA)) 4.06 (0.23) 2.82 (0.14)

MDA (1/λ̂(MDA→No)) 4.18 (0.29) 3.10 (0.17)

Over 10 years (given no MDA at start)

Expected total years in MDA 4.05 (0.14) 4.47 (0.12)

. . . episodes lasting ≥ 1 year 3.90 (0.15) 4.22 (0.13)

Expected number of MDA periods 1.47 (0.06) 1.96 (0.07)

. . . lasting ≥ 1 year 1.16 (0.04) 1.42 (0.04)

P(visit MDA at least once) 0.92 (0.01) 0.97 (0.005)

. . . spell lasting ≥ 1 year 0.85 (0.01) 0.91 (0.01)

4 Results for clinical example

4.1 Simple two-state model

Figure 2 (first and second columns) shows the observed and fitted distributions of each
MDA-defining criterion conditional on knownMDA states along with an indication of
the binary cutpoints used to define the binary MDA defining criteria. Not surprisingly,
some variables appear to have more potential to discriminate between the two states
than others. Also shown in Fig. 2 are vertical bars within each histogram segment
which display the maximum likelihood estimation results for these distributions. The
negative binomial model can be seen to fit well for TJC, SJC and ENTH_TOT. How-
ever for PASI, BSA and HAQ, the shape of the negative binomial does not perfectly
represent the spike at zero and the distribution of the non-zero values. Similarly, for
PTPAINV and PTPSA, the variance of the observed distributions can be seen to dif-
fer slightly from the variance of the fitted binomial. Divergence from the histograms
which could result from an inappropriate distributional assumption and/or the fact
that the fitted distributions make use of additional data, as shown in columns three
of Fig. 2, from patients visits at which MDA can not be determined unequivocally
but which generate weighted contributions to the fit of the conditional distributions
of interest. To consider the possibility of inappropriate distributional assumptions, an
alternative model was explored. For PTPAINV and PTPSA, beta-binomial conditional
distributions were fitted, to account for the over/under-dispersion. For the remaining
three criteria, to robustify against model misspecification, these were coarsened into
two binary criteria, according to the definition of MDA from Coates et al. (2010b),
that is, HAQ > 0.5, and a single outcome of PASI ≤ 1 or BSA ≤ 3%, and binary
conditional distributions were fitted. The estimate of the expected total years in MDA
over 10 years under this model is 4.43, compared to 4.47, as reported subsequently,
under the original model. Therefore this key result appears to be robust to specification
of the conditional distributions of the outcomes.

The first two lines of Table 2 provide estimated mean lengths of one period in the
MDA andNoMDA states as well as the associated standard errors based simply on the
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two estimated transition rates from the model without explanatory variables in Fig. 1.
Results are provided from both the complete case analysis and the fitted partially
hidden multi-state model based on data from all patient visits. It can be seen that
there is an increased precision of estimation from the latter but also that the estimated
times are substantially less. Thus, there is evidence of potentially notable bias in the
complete case analysis. This may arise due to the variation seen between visits in the
outcome variables which suggests greater movement between states than would be
evident from the complete case analysis with its longer periods between observations.

The lower section of Table 2 presents estimation results for the expected total time
in MDA, the expected number of MDA periods and the probability of visiting MDA
at least once over a 10 year period. As well as providing results from the complete
case and the partially hidden multi-state model analyses, estimates are also provided,
through simulation as outlined in Sect. 3.4, for only MDA periods which last longer
than oneyear.As expected given the results for the length of times in the states, themore
complete use of the available data generates increased estimates for the expected total
time in the MDA state, the expected number of periods of MDA and the probability
of at least one period of MDA. And, again, as would be expected, these values are all
reduced when focus is only on MDA periods of sustained length.

Note that the results in Table 2 are influenced by the 10 year horizon. For example,
in the right column, the expected years in MDA of 4.47 is not the product of the
average duration in MDA, 3.10, and the expected number of entries, 1.96, because of
the 10 year cut-off when some patients would be expected to be in the MDA state.

4.2 Explanatory variables

Figure 3 presents estimated transition intensity ratios (HRs), and their 95% confidence
intervals, from the multi-state model when baseline explanatory variables, as deter-
mined when first entering the cohort, are incorporated into the transition rate functions
as specified in Sect. 3.1. The presentation is restricted to the results from twomultivari-
able analyses, using complete cases and using the partially hidden multi-state model,
incorporating the variables shown in Fig. 3. It can be seen that the most notable effects
are associated with sex and with disease presentation as reflected in polyarthritis and
axial joint involvement.

While the parameters represented in Fig. 3 derive from a very convenient relative
risk model for the effects of explanatory variables, it is perhaps difficult to commu-
nicate the overall clinical implications of these effects. For example, females appear
to be less likely to enter MDA and more likely to leave but it is useful to have some
indication of how these effects combine to create different patterns of disease.

Tables 3 and 4 gives an illustration of how this might be done. For simplicity two
single factor partially hidden multi-state model regression analyses, one including a
binary indicator of female sex and the other the two binary indicators for polyarthritis
and axial joint involvement are examined. These analyses, which do not adjust for
other explanatory variables and therefore not conditioned on them, are not directly
comparable to that presented in Fig. 3 but comparable calculations could be done for
any single factor holding other factors constant using this larger model. Measures of
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Fig. 3 Hazard ratios, with 95%
confidence intervals, from
complete case analysis (CC) and
partially hidden multi-state
models (HMM) with multiple
explanatory variables

0.4 0.8 1.2
HR (onset rate of MDA)

DMARD only

Biologics

PSA duration (10 years)

Age (10 years)

Joint damage (clinical)

Elevated ESR

Axial joints

Polyarthritis

Female

Multivariable, CC
Multivariable, HMM

0.5 1.0 1.5 2.0 2.5
HR (relapse rate from MDA)

various aspects of state occupancy for these two models are presented in Table 3 and
relative measures are presented in Table 4. Some of these measures can be calculated
analytically but also given are confidence intervals, all of which are derived from the
simulation approach of Sect. 3.4. The more positive prognosis for males in regard to
MDA can be clearly seen in the relative measures of Table 4, except for spells in MDA
where the number of spells is similar for males and females, being 1.84 for males and
1.86 for females.

For themodel including disease pattern variables, the relative size of the two regres-
sion coefficients seen in Fig. 3 is reflected in Table 4 by more dramatic effects for axial
involvement, or both axial and polyarthritis, relative to neither disease pattern being
present. Note that for both models, the effects on the odds ratio scale appear dramatic.
However, this derives partially from the high probabilities of at least one MDA spell,
for example 0.98 for males and 0.94 for females, so that odds ratios in this probability
range can be extreme although the absolute difference in probabilities is small.

5 Discussion

A partially hidden multi-state model provides a framework for studying intermit-
tently observed composite outcomes such as MDA. Notably, it provides a natural
way to incorporate observations from the constituent variables that define a composite
outcome from observation times when not all these variables are observed and the
composite outcome can not be determined. The analyses presented in this paper for
the specific case of MDA in PsA illustrate the potential for this to increase precision
and to protect against bias.

Coates et al. (2010a) previously examined MDA in psoriatic arthritis but as well as
requiring 5 of the 7 criteria to be fulfilled, also required that MDAmust be observed at
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Table 3 MDA prognosis over 10 years between various subgroups, under two single factor partially hidden
multi-state models. Model (a) includes a binary indicator of female sex only; Model (b) include two binary
indicators for polyarthritis and axial joint involvement

Model (a) Male Female

Sojourn time in no MDA 2.63 (2.32, 2.99) 3.55 (3.02, 4.16)

Sojourn time in MDA 4.18 (3.59, 4.86) 2.30 (1.93, 2.75)

Expected time in MDA 5.14 (4.81, 5.47) 3.39 (3.03, 3.76)

Expected time in sustained MDA 3.57 (3.26, 3.87) 1.94 (1.65, 2.24)

Time in short MDA 0.18 (0.15, 0.23) 0.30 (0.23, 0.37)

Time in long MDA 4.95 (4.64, 5.29) 3.09 (2.75, 3.48)

Time in first year of MDA 1.58 (1.46, 1.71) 1.45 (1.28, 1.61)

Time in later years of MDA 3.56 (3.27, 3.86) 1.94 (1.67, 2.24)

Spells in no MDA 2.23 (2.07, 2.41) 2.47 (2.23, 2.72)

Spells in MDA 1.84 (1.68, 2.03) 1.86 (1.61, 2.12)

Spells in short MDA 0.39 (0.32, 0.49) 0.66 (0.50, 0.84)

Spells in long MDA 1.45 (1.35, 1.54) 1.20 (1.09, 1.32)

Prob visit MDA 0.98 (0.96, 0.99) 0.94 (0.91, 0.96)

Prob visit long MDA 0.94 (0.92, 0.96) 0.82 (0.78, 0.86)

Model (b) No poly or axial Polyarthritis Axial Poly and axial

Sojourn time
in no MDA

2.16 (1.85, 2.52) 2.81 (2.32, 3.41) 3.40 (2.80, 4.13) 4.42 (3.62, 5.40)

Sojourn time
in MDA

3.83 (3.18, 4.61) 3.48 (2.82, 4.30) 2.83 (2.27, 3.54) 2.58 (1.99, 3.33)

Expected time
in MDA

5.51 (5.10, 5.90) 4.67 (4.19, 5.16) 3.85 (3.37, 4.33) 3.08 (2.62, 3.56)

Expected time in
sustained MDA

3.75 (3.36, 4.13) 3.09 (2.67, 3.51) 2.38 (1.98, 2.79) 1.84 (1.46, 2.25)

Time in short
MDA

0.22 (0.17, 0.29) 0.22 (0.17, 0.29) 0.25 (0.19, 0.33) 0.23 (0.16, 0.32)

Time in long
MDA

5.28 (4.87, 5.66) 4.47 (3.93, 4.90) 3.61 (3.10, 4.12) 2.85 (2.40, 3.37)

Time in first
year of
MDA

1.76 (1.60, 1.93) 1.58 (1.41, 1.78) 1.46 (1.29, 1.66) 1.24 (1.08, 1.42)

Time in later years
of MDA

3.74 (3.37, 4.09) 3.11 (2.65, 3.48) 2.39 (1.98, 2.79) 1.84 (1.46, 2.29)

Spells in no MDA 2.44 (2.20, 2.72) 2.34 (2.11, 2.64) 2.36 (2.11, 2.67) 2.20 (1.96, 2.48)

Spells in MDA 2.08 (1.85, 2.34) 1.89 (1.66, 2.20) 1.81 (1.57, 2.11) 1.56 (1.33, 1.85)

Spells in short MDA 0.48 (0.37, 0.63) 0.47 (0.36, 0.64) 0.54 (0.41, 0.73) 0.50 (0.36, 0.71)

Spells in long MDA 1.60 (1.48, 1.72) 1.42 (1.29, 1.57) 1.27 (1.13, 1.42) 1.06 (0.93, 1.20)

Prob visit MDA 0.99 (0.98, 1.0) 0.97 (0.95, 0.99) 0.95 (0.91, 0.97) 0.90 (0.84, 0.94)

Prob visit long MDA 0.97 (0.95, 0.98) 0.92 (0.88, 0.95) 0.86 (0.81, 0.91) 0.77 (0.71, 0.83)
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Table 4 RelativeMDAprognosis over 10 years between various subgroups, under two single factor partially
hidden multi-state models. Model (a) includes a binary indicator of female sex only; Model (b) include two
binary indicators for polyarthritis and axial joint involvement

Model (a)
(relative to male)

Model (b)
(relative to neither)

Female Polyarthritis Axial Poly and axial

Relative time

Sojourn time
in MDA

0.55 (0.44, 0.67) 0.91 (0.75, 1.19) 0.74 (0.58, 0.99) 0.67 (0.48, 0.97)

Time in MDA 0.66 (0.58, 0.74) 0.85 (0.75, 0.94) 0.70 (0.62, 0.79) 0.56 (0.47, 0.67)

Time in sustained
MDA

0.62 (0.54, 0.71) 0.84 (0.74, 0.94) 0.68 (0.59, 0.78) 0.54 (0.44, 0.66)

Relative number

Spells in MDA 1.01 (0.86, 1.20) 0.91 (0.78, 1.06) 0.87 (0.73, 1.02) 0.75 (0.60, 0.93)

Spells in long MDA 0.83 (0.74, 0.93) 0.89 (0.79, 0.99) 0.79 (0.70, 0.89) 0.66 (0.56, 0.78)

Odds ratio

Prob visit MDA 0.37 (0.18, 0.73) 0.35 (0.14, 0.74) 0.18 (0.07, 0.40) 0.086 (0.03, 0.23)

Prob visit
sustained MDA

0.28 (0.18, 0.44) 0.43 (0.23, 0.74) 0.22 (0.13, 0.38) 0.12 (0.06, 0.23)

consecutive visits for a minimum of 12 months in order to focus on sustained MDA.
In our example dataset, which updates that of Coates et al. (2010a), and based on
complete case data, 229/619 (37%) of patients achieved this and the median duration
of such episodes was 42 months (3.5 years), greater than the median of 28 months
presented in Coates et al. (2010a) based on earlier data on 344 patients. While there
may be other reasons for this difference, the difference is at least partially explained
simply on the basis of followup times as the length of MDA episodes will be censored
at the last observation time. For these episodes in our data which begin prior to 2008,
which is the cutoff for the data of Coates et al. (2010a), the mean duration is 76months
(6.3 years), reflecting the additional followup of the patients considered in Coates et al.
(2010a). For MDA episodes in our data beginning after 2007 the mean duration is 27
months (2.3 years). Thus, estimation of the length of MDA episodes in this manner is
problematic and the estimated mean durations arising from a two-state model should
be preferred as these are valid estimates not influenced by followup times.

As a check of the Markov assumption used in the models reported, a semi-Markov
model was fitted to the data with fully-observed MDA statuses, using “phase-type”
distributions. The two states are divided into two latent “phases”, resulting in a four-
state hiddenMarkovmodel in Fig. 4, with 6 instead of 2 transition rates to be estimated.
Thus the exponentially-distributed sojourn in each state is replaced by a sequence of
either one or two sojourns with different transition rates. This allows the transition
intensity from each state to change with the length of time spent in that state. The max-
imised likelihood changes from −1583 under the Markov model to −1481 under the
semi-Markov model, while the estimated time spent in MDA over 10 years increases
from 4.05 to 4.10. Given the estimates from this model, there is some evidence that the
transition intensities, both to and from MDA, decrease with time spent in the current
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Phase a Phase b Phase a Phase b

No MDA MDA

Fig. 4 Two-phase semi-Markov model, with two states (no MDA, MDA) each with two phases. This is a
hidden Markov model on the four phases, with allowed transitions indicated by solid lines. In any phase,
an individual can either move to the next phase within that state, or exit to phase (a) of the next state in the
Markov model it is based on (indicated by dashed lines)

state. However a similar phase-type model with the partially-observed data would be
challenging to define and identify from the data, and the principal results of interest
appear to be robust to departures from the Markov assumption.

The use of a multi-state model also allows a natural way to investigate the rela-
tionship between a composite outcome and explanatory variables. The model can be
parameterised in terms of relative transition intensity functions for the multi-state
model. However, it is also possible to make inference on relative measures of state
occupancy which may provide a more useful presentation of the effects of explanatory
variables. This approach to summarising findings from the use of a multi-state model
may warrant consideration in other contexts.

As in Coates et al. (2010a) where the relationship between sustained MDA and the
subsequent development of permanent damage in PsA was of interest, a composite
outcome measure may also be of interest in terms of its longitudinal relationship
to other outcomes. It is likely to be useful in this case to make use of a partially
hidden multi-state model for the composite outcome, with its more comprehensive
modelling, to understand better this relationship, particularly if prediction is not the
only or primary focus of the investigation. In somecases, an approach to thismight be to
incorporate the partially hidden multi-state model framework into a larger multi-state
model with state definitions also incorporating the additional outcomes to be related to
the composite outcome. This has been done for the combination of simpler multi-state
models in Tom and Farewell (2011). However, this will not always practical, or the
most useful, approach, so further investigation of this problem is warranted.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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