SUPPLEMENTARY TABLES FOR:

Genomic surveillance for hypervirulence and multi-drug resistance in invasive *Klebsiella pneumoniae* from south and southeast Asia

Kelly L Wyres DPhil¹, To N T Nguyen², Margaret M C Lam PhD¹, Louise M Judd PhD¹, Nguyen van Vinh Chau MD³, David A B Dance FRCPath^{4,5,6}, Margaret Ip MSc⁷, Abhilasha Karkey MSc^{5,8}, Clare L Ling PhD^{5,9}, Thyl Miliya MD¹⁰, Paul N Newton MRCP^{4,5,6}, Lan Nguyen³, Amphone Sengduangphachanh ¹¹, Paul Turner FRCPath^{5,10}, Balaji Veeraraghavan FRCP¹², Phat Voong Vinh MSc², Manivanh Vongsouvath¹¹, Nicholas R Thomson PhD^{6,13}, Stephen Baker PhD^{2,14*} and Kathryn E Holt PhD^{1,6}

¹ Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia

² Oxford University Clinical Research Unit, Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam

³ The Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam

⁴ Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos.

⁵ Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom

⁶ London School of Hygiene and Tropical Medicine, London, United Kingdom

⁷ Department of Microbiology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China

⁸ Oxford University Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal

⁹ Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand.

¹⁰ Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia

¹¹ Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR

¹² Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India

¹³ Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom

¹⁴ The Department of Medicine, The University of Cambridge, Cambridge, United Kingdom

* corresponding author:

Stephen Baker, Oxford University Clinical Research Unit, Hospital of Tropical Diseases, Ho Chi Minh City, Vietnam

Email; sbaker@oucru.org

K. quasipneumoniae subsp.		K. quasipneumoniae subsp.	K. variicola		
	quasipneumoniae	similipneumoniae			
N	5	20	9		
# STs	4:	17:	9:		
	2 Vietnam	7 Cambodia	3 Hong Kong		
	1 India	6 Vietnam	2 Cambodia		
	1 Nepal	5 Laos	1 India		
	Ĩ		1 Laos		
			1 Nepal		
			1 Vietnam		
Common STs ^a	ST1118-3LV (40%)	ST1191 (10%)	-		
	· · · · ·	ST1124 (10%)			
		ST334 (10%)			
# K loci	3	15	9		
Common	KL107 (60%)	KL60 (15%)	-		
K loci ^a		KL10 (10%)			
		KL13 (10%)			
		KL103 (10%)			
# O types	2	4	4		
Common	O3/O3a (80%)	O5 (55%)	O3/O3a (44%)		
O types ^a		O3/O3a (30%)	O5 (33%)		
		O12 (10%)			
% ESBL+	0	65%	0		
ESBL genes	-	CTX-M-15 (35%)	-		
_		CTX-M-27 (10%)			
		SHV-2a (10%)			
		CTX-M-14 (5%)			
		CTX-M-9 (5%)			
% Carb+	20%	0	0		
Virulence	-	ICEKp3 + iuc1 + iro1 +	ybt plasmid lineage		
determinants		rmpA + peg-344	(n=1 ST209-1LV from		
		(n=1 ST367 from Vietnam)	Cambodia)		

Table S2: Characteristics of non-Kp BSI isolate genomes

^a Only O types detected in >1 genome are shown.

	Prevalence (%)									
	K locus	Cambodia	Hong Kong	India	Laos	Nepal	Vietnam	Mean	ESBL+	Carb+
1	KL2	12	11	2	11	6	10	9	3	0
2	KL1	2	7	2	16	0	19	8	2	0
3	KL24	5	7	1	23	0	1	6	11	2
4	KL51	0	0	22	2	3	3	5	11	23
5	KL62	7	11	5	0	0	5	5	4	4
6	KL112	0	0	2	0	22	0	4	6	11
7	KL57	0	7	2	7	0	6	4	1	0
8	KL10	5	0	1	7	3	5	3	6	0
9	KL23	7	4	0	2	3	4	3	2	0
10	KL13	2	0	0	0	16	0	3	3	0
11	KL64	0	0	18	0	0	0	3	3	21
12	KL102	7	4	0	3	0	3	3	2	0
13	KL117	0	7	4	0	3	0	2	2	4
14	KL54	2	7	1	2	0	1	2	1	0
15	KL122	10	0	0	0	0	1	2	3	0
16	KL105	0	0	0	0	9	1	2	2	5
17	KL3	0	4	0	2	3	1	2	3	0
18	KL149	0	4	1	0	0	3	1	1	2
19	KL19	0	0	4	0	0	4	1	3	2
20	KL52	2	0	0	2	3	0	1	1	0
21	KL39	0	4	0	0	3	0	1	1	0
22	KL7	5	0	0	2	0	0	1	1	0
23	KL17	2	0	2	2	0	0	1	1	4
24	KL5	0	4	0	0	0	3	1	0	0
25	KL25	5	0	0	0	0	1	1	1	0
26	KL28	5	0	0	0	0	1	1	2	0
27	KL27	2	0	0	0	3	0	1	1	0
28	KL125	0	4	0	2	0	0	1	0	0
29	KL21	2	0	0	2	0	1	1	1	0
30	KL103	0	4	0	0	0	1	1	1	0
31	KL12	0	4	0	0	0	1	1	1	0
32	KL20	0	0	1	0	0	4	1	0	0
33	KL9	0	4	1	0	0	0	1	0	0
34	KL107	0	0	0	0	3	1	1	1	0
35	KL45	0	0	0	2	0	3	1	1	2
36	KL15	2	0	0	2	0	0	1	2	0
37	KL114	0	4	0	0	0	0	1	0	0
38	KL106	0	0	0	3	0	0	1	1	0
39	KL148	0	0	0	3	0	0	1	1	0
40	KL162	0	0	0	0	0	3	0	0	0
41	KL163	0	0	0	0	0	3	0	1	2
42	KL31	0	0	1	0	0	1	0	0	2
43	KL34	2	0	0	0	0	0	0	0	0
44	KL111	2	0	0	0	0	0	0	0	0
45	KL135	2	0	0	0	0	0	0	1	0
46	KL157	2	0	0	0	0	0	0	1	0
47	KL35	2	0	0	0	0	0	0	0	0
48	KL8	2	0	0	0	0	0	0	1	0
49	KL128	0	0	0	2	0	0	0	0	0
50	KL136	0	0	0	2	0	0	0	1	0
51	KL30	0	0	0	2	0	0	0	1	2
52	KL56	0	0	0	2	0	0	0	0	0
53	KL63	0	0	0	2	0	0	0	0	0
54	KL142	0	0	0	0	0	1	0	1	0
55	KL127	0	0	0	0	0	1	0	0	0

Table S3: K locus prevalence among K. pneumoniae sensu stricto.

56	KL164	0	0	0	0	0	1	0	0	0
57	KL22	0	0	0	0	0	1	0	0	0
58	KL42	0	0	0	0	0	1	0	0	0
59	KL81	0	0	0	0	0	1	0	0	0
60	KL124	0	0	1	0	0	0	0	1	0
61	KL33	0	0	1	0	0	0	0	0	0
62	KL43	0	0	1	0	0	0	0	0	0
63	KL50	0	0	1	0	0	0	0	1	0
	Unk	0	0	24	0	19	4	8	11	18

K-loci are ordered by highest to lowest mean prevalence across all sites. Note that the Thai site is excluded from these calculations due to small sample size (n=4). Unk; unknown.

	Prevalence (%)								
O type	Cambodia	Hong Kong	India	Laos	Nepal	Vietnam	Mean	ESBL+	Carb+
01	67	48	35	69	66	50	56	55	44
02	12	26	15	8	16	15	15	13	16
O1/O2 ^a	0	4	11	0	0	3	3	5	7
O3b	10	11	6	10	3	9	8	6	4
O4	2	4	0	2	3	4	2	3	0
05	7	4	0	0	0	4	2	1	0
O3/O3a	0	0	0	8	0	3	2	3	0
OL101	2	0	0	0	6	1	2	1	0
OL103	0	4	0	2	0	1	1	1	0
OL104	0	0	2	0	0	0	0	1	2
OL102	0	0	0	0	0	1	0	0	0
Unk	0	0	31	2	6	10	8	12	28

Table S4: Predicted O type prevalence among K. pneumoniae sensu stricto.

Predicted O types are ordered by highest to lowest mean prevalence across all sites. Note that the Thai site is excluded from these calculations due to small sample size (n=4).

^a It was not possible to confidently distinguish between O1 and O2 for a minority of genomes (n=12 in total). The prevalence of these genomes is shown here by site and among ESBL+/Carb+ isolates. These values are added at the second position in the cumulative prevalence plot (**Figure 2B**). Unk; unknown