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Abstract

The study of Bose-Einstein condensates (BECs) has represented a core sub-

ject of physics for decades. Recently however, experiments have demonstrated a

fundamentally distinct, inherently nonequilibriated class of BEC from photonic

quasiparticles known as exciton-polaritons (polaritons). These photonic conden-

sates are free to gain or lose energy as a part of their dynamics, and are thus not

constrained to tend towards thermodynamic equilibrium. This greatly increases

their pattern forming capabilities, but in turn severely complicates their theoreti-

cal treatment. The dynamical theory of these nonconservative condensates is an

emerging field which resides at the intersection of the theories of nonequilibrium

pattern formation, nonlinear wave dynamics and condensed matter theory. In this

thesis I describe several contributions to this theory of nonconservative quantum

hydrodynamics, and towards the argument that it truly represents a paradigmatic

departure from the now mature theory of equilibrium quantum hydrodynamics.

The polariton is formed in an optical cavity: cavity photons excite and super-

pose with excitons in a solid state sample to form bosonic light-matter quasipar-

ticles. However, photons are trapped in the cavity for finite times, and are thus
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continually lost. A key characteristic of the polariton condensate is thus that to

be created or sustained, they must be fed by an optical pump, which can take on

any incident geometry, and which can be resonant or nonresonant with the natural

frequency of the optical cavity. As a result, understanding the dynamical and

structural implications of different forcing scenarios is fundamentally important

for these systems, and exploring these scenarios is a major theme of this work.

In the first part of the thesis I focus on the role of pumping geometry on the

dynamical behaviours and structural forms that can emerge. First, I show that

an annular pumping geometry can lead to the spontaneous formation of stable

multiply charged vortices, fundamental topological structures which have long

been sought but are understood to be dynamically unstable even when imprinted

and externally trapped in equilibrium BECs. The spontaneous formation is shown

to come from the excitation of ring dark solitons in the early condensation, which

are in this scenario dynamically unstable to breakup into vortices. I then show

how the closed geometry of the forcing causes the stable binding of like-signed

vortices via particle flux forces. It is shown that the topological charge limit on a

multiply charged vortex formed this way is set by a Kelvin-Helmholtz instability,

the first example of such an instability in a nonconservative condensate system.

The acoustic properties of the multiply charged vortex are also considered, as they

are found to emit topological charge dependent density waves. Links to analogue

gravity and the process of quasinormal ringing are made.

I then elucidate the importance of the temporal symmetries imposed by the

pump forcing. In particular, I show that the combination of non-resonant and

resonant forcing generically leads to a fundamental breathing behaviour resulting

from frustration between the incommensurate U(1) phase symmetry of nonreso-

nant forcing and the Zn symmetry of nth order resonant forcing. The most severe

frustration is that between the U(1) and Z2 symmetries, a case which I thus give

special attention. In particular, I introduce a new solitary structure in this regime,
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a breathing ring dark soliton which represents a fundamental localized excita-

tion of the extended condensate under this maximal phase frustration, forming

spontaneously during the condensation process in a nonequilibrium analogue

of the Kibble-Zurek mechanism. I also study the instability of vortices in this

regime, which I show are unstable to self-slicing into dark solitons (Ising domain

walls), the opposite transformation known to equilibria condensates, in which dark

solitons are unstable to breakup into vortices via snake-instability. I then study

the pattern forming abilities in a condensate with a radially dependent degree of

phase-bistability, introducing a family of breather patterns which spontaneously

break rotational symmetry in favor of polygonal spatial symmetries, the order of

which can be tuned.

Finally, the inherent nonequilibration of the polariton condensate makes it a

natural setting to consider the problem of turbulence. I introduce a process by

which tuning the distances between a grid of pump spots allows for the formation

of a nondecaying turbulent state of tunable average inter-vortex spacing. I show

that this allows for the continuous tuning of quantum turbulence from the well

known regime of superfluid turbulence (well separated vortices) into that of strong

turbulence (separation of the order of a healing length), and into the theoretical

regime of quantum weak turbulence, in which vortices have mean separations

below the healing length and cores become destructured. I also discuss the

possibility of observing the signatures of turbulence in polariton condensate

experiments.
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Chapter 1

Preliminaries

1.1 Introductory Remarks

As far as can be told, everything we experience can be described by fundamental

quantum particles. These are divided into two classes, fermions and bosons. While

no two fermions are able to occupy the same quantum state, bosons have no such

restriction. Nearly a century ago, based on the quantum statistical theory Bose

and Einstein predicted a special state of bosonic gases. This condensate phase

would occur when the gas is cooled so that the bosons simultaneously occupy the

ground state, so that the macroscopic many-particle quantum system becomes

spontaneously coherent and can be described by a single effective wavefunction.

Since the first successful experimental creations of Bose-Einstein condensates

(BECs) from atomic vapours a quarter-century ago, the field has exploded into a

major component of contemporary physics research. Due to their macroscopic

exhibition of quantum phenomena they have allowed for the creation and probing

of new physical regimes, as well as the engineering of macroscopic physical

simulations of atomic-scale quantum many body processes [1].

Given the importance of BECs to physicists as a tool used to study and engi-

neer quantum systems, in addition to the inherent interest in their fundamental
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physics, there is a large and varied literature focused on their fundamental exci-

tations. While much BEC related research takes place in the regime in which

quantum fluctuations play an important role [2], there is also a huge interest in the

hydrodynamical regime, in which the mean field theory applies and the BEC can

be modelled by a semiclassical field equation. In particular, a great deal of effort

has gone into the discovery and characterisation of self-localized excitations such

as quantized vortices. While still an intensely active area of research, this field has

over the years reached a stage of maturity.

Their is a current trend in condensed matter physics intent on moving the scope

of our understanding beyond near-equilibrium physics. This has required paradig-

matic shifts in our thinking, but continues to promise correspondingly weighty

rewards. In the context of quantum gases, this has been represented by the experi-

mental achievement of the condensation of the inherently far-from-equilibrium

quasiparticle excitations of solid state photonic systems. These fundamentally

distinct condensates do not conserve particle number, instead gaining and los-

ing particles as a part of their complicated dynamics. This thesis presents some

contributions to the theory of the hydrodynamics of these nonconservative quan-

tum fluids, and introduces some fundamental excitations which are novel to such

systems.

The purpose of this introductory chapter is to familiarize the reader with

the context out of which the central motivations and methods of this work have

emerged. I thus begin with a brief discussion of dilute equilibrium BECs. Besides

contextualizing the history of BEC research, this serves two purposes. First, the

equilibrium BEC is a much simpler system in which to introduce some important

concepts. Second, a review of equilibrium BEC phenomena serves as a foil against

which we will introduce nonequilibrium phenomena.

I will then provide an introduction to the physics of exciton-polariton conden-

sates, the prototypical physical case of the nonconservative quantum fluid. These



1.1 Introductory Remarks 3

are condensates of hybridized light-matter which live inside of optical cavities.

These BECs are characterized by a strange combination of properties stemming

from both constituents, and really represent an interstitial physical regime, residing

somewhere between the limiting behaviours represented the equilibrium BEC on

the one side, and on the other the highly nonequilibriated pattern-forming systems

seen in nonlinear optical cavities. According to the intuition gained from the

literature on atomic BECs, some of the behaviours that I will discuss in polaritonic

BECs may seem counterintuitive at first, but I hope to make clear throughout

this work that they are not actually so counterintuitive when viewed from the

perspective of classical optics.

Following this introductory chapter, the thesis structured in the following way.

In Chapter 2 I address the problem of breathers in exciton-polariton con-

densates. Specifically, I introduce two classes of solitonic breathers, which are

shown to naturally emerge from systems fed by both resonant and nonresonant

forcing. The first class is of annular breathers which may form spontaneously

in homogeneous condensates and which are solitonic in the typical sense, being

self-localized and free to move about in response to interactions. The second

excitations are pinned, but exhibit spontaneous rotational symmetry breaking

into polygon-symmetric breathers, which makes for the emergence of a naturally

quantized rotational degree of freedom. These fundamental, localized breathers

are important examples of the types dynamical structures which cannot exist in an

equilibrium quantum fluid. This chapter is made from the (reordered) combination

of two articles, one published as a rapid communication in Phys. Rev. A [3] and

one currently under review at Phys. Rev. Lett [4].

In Chapter 3 I show that multiply charged vortices are a natural topological

excitation of the exciton-polariton condensate, when spatially separated from

the forcing which sustains it. The multiply charged vortex is a structure which

has long been sought in quantum fluidic systems, but without much success: in
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an equilibrium BEC the multiply charged vortex is dynamically unstable. The

properties of these new structures are then studied. Interestingly, I show that their

maximum vorticity is limited by a Kelvin-Helmholtz instability, a textbook insta-

bility in classical and quantum fluid dynamics which had not yet been observed

in a nonconservative system. This chapter represents the results of an article

published in Optica [5].

In Chapter 4 I will discuss turbulent systems of many vortices. Turbulence has

not yet been observed in any polariton condensate experiments; with numerical

experiments I will demonstrate two methods of generating turbulence in such

a system, and show that the density of vorticity can be tuned continuously into

the theoretical regime of weak quantum turbulence. I will also discuss some

unpublished experimental results from Dr. Daniele Sanvitto and his Advanced

Photonics Group in Lecce, which I argue show the signatures of turbulence.

1.2 Condensation of Dilute Bose Gases

1.2.1 A Rough Sketch

Fermions, the class of particles having half-integer spin, are antisymmetric under

the operation of particle exchange, and no two of these particles may occupy the

same quantum state. Bosons, which have integer spin and are symmetric under

such exchanges, have no such restriction and may share occupation of the same

state. Thus at low temperatures, the ground state can in theory be shared by many

or all of the constituent particles.

At higher temperatures, these quantum effects have vanishing effect on the

statistical behaviour of a dilute gas. For an intuitive idea of this, it is helpful to

refer to the matter-wave picture of de Broglie. The de Broglie wavelength λdB of
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a particle of mass m at temperature T is written as

λT =

√
2πℏ
mkT

(1.1)

where k is the Boltzmann constant and ℏ the Planck constant. At nonvanishing tem-

peratures and atomic masses this lengthscale is microscopic, so that the constituent

bosons are well described as classical point-particles. As an order-of-magnitude

calculation, we would then expect the onset of any quantum effects to occur when

the temperature of the gas is lowered such that the lengthscale of the de Broglie

matter-waves become comparable to the lengthscale of the interparticle spacing.

In this case the individual wavefunctions, all (or in part for finite temperatures)

sharing the ground state and overlapping in space may become spontaneously

coherent.

This estimate of the transition temperature turns out to be fairly good, and for

typical alkali gas experiments this temperature is on the order of 100nK. This is

very cold, in fact colder than interstellar space, but is achievable in experiments

via a combination of laser and evaporative cooling. Though is exists in different

iterations, the most common version of laser cooling works by trapping the

gas with lasers incident from all directions, which are redshifted from the peak

absorption frequency of the particles. Thus due to the Doppler effect, the chance

of absorption is increased when a particle is moving against the propagating

optical field. Invoking the geometry of the laser trap, it is clear that every particle

motion is counter to a field, and thus the particle motions are, on average, reduced,

reducing the temperature. The development of this technique was a major technical

achievement, which was acknowledged by the 1997 Nobel prize in Physics. The

evaporate cooling in turn works by allowing the higher-energy particles to leak

from the trap, lowering the average energy of the system.
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The details of these cooling processes are not, themselves, important for the

subject of this thesis, nor are the absolute temperatures of the condensation of

alkali gases. However, it is important to provide the reader with an idea of the

experimental challenges involved in the creation and study of a BEC of atomic

gases, if not to inspire tremendous respect for those who do such experiments,

then to provide some idea of experimental constraints; coaxing bosonic gases into

the BEC phase is difficult enough without fancy trapping geometries, etc.

The other significant point made so far, for our purposes, is the relationship

between the mass of the condensing particles and the BEC transition temperature.

Soon we will discuss bosonic quasiparticles with ultralight effective masses,

which then allows for condensation to take place at temperatures approaching

room temperature.

1.2.2 Mean Field Theory

The quintessential, perhaps defining property of a quantum fluid is its ability to be

described macroscopically by a classical field (the so called mean field.) In such

a treatment, the physics occurring at lengthscales smaller than that of the mean

inter-particle spacing are lumped together (or more properly integrated out) into an

effective long-wavelength interaction. This process thus takes an unapproachably

high-dimensional quantum many-body problem and replaces it with a classical

field. The fact that this works for a particular system is not trivial. Formally, the

mean field approximation works well when the lengthscale of the microscopic

interactions is much smaller than that of the mean interparticle spacing, so that the

interparticle interactions can be treatable as delta functions when viewed from the

lengthscale of the ensemble. In typical dilute alkali gases used in the laboratory,

the scattering lengths are indeed significantly smaller than the average interparticle

spacings, while temperatures can be lowered such that the lengthscale of the de
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Broglie matter-wavelengths are comparable to the interparticle spacing. Thus the

mean field treatment is well justified here, and indeed works extraordinarily well.

A fairly intuitive derivation of the mean field equation of the BEC of typical

dilute alkali gases turns out to be reasonably simple, and quite robust because of

the conditions given above. However, the derivation is more a matter of technical

machinations than it is worth for the purposes of this thesis, which as we will

discuss later is based on less rigorously supported phenomenological models.

Here we are more interested in the dynamical phenomena which follow from the

form of the mean field equation, we will simply state the result of the mean field

treatment of the dilute atomic BEC, the famous Gross-Pitaesvkii equation (GPE).

For the reader interested in the derivation, I recommend the pedogogical treatment

presented by [6]. For those left unsatisfied by a "physics proof", there is the much

longer but mathematically rigorous derivation of Lieb and colleagues [7], which

proves that the GPE indeed follows asymptotically from first principles.

Interestingly, the Gross-Pitaesvkii equation was first developed as a mean field

description of superfluid helium, a system which is by no means dilute. Superfluid

4He was understood very early on to have to do with Bose-Einstein condensation

(the isotope 4He is bosonic). However, the liquid helium is very far from our

diluteness condition of the mean field theory, and due to the nature of the strong

interactions between helium atoms, even at very low temperatures the condensate

fraction tends to be quite low. Despite the Gross-Pitaevskii equation originating as

a model for helium, it is much more theoretically justified as a model for dilute,

weakly interacting condensed gases; all in all, helium represents a much more

theoretically difficult problem, as the microscopic degrees of freedom are not so

willing to be integrated out.

Only a few years after the experimental achievement of alkali gas BECs by

the Boulder and MIT groups, the soon-to-be Nobel laureate Anthony Leggett
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wrote about the relationship between the dilute BEC and superfluid helium 1,

making clear that the two represent entirely different physical regimes despite

their common underlying physics [8]. While superfluid helium represents the

historical beginning of the field of quantum fluid dynamics, the direct historical

and conceptual precursor to the subject of this thesis is the weakly interacting

condensate of dilute gases. Thus there will be no review of helium here, and every

mention of the equilibrium BEC should be read to refer to that of dilute gases.

Without further ado, the time dependent GPE of a BEC trapped with external

potential V (r), particle mass m, and effective particle-particle interaction strength

g takes the form

i∂tΨ(r, t) =
(
ℏ2

2m
∇

2 +V (r)+g|Ψ(r, t)|2
)

Ψ(r, t) (1.2)

where we denote ∂t =
∂

∂ t , and write the Laplacian operator as ∇2 (these notations

will remain consistent throughout).

This might seem to be a extraordinarily simple equation for such a complex

physical scenario, with very many microscopic degrees of freedom having been

integrated out. However, this simple equation has stood up against what is now a

quarter century of experimental data probing a range of macroscopic dynamical

phenomena, from vortex structure and soliton instabilities to traped cloud profiles

[? ]. Indeed, the hydrodynamic regime of the the dilute BEC is well described by

the GPE, and while other interesting physical regimes can and are probed, their

hydrodynamics represents a large and significant component of the nature of these

condensates. Some have actually found the high degree to which experiments tend

to match the GPE to be surprising. Leggett, only a few years after the Boulder/MIT

experiments gave the opinion that the robustness of the GPE seemed to be too

good and must have to do with some unknown symmetry related to the harmonic

1The essay of Leggett presents a wonderfully written historiography of quantum fluid physics,
and is worth reading.
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trapping typically used in experiments [8]. As time has gone on however, other

trapping geometries have been engineered without apparent anomalies. Regardless

of whether or not there may exist some yet-to-be-known quantum anomaly in

some extreme yet-to-be-probed regime, it remains true that the GPE represents

an excellent description of a large physical regime and captures a great deal of

important physics. We will see later that much of the GPE and its physics is

actually quite generic, and has applications far beyond BECs, which given its

erasure of any structural distinctions in the short-wavelength physics, should not

be entirely surprising.

1.2.3 Dark and Grey Solitons

We begin by considering the form of the condensate density profile near an infinite

wall potential, which tends to uniformity away from the wall. At the wall the

potential is infinite and the density must vanish, and thus very close to the wall the

effective particle interaction potential dominates the structure. Far from the wall

the potential energy is null and the kinetic term dominates. The lengthscale of the

transition from the density null to uniformity, called the healing length, is thus

defined as the lengthscale at which the interaction energy and the kinetic energies

are equal. Denoting the healing length as ξ , we can thus write

ξ =
ℏ√
2mg

ρ
− 1

2 (1.3)

where we define the condensate density ρ = |Ψ|2. This length is of fundamental

importance, representing the shortest distance over which the condensate can "fully

vary". This is thus considered the smallest relevant lengthscale in the dynamical

theories within the mean field treatment. In experiments this length is typically

significantly larger than that of the mean interparticle spacing, and thus even at
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this minimum dynamical lengthscale we do not have to worry about the physical

applicability of the mean field treatment.

The exact solution to the density profile of the condensate with one wall bound-

ary follows almost as easily as the determination of its characteristic lengthscale,

following the method of [6]. A time-independent solution to the one-dimensional

GPE can be written in the form Ψ(r, t) =
√

ρ(r)exp(iµt), where ρ(r) is the time

independent wavefunction density and where we define the chemical potential

µ , which is merely the constant of the phase evolution. The one-dimensional,

time-independent GPE in Cartesian coordinates is written as

µψ(r) =
ℏ2

2m
d2ψ(r)

dr2 +g|ψ(r)|2ψ(r). (1.4)

Obviously, for a uniform condensate profile the differential term of Eq. 1.4

vanishes, so that µ = g|ρ0| where ρ0 is the unperturbed condensate wavefunction

density (fully healed). Entering this into Eq. 1.4 we get the second order ordinary

differential equation (ODE)

d2ψ(r)
dr2 =

2mg
ℏ2

(
|ψ(r)|2 −|ρ0|

)
ψ(r), (1.5)

which can be solved exactly by recognizing a first integral, inverse scattering

transform methods, or by the Lie algebraic method of similarity transformations

[9]. Again defining the wall at r = 0 and healing in the positive r direction, the

solution can be easily confirmed to take the form

ψ(r) =
√

ρ0 tanh(
r√
2ξ

). (1.6)

It is worth noting that this solution also holds when we allow the condensate

to heal along both the positive and negative r directions. In this case the result is

a density "dip" with width characterized only by ξ , within an otherwise uniform
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condensate of density ρ0. However there is also phase structure, with a discontinu-

ity (π phase jump) at the density minimum. Such a solution is thus topological in

nature, and given the phase-symmetry of the GPE, is necessary to simultaneously

allow for two ground state solutions which have adopted opposite phase, whether

by phase imprinting or spontaneously during the condensation process.

This structure is quite fundamental to many systems, and is known under

several names which emphasise different aspects of its nature. Emphasising the

density zero and qualitatively solitonic character 2 the structure is called a dark

soliton. Emphasising the phase discontinuity it is called a kink, or a domain wall as

the structure separates two degenerate ground state solutions with opposed phase.

While this analytical solution is only exact in the one-dimensional problem, it is an

important and fundamental conceptual structure and will be useful in generating

the anzatz used in variational methods when tackling more difficult scenarios

beyond atomic BECs.

The dark soliton is the simple, stationary case of a more generic class of

structures derived in 1971 by Tsuzuki [10]. This wider class of exact solutions

includes the so-called grey solitons, which are characterized by density depressions

which do not reach zero, and which move at a velocity set by both their depth and

the healing length. The derivation of the general solution is again more tedious

than illuminating for our purposes, so we will just state it. The grey/dark solitons

take the form [10, 11]

ψ(r) =
√

ρ0

i
vds

cs
+

√
1−

v2
ds

c2
s

tanh

r− rds

ξ

√
1−

v2
ds

c2
s

 . (1.7)

2Historically, a self localized structure was only called a soliton if its collisions resulted in
unchanged forms, aside from a phase factor. More recently, the terminology has loosened: now
just about any self-localized structure is called a soliton. The distinction is important in some
contexts, but not here. I will thus conform to the more recent (circa 1990’s) literature and call
structures solitons which do not meet the historical definition.
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denoting the speed of sound in the condensate as cs =
√

ℏ
ξ m , and the position and

constant velocity of the soliton along the r axis as rds and vds respectively. It was

also shown in the original work of Tzuzuki that the velocity of the grey soliton is

simply that of the speed of sound at the density minimum ρds, so that

v2
ds

c2
s
=

ρds

ρ0
. (1.8)

Thus when deep, the gray soliton moves slowly, tending towards the stationary

limit of the dark soliton. Sustained in their localized form by the balance of

dispersion and nonlinearity, these are effectively massive and are thus particle-like

in nature [6]. However, it can be shown variationally that the effective inertial

mass and thus the kinetic energy of the soliton increases as it is slowed/deepened.

In this way the soliton has an effectively negative mass [10, 12? ]. In contrast,

the shallow soliton approaches the limit of the vanishing density perturbation

travelling at the local speed of sound and are thus sound-like in nature.

While these structures represent exact solutions in one dimensional space, this

does not generally mean that they are stable, especially in higher dimensional

spaces. First, there is the issue of the negative mass: it is more energetically

favorable for the soliton to accelerate and become shallow, until reaching the

speed of sound at vanishing depth – this is to say that the solitons are unstable to

dissipating acoustically. Further, the reader may have noticed that the form of the

dark soliton solution given in Eq. 1.6 assumed the realness of the wavefunction.

This was without loss of generality: ψ could have been imaginary, or for that

matter fixed to any diametric axis in the complex plane. However it is very

important to note that unless the wavefunction is continually constrained to that

subset of the phase space, perturbations may break the condition. Therefore the

dark soliton, which is characterized by a topological defect (phase discontinuity),

is not in fact topologically protected, as in the full complex plane the defect may
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be smoothly mended. In particular, in two dimensions, dark solitons are unstable

to the so called snake instability, in which they couple to the extra spatial degree of

freedom and buckle into pairs of vortices of opposite charge which are linked by a

grey soliton; the vortex/antivortex pair may then annihilate while maintaining net

topological charge (total vorticity of the system). This process has been studied a

great deal in theory and has been observed directly in experiments [13, 14].

Again, these solitons are highly fundamental, and there is a huge literature

on them. Much of that literature predates the realization of dilute atomic BECs,

having been a very important part of understanding the dynamical phenomena of

laser systems. Here the important point is to communicate the basic idea of their

structure as well as the difficulties of instability in higher dimensions, which will

be important context when we get to the chapter on breathing solitons.

1.2.4 Vortices

The quantization of vorticity in the BEC follows directly from the single valued

nature of the wavefunction. This is seen clearly by rewriting the generic wave-

function as the Ψ as the product of an amplitude and a phase term, the so called

Madelung transformation Ψ =
√

ρ exp(iφ). Inserting the transformed wavefunc-

tion into the GPE (Eq. 1.2) and separating real and imaginary terms, we get two

equations, and introducing the velocity field as v = ℏ
m∇φ , these are written as

∂tρ +∇ · (vρ) = 0 (1.9)

m∂tv =−∇

(
mv2

2
− ℏ2

2m
√

ρ
∇

2(
√

ρ)+gρ +V (r)
)
. (1.10)

The first equation is a statement of continuity, while the second takes a form

analogous to the integrated Euler equation of classical fluid dynamics. Due to their
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fluid-dynamical form, these equations are generally referred to as the quantum

hydrodynamical form of the GPE [15]. It follows trivially from the scalar form of

the velocity potential that for simply-connected3 velocity field v,

∇×v = ∇ · ( ℏ
m

∇φ) = 0. (1.11)

The field is thus irrotational. This is a deeply fundamental constraint on the

dynamics of the quantum fluid, telling us that any rotational flows require phase

singularities at which the condensate must vanish such that simple-connectedness

is lost. These singularities, about which the phase smoothly cycles by an integer

multiple of 2π , are known as quantum vortices. At the vortex singularity, the

density necessarily vanishes, making the condensate topologically nontrivial. The

topological charge is a conserved quantity in the equilibrium condensate, and thus

the individual quantum vortex is protected against dissipation by its topological

charge - a vortex must be destroyed by annihilation with a vortex of opposite

topological charge.

The density profile of a single quantum vortex in an otherwise uniform con-

densate is rotationally symmetric, and is thus characterised only by its topological

charge and radial structure. Writing the GPE in radial coordinates and inserting the

anzats Ψ(r,φ) =
√

ρ(r)exp(iℓφ) for topological charge ℓ results in the following

equation for the radial amplitude f =
√

ρ(r)

f
′′
+

f
′

r
+

(
1− ℓ2

r2 − f
)

f = 0 (1.12)

The solutions are not amenable to being written in closed form, but can be solved

numerically, as shown in Fig. 1.1. Alternatively, there has also been work done

on Padé approximations for these profiles [16]. We will see an equation very

3The property maintaining that any loop in the space can be smoothly contracted to a point.
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Fig. 1.1 Numerical solution of Eq. 1.12, for ℓ = 1 (solid) and ℓ = 2 (dashed).
Image from the textbook of Pitaevskii and Stringari [17].

close in form to Eq. 1.12 in the chapter on multiply charged vortices in polariton

condensates.

An important quality of the quantized vortex is its reaction to the surrounding

fluid flow. From Eq. 1.10 it can be shown that (simply as a potential flow problem)

the flows obey Kelvin’s theorem and thus there is no drag force in the flow about a

body [6]. As a result, the vortex simply travels with the local condensate flow. In

a system of two vortices, each moves according to the flows created by the other,

resulting in the so-called superfluid Magnus force. Far from the density null at

the vortex center, the vortex can be considered as a simple and well defined phase

structure without density structure, which generates flows according to the equally

simple Biot-Savart law familiar from elementary electrodynamics. However, when

vortices are not well separated, the problem becomes much more difficult [18].

While a vortex with unit topological charge has strong protection against

dissipation due to the topological charge conservation constraint, a vortex singu-

larity with higher than unit vorticity may indeed break into unit vortices while
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Fig. 1.2 Experimental images of rapidly rotated condensate (a), which is given
an evaporative boost in rotation after which some vorticity concentrates (b) until
decaying back into the stable lattice configuration (c,d). Image taken from [21].

conserving the topological charge, and thus there is no topological protection

against such decay [19–21]. Indeed, multiply charged vortices are energetically

unfavorable and dynamically unstable: the typical scenario of a rapidly rotated

BEC in a harmonic trap thus involves the formation of the so-called Abrikosov

lattice of unit vortices [22]. A great deal of theoretical and experimental work

has gone into the hope of forcing the stability of "giant" vortices with higher-

than-unit vorticity [23–28]. The best studied approach is that of the BEC in a

rapidly rotated trap, where rotation is performed by slightly distorting the trap (by

weakly breaking rotational symmetry) and rotating the symmetry axis. Such a

process can induce high vorticity in a condensate, with vorticity on the order of

hundreds of units in some experiments. However, it has been shown theoretically

[23, 24, 29] and supported by direct in experimental observation that in harmonic

traps the Abrikosov lattice is always energetically favorable to the concentration

of vorticity in a shared, central core [30]. Theory does however predict [23, 24]

that in an infinite wall potential, the rapidly rotated condensate in a trap of fixed

radius cannot expand to accommodate the Abrikosov lattice of a high enough

total vorticity; the condensate instead "creeps up" the wall, concentrating in a ring

profile due to the centrifugal force from the rotation. In the limit of very high

rotation speeds, the condensate thus tends to an effective ring profile, in which

there is no density near the core (thus the problem of higher order vortex stability
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is circumvented by the condensate not being simply connected in the first place)

[31]. While this works in theory, in reality the process is highly nontrivial and

only the short-lived, partial concentration of vorticity has been achieved, as shown

in Fig. 1.2 [21]. We will discuss this again in the chapter on multiply charged

vortices.

1.2.5 Profile in a Trap

The density profile of a condensate in a trap which varies gradually (relative to

the healing length) can be solved by making what is known as the Thomas-Fermi

approximation. Starting from the stationary GPE and at this point setting units

such that ℏ
2m = 1, we define the slowly varying external potential Vext and make

the Madelung transformation to yield

∇ · (ρv) = 0 (1.13)

µ = ρ + v2 +Vext −
1
√

ρ
∇

2√
ρ. (1.14)

As we have defined the external potential to vary slowly , we expect the condensate

density to vary smoothly as well, so that we can neglect the so-called quantum

pressure term 1√
ρ

∇2√ρ . We can then solve the problem exactly, with the solution

ρ = µ −Vext for µ −Vext ≥ 0 and ρ = 0 otherwise, and v = 0. The approximation

works very well for the bulk of the condensate, and less well near the edges.

Variational methods and asymptotic expansions can show exactly how well this

simple solution holds up for a particular external potential (see [6]), but the exact

profile of a trapped BEC is not of significant interest here. Rather, it is a nice way

of demonstrating that the equilibrium condensate supports nonuniform steady state

solutions with zero velocity; this will not be the case for polariton condensates.
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1.2.6 Remark on Symmetries

One of the wonderful properties of the Gross-Pitaevskii equation is that it is highly

symmetric. The full symmetry group of the GPE in two dimensional space is the

Lorentz group SO(2,1) [32]. For the purpose of this thesis, the most important

symmetry is that of particle conservation 4. It is hard to stress how simplifying

this assumption is; without restricting the system to tend towards equilibrium a

system is much more free in its dynamics. For example, we will see that the spon-

taneous rotation of nonconservative condensates is allowed by the gain processes

of a nonconservative system, and that breathing structures can exist indefinitely.

However, while freeing, the nonequilibriation is also complicating: for example

while in an equilibrium nonlinear field such as is described by the GPE, solitons

may exist via the balance of dispersion and nonlinearity as demonstrated by the

exact solutions to the dark and grey solitons problems in 1D. In a nonequilibrium

system such as is the subject of this thesis, such structures can only exist when

they balance dispersion, nonlinearity, gain, and loss. This makes analytical soliton

descriptions difficult at best, especially in more than one spatial dimension.

1.3 Exciton-Polariton Condensates

1.3.1 Exciton-Polaritons

The exciton-polariton condensate is the object of interest in this thesis, and will be

introduced here. The "polariton" is actually a class of quasiparticles which form

when an optical oscillator and a matter oscillator sync through their interactions,

so that they become effectively merged into hybrid eigenstates (the polariton)

which take on both light-like and matter-like properties. The exciton-polariton is

4There have been experiments in which particles are allowed to flow in and out of the system,
as in [2, 33], but these are highly-engineered exceptions
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thus the superposed excitation of a cavity photon (the optical oscillator) and an

exciton (the matter oscillator).

A variety of solid state samples have been used with various properties. How-

ever, we will describe the first and most common sample, the semiconductor

microcavity. This cavity generally takes on a Fabry-Perot geometry, an opti-

cally transparent material sandwiched by two distributed Bragg reflectors (DBRs).

These reflectors are photonic crystal heterostructures composed of thin layers

of materials with differing refractive indices. These reflectors serve to confine

photons which enter the cavity, yielding trapped cavity photons which are two-

dimensional and thus have an effective rest-mass (about four orders of magnitude

lighter than that of the electron) in the plane in which they are confined. The

dispersion relation of the cavity photon takes the form

Eph(k∥) =

√
E2
⊥+

ℏ2c2k2
∥

n2 (1.15)

in which n is the refractive index, and E⊥ is the energy of the photon whose

propagation axis aligns with the confinement axis, which can be written as ℏcπN
nL

where N is the integer cavity mode number and L is the length of the cavity. The

transverse wavevector k∥ is the off-axis component of the photon wavevector, and

from the form of Eq. 1.15, gives us a sort of effective kinetic energy. Of course,

cavity photons cannot remain trapped indefinitely, simply from the fact that no

reflector is perfectly reflective. Thus after a time characterized by the quality of the

reflectors, the cavity photon mode decays through the emission of a free photon

from the cavity with the same momentum as the cavity photon. Thus to sustain a

cavity photon mode, a supply of new photons must be pumped into the cavity.

Optically active excitons are easily excitable in direct-bandgap semiconduc-

tors; in an indirect bandgap semiconductor such as silicon, the excitons are not

amenable to strong optical coupling. A typical indirect bandgap semiconductor
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Fig. 1.3 (a) Schematic of typical microcavity and (b). Dispersion curves of cavity
modes, including upper and lower polariton branches. Image taken from [36].

used in exciton-polariton experiments is Gallium Arsenide (GaAs). To match the

confinement of the cavity photons, the active semiconductor is typically sand-

wiched between layers of higher bandgap energy semiconductors to form a quan-

tum well (QW), confining excitons to the plane. These microstructures, including

the cavity and the quantum well, can be grown very precisely in the laboratory

as a single object [34, 35], so that the optical confinement plane lines up exactly

with the quantum well confinement plane. This allows for the strong coupling

between the quantum well excitons and the cavity photons, which is, critically,

characterized by the reversibility of that coupling. It is this reversability which

allows for the back-and-forth excitation (of an exciton) and emission (of a cavity

photon) to repeat many times before the photon eventually leaks from the cavity.

When the timescale of this repeated transfer of energy between exciton and cavity

photon is small compared to the lifetimes of uncoupled excitations, the coupled

excitations can be treated as distinct quasiparticles.
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The Hamiltonian for the coupled system can be written as

Hpol = Hph +Hexc +Hint = ∑
k

Eph(k)a†
kak +∑

k
Eexc(k)b†

kbk +ℏΩ(a†
kbk +b†

kak)

(1.16)

in which a†
k and ak are the photon creation and annihilation operators, and b†

k and

bk are those of the exciton, and where Ω is the Rabi frequency. This Hamiltonian

can be diagonalized to yield the eigenstates [37]

ELP(k∥) =
1
2

(
Eph +Eexc −

√
4ℏ2Ω2 +(Eexc −Eph)2

)
(1.17)

EUP(k∥) =
1
2

(
Eph +Eexc +

√
4ℏ2Ω2 +(Eexc −Eph)2,

)
(1.18)

which are the so called lower polariton and upper polariton branches. A schematic

of the upper and lower polariton dispersion curves in relation to those of the

exciton and cavity photon dispersion curves is shown in Fig. 1.3. Clearly, for

high transverse momentum the upper and lower polariton branches tend towards

being cavity-photonic or excitonic in nature, respectively. For a more detailed

description of the quantum theory of exciton-polaritons themselves, including

the process of the diagonalisation of Eq. 1.16, and of the theory of the related

scattering processes, see [37, 38] and the references therein.

1.3.2 Pumping

A sustained population of polaritons must balance the consistent loss of particles

due to the finite reflectivity of the cavity with the input of new particles via

"pumping". The losses can be tuned simply by changing the quality and number

of dielectric Bragg mirrors in the microcavity. This tuning of loss rate can even be

engineered to have a spatial structure, but the results of this thesis will not rely on

such difficult manufacturing processes.
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We will, however, rely on the two types of pumping: resonant and nonresonant.

In both cases, we will consider pumping by a laser 5. In the case of the nonresonant

pumping, the laser feeds the cavity with photons which are far from the exciton

absorption energies. These photons therefore have to undergo many scattering

processes before exciting polaritons, a process by which the pumping of the

polaritons become effectively incoherent, with the phase structure of the input

laser being lost by the time it couples to the excitons. In contrast, resonant pumping

uses a laser which is, as the name suggests, at a frequency resonant with the cavity

and which directly excites excitons. This imprints the phase information from the

coherent laser pump on the polaritons formed by this mechanism. Both first and

second order resonant frequencies (at 1:1 and 1:2 resonance with the cavity) have

been successfully used in experiments to form polariton condensates [39].

Very recently, experimentalists have achieved the simultaneous, independently

controlled pumping of polaritons with resonant and nonresonant lasers [39]. In

these experiments, chemical etching of a GaAs substrate allowed for the resonant

excitation from the back side of the cavity, which prevented backscattering while

allowing synchronization. This technique makes it possible to independently vary

the pumping intensity distributions of resonant and non-resonant excitations. In

experiment, 2 : 1 resonance can be achieved with the same apparatus used for

the combined nonresonant and 1 : 1 resonant pumping (for example [39]), but

tuning it to the twice the frequency of the condensate, which is within the laser

capabilities 6. This will be important for the results presented in Chapter 2.

5In principle the quasiparticles can be pumped electronically, but this remains highly difficult
for experimental reasons, and will not be discussed further.

6Private correspondences with Prof. Pavlos Savvidis (University of Crete) and Dr. Hamid
Ohadi (St. Andrews University).
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Fig. 1.4 Illustration of resonant pumping process (blue) and nonresonant pumping
process (red). Image taken from [37].

1.3.3 Nonequilibrium Condensation

Excitons are bound pairs of electrons and holes, both of which are fermions.

However at lengthscales much larger than the typical analogue Bohr radius of

the bound pairs, the two half-integer spins add to an integer, yielding an effective

boson. Thus at low enough polariton densities, the quasiparticles are separated

on average by large enough distances to be effectively bosonic (the effectively

integer spin of the exciton plus the "actually" integer spin of the photon component

obviously yields an integer).

The exciton-polariton (from this point "polariton") inherits key properties from

both its constituents, which can be independently engineered in the laboratory

[37]. In particular, the hybridized quasiparticles combine the strong nonlinear
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interactions of their matter component with an ultralight effective mass coming

from their photonic part.

Being bosonic at low densities, polaritons are in theory candidates for conden-

sation. However, the proper thermodynamic defintion of Bose-Einstein condensa-

tion requires that the condensed particles be in thermodynamic equilibrium [6, 17],

and even at ultralow temperatures the dilute gas of polaritons is consistently losing

particles, as constituent cavity photons decay via free-photon emission. Thus to

sustain the polariton population, photons must be fed into the cavity. This scenario

clearly precludes the quasiparticle gas from ever truly reaching thermodynamic

equilibrium, although experimental improvements in cavity quality continue to

bring us closer.

Further, the nature of microcavity experiments are such that the states are

confined to two spatial dimensions. At face value this should be problematic, as the

spontaneous breaking of continuous symmetries is forbidden at finite temperature

for homogeneous systems with fewer than three spatial dimensions: by the rigorous

proofs of Mermin and Wagner [41], of Hohenberg [42], and of Coleman [43]: in

such systems true long-range order is precluded by low-wavelength divergences

at nonzero temperatures. Still, these rigorous results have not prevented the

experimental condensation of dilute gases confined to effectively two spatial

dimensions, most likely due to the nonuniformity of actual physical systems (for a

discussion of the condensation of 2D systems see [44]).

Regardless of these concerns, a strikingly condensate-like state, character-

ized by the spontaneous coherence of the polariton gas at the threshold tempera-

ture/density does indeed occur in experiment, as first seen by [40]. Recalling the

relation between mass and condensation threshold from the section on equilibrium

BECs, this process occurs at relatively high temperatures - a balmy 5K in the land-

mark first experiment, allowing for the use of standard liquid-helium cryogenic
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Fig. 1.5 (a) Far field emission below (left), at (middle) and above (right) the
pumping threshold. (b) The same data, showing a slice of the far-field emission
(horizontal axis) and the energy (vertical axis). At and above the threshold, the
energy rapidly drops to the minimum, and the spread in emission wavevectors also
decreases rapidly. Image taken from [40].

equipment [40] 7. The far field emission from that experiment is shown in Fig.

1.5: holding the temperature fixed, the pump power of the (nonresonant) incident

laser is increased, in turn increasing the density of microcavity polaritons. When

the threshold polariton density is achieved, condensation occurs (recall the role

of density in the order-of-magnitude relationship 1.1): the energy distribution of

emitted photons drops dramatically to the ground state energy, and the transverse

momentum distribution likewise collapses. Perhaps most importantly, Michelson

interferometry of the emission reveals a sudden and again, dramatic, increase in

7While I do not discuss organic samples here, it is worth noting that with them the condensation
temperatures can go up to room temperature, which truly is an extraordinary difference from the
frigid temperatures needed for atomic BECs.
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Fig. 1.6 Experimental measurement of first order correlations g(1)(x,x
′
), below

(left) and above (right) threshold pump intensity. Image taken from [40].

the spatial coherence of the emitted light. The first order correlation function is

defined as g(1)(x,x
′
) =ψ∗(x)ψ(x

′
)/
√

ψ∗(x)ψ(x)ψ∗(x′
)ψ(x′

), and is a commonly

used metric for the degree of spatial coherence; Fig. 1.6 shows the first order

correlations below (left) and above (right) threshold, revealing a large increase in

the spatial extent of the correlations.

1.3.4 An Interparadigmatic Regime

Given that Bose-Einstein condensation only properly occurs at thermal equilibrium,

there has been some debate in the literature about the nature of the condensate-like

coherent state of polaritons, given their fundamental nonequilibriation. Clearly,

from the first experiment [40] and from those which have followed, the polariton

gas undergoes a sudden transition to a condensate-like state, a coherent state at the

ground state energy - at a threshold orders of magnitude lower than that required

for the achievement of coherence through lasing, which can be had in the same

microcavity systems. Thus while the polariton state in [40] is fundamentally

distinct from condensate states in equilibrium systems, it is also fundamentally
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distinct from those seen in lasers, which require population inversion and are much

more highly nonequilibriated. However, like laser systems, a direct readout of

the wavefunction is possible optically, unlike in atomic BEC systems in which

wavefunctions must be reconstructed from measurements taken after the release

and rapid expansion of the trapped gas. Of course the polariton BEC comes with

a different challenge, as the timescales of their dynamics are to quick for direct

time resolved imaging, and thus experimentalists are currently restricted to either

time-integrated wavefunction measurements or reconstructing time dynamics by

taking one snapshot at a time over many iterations of the experiment.

Rather than lumping the physics of the polariton condensate into that of

equilibrium BECs or of lasers, it is instead most advantageous to consider them

as representing an interstitial regime, tending to the physics of equilibrium BECs

in the limit of long polariton lifetimes, and tending to the physics of lasers in

the limit of very short polariton lifetimes. This now appears to represent the

mainstream view in the literature [45–47]. Thus while the polariton "condensate"

is not properly a condensate in the strictest sense, I will follow the terminology

of the literature and call it a condensate. Really this is just semantics, as all that

matters to us is that the system undergoes a spontaneous coherence transition and

presents us with interesting new physics.

Perhaps because those in the polariton community found themselves having to

defend their condensates as such, there has not been as much work exploring the

phenomena that are more akin to that of laser systems. This thesis certainly owes

quite a lot to the old laser physics literature, and I hope to emphasize throughout

this work that some of the behaviours of polariton condensates that appear to be

unintuitive from the perspective of equilibrium condensate dynamics are more

intuitive from the perspective of nonequilibrium pattern forming systems.

It is worth noting that even from the perspective of the polaritonic condensate

as a system of heavily dressed photons, they have several advantages with respect
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Fig. 1.7 Experimental observation of a vortex in a polariton condensate, showing
the directly measured interferogram (a) and the reconstructed phase structure.
Image taken from [49].

to other confined optical systems. One is their extraordinary nonlinear properties,

which arise from their excitonic component. As one of the founders of the field

wrote, polariton condensates open up an "optical playground" [48], and extremely

low power thresholds, their unusually strong-nonlinearity given those low pump

powers, high operating temperature, and their ability to be "printed" on widely ac-

cessible and well-studied semiconductors, they are widely regarded as the leading

candidate for a practical, purely photonic transistor. Such a development would

certainly change the landscape of computing, even without invoking quantum

computing.

1.3.5 Superfluidity

Although Bose-Einstein condensates are typically associated with superfluidity,

the later is an emergent phenomenon which neither necessitates nor implies the
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state of Bose-Einstein condensation. For example, in a Bose-Einstein condensate

of noninteracting particles, the dispersion relation is quadratic and superfluidity

does not take place - the latter takes place in the regime of linear dispersion [50].

On the other side of the spectrum, superfluid 3He exhibits superfluidity, yet is

composed of a fermionic species of helium. Superfluidity itself is a complicated

and nuanced subject [51, 8, 50], and there was not certainty that it could be seen

in a nonequilibrium system like the polariton condensate: like condensation itself,

superfluidity is properly defined as an equilibrium property [48].

The core hallmark of superfluidity is the flow around an obstacle without

drag. After being led up to by several strong signs of superfluidity in polariton

condensates (the observation of vortices as in Fig. 1.7 [52], and of Bogoliubov

excitations [53–55]), the drag-free flow past an obstacle was observed directly

in exciton-polariton condensate experiments [56]. Soon after, the breakdown

of superfluidity and associated nucleation of vortices at flows above the critical

velocity was observed explicitly [57]. More recently, superfluidity in polariton

condensates have been observed and studied at room temperature using organic

microcavities [58], an enormous change from the extremely low temperatures

typical of superfluid systems.

Thus, while the polariton condensate is not properly a superfluid due to its

nonequilibriation, it exhibits strikingly superfluid-like behaviours. Thus the system

is a superfluid in the same way as it is a condensate: effectively so, but with a

nonequilibrium flavour.

1.3.6 Mean Field Theory

The mean field description of the polariton condensate is a significantly more diffi-

cult problem to approach from first principles than that of the dilute equilibrium

condensate. As the state is always inherently out of thermal equilibrium, quantities
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such as chemical potential and temperature are not formally defined. A significant

body of theoretical work has gone into the kinetic theory describing the relaxation

of the "hot" particles excited by pumping [59–61], but it has also been lamented

that such theories do not provide any description of the collective excitations that

are expected in a quantum fluidic system [62]. Thus, the strategy adopted by the

literature has been to use a phenomenological model, which couples a dissipative

GPE to an equation based on the kinetic theory of the relaxation process, which

describe the reservoir of uncondensed particles excited by pumping, using a kinetic

Boltzmann treatment [63]. That work also represents an especially illuminating

description of the problem of modeling polariton condensates. This approach has

seen huge success, and has been highly descriptive and predictive of experimental

observations.

In its currently accepted form, the mean field model of the exciton-polariton

condensate takes the form of a complex Ginzburg-Landau equation (cGLE) cou-

pled to a real reservoir equation representing the bath of hot excitons in the

sample, nonresonantly excited by the spatially resolved laser pump profile P(r)

[47, 63, 45, 62]

iℏ∂tψ = − ℏ2

2m
(1− iη̂NR)∇

2
ψ +U0|ψ|2ψ +gRNRψ +

iℏ
2
(RRNR − γC)ψ,(1.19)

∂tNR = P− (γR +RR|ψ|2)NR, (1.20)

in which ψ represents the condensate wavefunction, NR and the exciton reservoir

density. U0 and gR give the polariton-polariton and exciton-polariton interaction

strengths, RR and η̂ represent the scattering and diffusion rates. The effective mass

of the polariton is given by m. Finally, the loss rates of excitons and polaritons are

described by γC and γR. To rewrite these equations in a nondimensional form more

anemable to us, we apply the transforms ψ →
√
ℏRR/2U0l2

0ψ ,t → 2l2
0t/ℏRR, r →
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√
ℏl2

0/(mRR)r,NR → NR/l2
0 ,P → RRP/2ℏl2

0 , and we define the nondimensionless

parameters g = 2gR/RR, b0 = 2γRl2
0/ℏRR, b1 = RR/U0,η = η̂/l2

0 ,γ = γCl2
0/RR,

and γ = γCl2
0/RR, where we set l0 = 1µm. This yields [64, 5]

i∂tψ = −(1− iηNR)∇
2
ψ + |ψ|2ψ +gNRψ + i(NR − γ)ψ (1.21)

∂tNR = P− (b0 +b1|ψ|2)NR, (1.22)

which will be the basis of the work presented in this thesis. Again, Eq. 1.21 is

a complex Ginzburg Landau equation (cGLE), claimed at least by Aronson and

Kramer in their review on the subject, to be the most studied nonlinear equation in

physics [65]. This in part comes from its generalising description of such a wide

variety of physical systems, which itself comes from it being the minimal model

of nonlinear systems near a Hopf bifurcation. In addition to Eq. 1.21, the Gross-

Pitaesvkii equation of dilute atomic condensates and the real Ginzburg-Landau

equation of degenerate optical parametric oscillators are all particular cases of the

cGLE. The reader interested in surveys the cGLE might start with that of Aronson

and Kramer or the relevant sections of the review by Cross and Hohenberg [66].

There is still, of course, a glaring difference between the well studied cGLE and

our mean field model of the polariton system: the coupling to the reservoir. In the

regime in which the reservoir reacts very quickly to the changes in the condensate

wavefunction, it may be adiabatically eliminated. This is a procedure we make use

of in the chapter on multiply charged vortices. However, this still does not reduce

the model to the standard cGLE, as there remain saturable nonlinearities in several

terms. Further, not every interesting behaviour takes place in the regime in which

adiabatic elimination of the reservoir is justified. While in the case of multiply

charged vortices the reservoir is stationary during the condensates dynamics of

interest, in other scenarios the reservoir is changing dynamically along with the
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condensate dynamics. In particular, we will introduce novel breather excitations

in the chapter on breathers, which require some delay in the reservoir dynamics

relative to changes in the condensate wavefunction to remain stable.

Additionally, the pumping profiles in polariton BEC experiments are, as we

have mentioned already, extraordinarily flexible: at the low optical powers typical

of such experiments, beam engineering is fairly trivial with spatial light modulators,

which can programmatically modulate the amplitude and phase of a beam [67].

Thus we have a really exciting degree of freedom to play with which has not been

experimentally feasible in other systems: the spatial structure of the pump. This

allows for, among other things, the approximate spatial separation of the reservoir

from the condensate wavefunction, which does greatly simplify the theory, as we

will make use of to describe multiply charged vortices. Finally, we note that the

spatial extent of condensates can generally be made much smaller than the samples

on which they reside, so that boundaries may be safely set to zero. This is the

case throughout this thesis unless otherwise specified, and does have a nontrivial

effect: in contrast to an infinitely extended condensate, a polariton condensate

which tends to zero density must necessarily have quasiparticle flows at its edges.



Chapter 2

Breather Solutions

2.1 Introduction

The basic nonlinear excitations of Bose-Einstein condensates (BECs) are of signif-

icant fundamental interest, and have been studied in detail for decades [68–77].

However, relatively little is understood about their breather solutions [32]. In

equilibrium BECs, there are significant fundamental restrictions on the formation

and stability of breathers, due to their intrinsic tendency towards thermodynamic

equilibrium. Solutions with sustained density oscillations can be constructed by

the superposition of the ground state with one of the eigenstates of the Bogoliubov

excitations, however, these simple periodic solutions are only persistent in the limit

of zero amplitude so as to avoid damping via nonlinear spectral broadening, and in

reality lose periodicity as modes are mixed [32]. Other simple breathing solutions

have been constructed with the help of an explicitly periodic external potential in

space [78] or an interaction term which is explicitly periodic in time [79]. In a

non-periodic system, Pitaevskii and Rosch showed that in two spatial dimensions

the nonlinear Schrodinger equation under harmonic trapping admits solutions

in which the potential energy oscillates without damping, due explicitly to the

SO(2,1) dynamical symmetry of that system [80, 81]. This latter phenomenon has
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recently been extended, with it being experimentally and theoretically shown that

the SO(2,1) symmetric system also allows particular solutions which are periodic

in the wavefunction evolution [32, 82, 83]. Specifically, it was shown that uniform

condensates prepared in a disk and equilateral triangle box potentials, upon release

from those box potentials, periodically reformed their initial states. While the

phenomenon is striking, the breathers in this case are not solitonic, and their nature

as global excitations precludes the possibility of an interacting system of these

breathers.

In this chapter I introduce a novel, generic mechanism of breather formation

in polaritonic BECs, from which a solitonic breather can emerge spontaneously

as a fundamental excitation. Like vortices - but having no topological charge -

these breathers are free to move and interact with and within their condensate

background. I then proceed to construct a family of breathers with spontaneously

adopted nontrivial discrete orders of rotational symmetry, which must be pinned

but maintain their rotational degree of freedom, from which I demonstrate the

spontaneous emergence of both crystalline and glassy orderings of lattices of

polygonal breathers, depending on the degree of polygonal excitations at the

lattice sites.

To get to this, we begin with the seemingly unrelated and apparently broader

question of forcing symmetries.

2.2 Temporal Symmetry Breaking

To form and sustain a polariton condensate, the cavity in which it lives must

be forced optically. These input photons may be either resonant or nonresonant

with the natural frequency of the cavity. Thus, understanding the fundamental

repercussions of the forcing scenario is among the most fundamental problems in

the rapidly growing field of polaritonics.
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Recent experiments have demonstrated that the exciton-polariton condensate

can be simultaneously forced resonantly and nonresonantly, as discussed in the

preliminary review chapter. In this chapter I will show that simultaneous forcing

with nonresonant and nth order resonant frequencies allows for a novel mechanism

of breather formation, caused by a sort of frustration between the U(1) phase

symmetry of nonresonantly forced systems and the Zn symmetry of nth order

resonant forcing. After introducing the generic mechanism, we will explore its

dynamical repercussions in extended systems in the particularly important case of

n = 2. From this we construct a family of exotic breathers, the members of which

spontaneously break rotational symmetry in favor of polygonal symmetry Dm in

real space, with order m set by tunable system parameters.

2.2.1 Symmetry-Frustration and Breathing Modes

As discussed in the introductory chapter, the dynamics of the polariton condensate

are well described by a generalized complex Ginzburg-Landau equation (cGLE)

coupled to a real equation representing the reservoir of uncondensed particles.

The reservoir is fed by the excitation of hot excitons by nonresonant pumping (see

Fig. 1.3). However when pumping at resonance with the cavity, the wavefunction

is forced directly and coherently. Forcing the generic cGLE at the resonance

order n yields (at lowest order) the term P̄ψ∗(n−1), in which the forcing strength

is represented by P̄ [84]. Experiments have successfully implemented polariton

condensates pumped simultaneously by nonresonant and resonant lasers with

n = 1 order, and are possible with n = 2 with the same experimental apparatuses

[39]. The phenomenological nontriviality of the physics of polariton condensates

forced at the second order resonance, however, has not previously been noted,

and as such as not yet been explored in experiment. Higher than second order

resonances are not experimentally feasible, simply because the optical frequencies
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quickly become too high to work with. For some organic samples, which can see

polariton condensation at room temperature [54], even second order resonances

are likely not possible due to their already-higher operating frequencies. However

the resonance of typical semiconductor microcavities are on the order of 800nm,

so that the second order resonance at about 400nm is entirely feasible. Luckily,

the second order resonance is the most interesting: as we will see soon, it leads to

the lowest order and thus the most severe degenerate symmetry breaking of the

condensate phase.

In nondimensional form, we restate our model with the inclusion of the reso-

nant forcing term, as [64, 45, 63, 47, 85]

i∂tψ = −(1− iηNR)∇
2
ψ + |ψ|2ψ +gNRψ (2.1)

+ i(NR − γ)ψ + iV ψ + iP̄ψ
∗(n−1)

∂tNR = P− (b0 +b1|ψ|2)NR, (2.2)

in which g represents the polariton-exciton interaction strength, η is the energy

relaxation [86, 46], γ represents the dissipation rate, b0 is the polariton inverse

lifetime, and b1 scales with the rate of scattering between the condensate and

the reservoir of uncondensed particles. The incoherent and resonant (at n : 1

resonance with the condensate frequency) pump sources are described by the

pumping intensities P(r, t) and P̄(r, t), respectively 1.

We begin by focusing on the regime in which the reservoir dynamics react

quickly to the condensate wavefunction (∂tNR ≈ 0), and in which the energy

relaxation η ≪ 1. For analytical tractability we fix the parameters b0 = b1 = 1

(which are still within the range of experimentally accessible values). From here

we insert NR = P/(1+ |ψ|2) into Eq. 2.1; focusing first on the behavior of the

1Unless otherwise noted, simulations in this chapter use the fixed parameter values b0 = 1,
b1 = 1, γ = 0.3, and η = 0.3. These are set to correspond to the experimental parameters of a dual
excitation setup [39].
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system in zero-dimensional space, the dynamics of the polariton condensate are

reduced to the following complex ordinary differential equation:

iψ̇ =
(1− iγ) |ψ|2 + |ψ|4 − iγ +(g+ i)P

(|ψ|2 +1)/ψ
+ iP̄ψ

∗(n−1). (2.3)

Making the Madelung transformation ψ(t)→
√

ρ(t)exp(iθ(t)) and separating

real and imaginary parts of the resulting equation and doing some fairly tedious

manipulations, we can rewrite Eq. 2.3 as the following real, coupled ODEs:

ρ̇ = 2
P̄cos(nθ)

(
ρ

n
2 +ρ

n
2+1)+(P− γ)ρ − γρ2

(1+ρ)
, (2.4)

θ̇ =
P̄sin(nθ)

(
ρ

n
2−1 −ρ

n
2
)
−gP−ρ −ρ2

(1+ρ)
. (2.5)

Physically, ρ represents the time dependent condensate wavefunction density

and θ its phase. Eqs. 2.4-2.5 are not explicitly solvable; however, in the limit

of small resonant pump strength P̄, we can view solutions as perturbations of the

steady states familiar to purely nonresonantly pumped condensates. Such nonzero

steady states have constant phase evolution θ = µt.

We are most interested in the maximal degenerate symmetry breaking case of

n= 2. Substituting into Eq. 2.5 and setting n= 2 yields the small P̄ approximation

for the condensate density under simultaneous nonresonant and second order

resonant forcing

ρ(t) =
1
2

(√
ζ (t)2 −4(gP+ζ (t))−ζ (t)−1

)
(2.6)

in which ζ (t) = 1+ µ + P̄sin(2µt). From here, it is clear that for P̄ = 0, ξ (t)

reduces to µ +1 and Eq. 2.6 returns the familiar steady state solution, with the



38 Breather Solutions

Fig. 2.1 Top: Trajectories of Eqs. 2.4-2.5 traced numerically in phase space from
many initial conditions, for fixed parameters γ = 1/2, P = 5, g = 1 and various
second order resonant pump strengths P̄ = {1,5,10,20}. For clarity, the line of
zero phase velocity is marked (dashed black)- the slanted linear phase trajectories
through this line are those to the symmetry-broken fixed points along it. Bottom:
To show the geometry of the symmetry breaking, the same phase trajectories are
plotted in the complex plane (real and imaginary axes shown from ±4.25). From
both, we see the transition in behavior from small, nearly uniform oscillations
driven by small resonant pumping (blue), to the dual fixed point attractors seen
under high resonant forcing (orange). In between, both fixed points and large
nonuniform density oscillations are seen (red).

fixed density set by the parameterization. However for P̄ > 0 oscillations take

hold, with period given simply by

T = π/µ, (2.7)



2.2 Temporal Symmetry Breaking 39

and with amplitude scaling with P̄. Later we will see that even in full 2D simu-

lations of Eqs. 2.1-2.2, these simple predictions remain robust, even beyond the

analytically supported regime of weak resonant pumping. In the other extreme that

can be considered is the scenario of very strong resonant pumping. In this case we

expect n fixed points -setting the left hand sides of Eqs. 2.1-2.2 to zero yields n θ

solutions and one value for ρ . The uniform stationary solutions of Eqs. (2.1-2.2)

with n = 2 and without noise satisfy

R2 +gP̃/(1+ξ R2)+ P̄sin2S = 0 (2.8)

P̃/(1+ξ R2)+ P̄cos2S− γ = 0 (2.9)

where we used the Madelung transformation ψ = Rexp[iS] and denoted P̃ =

P/b0,ξ = b1/b0. Eliminating S gives

P̄2 = (R2 +gP̃(1+ξ R2)−1)2 +(γ − P̃(1+ξ R2)−1)2. (2.10)

For a given set of system parameters this equation can be solved to find ρ = R2

with two expressions for S that differ by π . These are the phase locking solutions.

However, to probe the full range of behaviours between these extreme of weak

and strong resonance, we must integrate Eqs. 2.4-2.5 numerically. Again fixing

n = 2 and integrating for many initial conditions {ρi,θi}, phase space trajectories

are collected for varying resonant pump strength P̄ (with other system parameters

fixed), shown in Fig. 2.1 (top). In that figure the solution trajectories are traced

out at low opacity for many initial conditions, so that the solutions which are

tended to and/or are cycled many times become visible. The bottom panel of

that figure shows some of the same accumulated trajectories, but in the complex

plane as opposed to the phase space. In these spaces geometrical interpretations

of the effect of resonant pumping, and the resulting density oscillations, become
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clear. As expected, for P̄ = 0 (not shown), there is a single fixed point attractor

corresponding to a single point of nonzero phase velocity and nonzero density in

the phase space, which corresponds to a circular trajectory in the complex plane;

this is simply the plane wave solution. At the other extreme, high resonant forcing

(orange) leads to a set of two fixed point attractors (resolved in the complex plane)

at states with fixed density and null phase velocity (resolved in phase space).

These numerical results agree with analytical predictions, but now the inter-

stitial regime between strong and weak resonant forcing is also resolved: as the

resonant forcing strength is increased gradually from zero, the smooth stretching

of the closed state trajectories in the complex plane is recorded, in the directions

of the symmetry broken fixed points which then eventually form. Recalling that

the resonant forcing terms in Eqs. 2.4-2.5 are P̄cos(nθ) and P̄sin(nθ), the

n-fold stretching is geometrically clear: in the complex plane these terms are

linear scaling operators acting along n axes separated by 2π/n. Thus we should

expect an n-fold stretching of the circular orbit as P̄ is increased from zero, and

for increasing P̄ we should expect the density increasingly dependent on the phase

with degeneracy n. Fig. 2.1 confirms these behaviors. For small resonant pumping,

we see slight n-fold deformation of the orbit in the complex plane (blue), which

becomes severely deformed (but with equal symmetry) as the resonant pumping

is increased (red). That case also shows the overlap between the limit cycle and

phase locked regimes. We note that the same procedure for any nth order resonance

yields the same fundamental result, but showing n-fold symmetry in the complex

plane. We confirm this in numerical experiments for n ∈ {1...5}, although the

higher-than-second-order resonances are, again, beyond current experimental

capabilities.

Of course, the warping of the phase-space trajectories has more than a geo-

metric effect: the non-circular closed path in the complex state space is trivially

indicative of density oscillations in the wave function. Thus the orbit deformations
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can actually be considered as driving the density oscillations, and which fully

characterize their wave-forms.

In this way, breathing is a result of frustration between the two natural states

of competing symmetries, the U(1) symmetry of P̄ = 0 (circular orbit in complex

plane), and the Zn symmetry of large P̄ (n-fold fixed points), in a sort of temporal

analogue of geometrical frustration.

2.3 The Breathing Ring Soliton

2.3.1 Introduction

So far we have established that under the simultaneous resonant and nonresonant

forcing of a polariton condensate, there generically exists a regime of density

oscillations in between the plane-wave and phase locked solutions. We now turn

to the full, spatially extended (2D) system. The order of resonant pumping, and

thus the geometry of the phase-symmetry breaking, is intimately connected with

the types of stable topological defects that are allowed in a spatially extended

system. In a phase symmetric system, all phases are equally stable, and thus stable

topological defects must take the form of continuous helical phase gradations

wrapped around zero dimensional singularities - this is the celebrated quantum

vortex. In a system phase locked by strong 2nd− order resonant forcing, there are

two equally stable phases differing by π , so that stable one-dimensional topological

defects naturally form between domains of opposite phase (domain walls or ‘dark

solitons’). For n > 2, more phases become stable, quickly approximating the U(1)

symmetry. Thus from the perspective of pattern formation, the 2nd−order resonant

forcing is the most extreme case, as the associated Z2 symmetry is the starkest

departure from U(1) while maintaining the necessary degeneracy. Thus while the
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our breathing mechanism applies to higher resonances, in the 2D case we will

focus only the 2nd−order resonant forcing.

Fig. 2.2 Top: Close-up of density profile of a breathing ring soliton, over the
course of one oscillation period. Computational domain extends beyond shown
area beyond the pump radius, after which the condensate does tend to zero. Bottom:
the overlap between the condensate wavefunction at fixed time show at (a) with
the time dependent wavefunction, showing the periodicity of the breathing ring
wavefunction. Time is shown in units of π/µ , the natural period of the symmetry-
frustration oscillations from which the ring emerges.

We begin this by considering the condensate forced uniformly with nonreso-

nant and 2nd−order resonant (from this point “resonant") forcing. It was recently

shown that ring-shaped breathers can form in such a system [3], and we now show

that these result from the breathing mechanism described here. In full numerical

integration of Eqs. 2.1-2.2, we prepare a uniform disk-shaped condensate pumped

in such a manner, with resonant forcing high enough such that the regime of phase

locking is achieved. By phase imprinting a perturbation, we observe the excitation

of a breathing ring soliton, as shown in Fig. 2.2, which have the periodicity π/µ

as predicted in the zero-dimensional problem. These structures may thus be inter-

preted as the localized excitations of the phase-locked state into the limit cycle in a

phase space which, as in the zero-dimensional space, admits both simultaneously.
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2.3.2 Temporal Structure

Before turning to the geometrical structure of the rings, it is worth turning at this

point to their temporal structure. We know from 2.7 that there exists a natural

frequency at which the condensate density is driven to oscillate in the regime of

weak to moderate resonant forcing. Of course, the regime in which breathing

rings are stable is one characterised by a constant, uniform background condensate

resonantly driven into phase bistability. However, we recall Fig. 2.1, which

showed the existence of not two but three distinct regimes of symmetry broken

states: that with a limit cycle only (weak resonant forcing), that with fixed points

only (strong resonant forcing), but also that with fixed points circumscribed by

a limit cycle (moderate resonant forcing). Indeed, numerical experiments show

that for too strong of resonant forcing breathing ring solitons are not supported -

even a phase imprinted ring soliton shrinks into itself and disappears. Likewise, if

the resonant pump is made to be too weak, the ring is not supported at all, with

vortices dominating instead. Thus while the case of the breathing ring is of course

much more complicated than the zero-dimensional picture represented by Fig. 2.1,

it seems at least plausible to hypothesise the breathing ring as being a localised

excitation of the limit cycle state, on a condensate background which in one of the

phase-bistable fixed points. In this case, we would expect the period of the ring

breather to match that of the natural frequency of the symmetry-frustration limit

cycle, π/µ . As shown in Fig. 2.2, this is indeed the case: measuring µ numerically

by sampling the phase evolution rate near the edge of the background condensate,

there appears to be a close match between the natural period and the observed

ring-breath period. Further, by plotting the overlap between the wavefunction of

the condensate with a single ring at a fixed time (I have chosen the time when the

dark ring reaches null density) with the wavefunction of that condensate in time,
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it is easy to see that the ring structure does indeed have a periodic wavefunction,

returning to complete wavefunction overlap.

2.3.3 Physical Structure

While the existence of a closed form description of this dynamical structure is

highly unlikely, some insight into its structure can be gained by treating the

breathing behavior as a perturbation of a stationary solution. Using the Taylor

expansion in the steady state expression for the reservoir density NR = P̃(1+

ξ |ψ|2)−1 ≈ P̃− P̃ξ |ψ|2. The dynamics of the condensate results from Eqs. (2.1-

2.2) and reads

∂tψ = (i+ηP̃)∇2
ψ −κ|ψ|2ψ + P̄ψ

∗+[(gP̃)i+ P̃− γ]ψ, (2.11)

where we denoted κ = P̃ξ +(1−gP̃ξ )i.

Close to the condensation threshold and for sufficiently strong external reso-

nant forcing, we can assume that ηP̃ ≪ 1. Neglecting the corresponding terms,

rescaling ψ → Ψ
√

P̄/P̃ξ , t → t/P̄, x → x/
√

P̄ and denoting χ = (1−gP̃ξ )/P̃ξ ,

α1 = (P̃− γ)/P̄, and α2 = gP̃/P̄, we rewrite Eq. 2.11 as

∂tΨi = i∇2
Ψ− (1+ iχ)|Ψ|2Ψ+Ψ

∗+(α1 − iα2)Ψ, (2.12)
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The uniform density is given by |Ψ|2 = 1+α1. We rewrite the condensate

wavefunction as the sum of real and imaginary components Ψ =U + iV, so that

∂tU = −∇
2V − (U2 +V 2)U +χ(U2 +V 2)V (2.13)

+ (1+α1)U +α2V,

∂tV = ∇
2U − (U2 +V 2)V −χ(U2 +V 2)U (2.14)

− (1−α1)V −α2U.

In the ring soliton V ≪ U and so |Ψ|2 ≈ U2 ≈ 1+α1 except for the small

healing region that defines the radius of the ring, and ∂tV ≈ 0. Under these assump-

tions we solve Eq. 2.15 for V ≈ [∇2U −{χ(1+α1)+α2}U ]/2 and substitute into

Eq. 2.13 to get a real Swift-Hohenberg equation

∂tU =−1
2
[∇2 +∆]2U −U3 +(1+α1)U, (2.15)

where we write ∆ =−[χ(1+α1)+α2].

The RSHE is a variational equation, and can be written in the gradient form

∂tU =−∂F/∂U [66] where the potential F takes the form

F =
∫ +∞

0
{1

4
[(∇2 +∆)U ]2 − 1

4
(U4 −U4

0 )−
1
2
(1+a1)(U2 −U2

0 )−
1
4

∆
2U2

0 }dr,

(2.16)

denoting the background contribution as U0 =
√

1+α1 −1/2∆2.

In one dimension the Ising wall 2 takes the approximate form U(r)=U0tanh(r/w),

where the width parameter w determines the healing length. Inserting this into F

and evaluating the integral yields an analytical form for the potential energy. The

Ising wall width w which minimizes this potential can be written as

2This terminology comes analogizing from spin models. In the Ising spin model, the order
parameter is fixed to either ↑ or ↓, which is mathematically equivalent to an order parameter fixed
to phases 0 and π . Thus here the Ising domain is that separating a π phase shift.
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Fig. 2.3 The potential energy F as a function of the ring radius r0, for several
pump powers P = P̄, for g = 1. The inset shows the same, for a smaller range of
pump strength, for which there exist energy minima for finite ring radii.

w2 =

√
5∆2 +12U2

0√
5U2

0
− ∆

U2
0
. (2.17)

The circularly symmetric Ising wall can be approximated with the anzätz

U(r) =U0(r+ r0)(r− r0)/
√

[(r+ r0)2 +w2][(r− r0)2 +w2]. (2.18)

Substituting w and inserting the 2D ansatz (again taking care to remove the

contribution of the homogenous background)), F is again exactly integrable,

yielding an analytical formula for the potential energy of the ring soliton as a

function of its radius and the system parameters. This potential takes the exact

form
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F =
U2

0

1024r5
0w3(r2

0 +w2)4

(
r0w(−27w12 −4r12

0 (−45+96∆w2 −64V 2w4)

− r2
0w10(229+32∆w2 +16V 2w4)+2r4

0w8(−241−192∆w2 +56V 2w4)

+ 2r6
0w6(127−608∆w2 +328V 2w4)+ r10

0 w2(807−1312∆w2 +896V 2w4)

+ r8
0w4(1545−1792∆w2 +1168V 2w4))+(r2

0 +w2)4(27w6 −4r6
0(−45+96∆w2 −64V 2w4)

+ 2r2
0w4(65+16∆w2 +8V 2w4)+ r4

0w2(147+96∆w2 +128V 2w4))arctan(r0/w)
)

(2.19)

For typical system parameters Figure 2.3 shows the potential energy F of the

ring as a function of its radius, for several values of the pump power. This shows

that under the approximation of the breathing ring soliton’s radial oscillations as

small perturbations a stationary solution, a significant amount of insight can be

gleaned about the relationship between the pump strength and the behavior of the

ring: too small, and the ring expands to infinity, but too large, the ring contracts

to a point. As the inset shows, for a range of values in between, there exist finite

ring radii which minimize the potential. Over this range, the minimizing radius

decreases with increasing pump power. The steepness of the curve also decreases

towards the large r0 side as the pump is decreased, suggesting that as the pump

strength is lowered, the range of r0 over the ring oscillation should increase. While

the relevant range of pump strengths differ between the analytical predictions and

the full numerical experiments, the behavioral predictions of the analytical model

are are entirely consistent with the numerical experiments.

2.3.4 Stability and Spontaneous Formation

We now consider the spontaneous formation of breathing rings. It is well un-

derstood that due to the finite noise (whether from quantum fluctuations in ex-

periments or from numerical noise/truncation in simulations), the spontaneous
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coherence of a condensate during its early formation does not occur everywhere

at the same time. Thus multiple regions of locally coherent condensate form

independently first, and then "meet in the middle". In the case of a phase bistable

system, these locally coherent regions may just as likely have opposite phase as

equal phase, and in the former can this results in the spontaneous emergence of

an Ising domain wall (the name of the dark soliton in the 2D space). In a phase

bistable system Ising walls are topologically required to either end at the boundary

of the condensate or to form closed loops that grow or shrink until they reach a

characteristic radius, close to a point, or grow infinitely.

Similarly, in the case of the nonlinear optical resonator (as in [87]) such

dark soliton rings have been observed to form spontaneously, and can be stable,

minimizing the local potential energy, and thus remain stationary. Of course at the

critical radius the rings in polariton condensates behave differently, as we have seen

already. However, by the same mechanism of spontaneous coherence, we expect

the spontaneous formation of breathing ring solitons in polariton condensates

under suitable conditions.

In numerical experiments, the ring solitons are found to self-annihilate (i) in the

fast reservoir regime b0 ≫ γ , (ii) in small reservoir detuning regime g ≪ 1, (iii) in

condensates made of long-lived polaritons. All these regimes are physically

relevant to some experiments [88–90]. However, a slow reservoir evolution

(b0 ≲ γ), for short-lived polaritons and a sufficiently large reservoir detuning

(all of which correspond to values of typical GaAs microcavity experiments

[40, 38, 91]) prevent the ring soliton from disappearing and lead to appearance

of a ring breather: the dissipative decrease in the radius of the ring soliton is

accompanied by the increase in the reservoir profile density in the ring core, which

imposes a repulsive force in the outward direction to make the ring expand. The

excitation is thus self-localized by an explicitly dynamical interaction.
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The destabilizing mechanisms (i)-(iii) have similar effects on the existence and

dynamics of the ring solitons, we concentrate on the effect of varying the polariton-

exciton interaction strength (parametrized by g). The detuning between the cavity

photon energy and the exciton resonance determines the relative photonic/excitonic

character of the polariton and, therefore, its effective mass and the strength of

the polariton-exciton interactions [47]. The detuning g can be further changed

by the pumping geometry by considering trapped condensates separated from

the pumps [92]. Finally, implanting protons into the quantum wells or into the

top of distributed Bragg reflectors allows for an independent spatial control of

both the exciton and the cavity photon energies, and, therefore, affects g [93]

as well. By these mechanisms, the experimental ranges of our dimensionless

parameter g can vary between 0.1−2. We observe spontaneous ring formation

in the entire physical range of that parameter, between 0.1 and 1.5. It is found

that the pumping amplitudes for which ring formation is supported depends on

the detuning, extending for a range of nearly Pth for the case g = 1, and extending

for a range of more than 2Pth for g = 0.1. We note that the experimental range

of values of η are unknown. However, we have observed ring formation for the

range 0.001 ≤ η ≤ 1.

In systems with low g, rings form ad infinitum creating a sustained state of ring

turbulence. A time snapshot of condensate density in this regime is shown in Fig.

2.4(a). In the high g case, rings are formed only during the condensation process.

They tend to interact attractively, and upon contact a pair of rings appear to either

merge into one or annihilate each other. Eventually the decay of rings ends and a

quasistationary state is reached with rings being pinned by the system disorder

represented in our simulations by setting Vext to white noise with amplitudes

ranging between ±0.005ρ0. However, we note that we see the same type of

pinning behavior for Vext = 0, as even when the only disorder comes from the

discretization of the fluid (the high energy limit of any numerical simulation, and
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Fig. 2.4 Spontaneously formed breathing rings in exciton-polariton condensates
for P = P̄ = 5, where P is the amplitude of the nonresonant pump, and P̄ is
that of a second-order resonant pump. Density contour plots of the condensate
shown illustrate (a) a time- snapshot of ring turbulence; (b) a quasi-stationary state
with a single ring; (c) time-averaging of (b) over many ring oscillations; (d-e)
different stages of the condensate evolution averaged over the time-scale of the
ring oscillation. White disk-shaped region is given by the uniform-disk shaped
pump profiles, beyond which the condensate quickly tends to zero density.
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of any physical many body system), structures that are far enough apart interact so

negligibly that they remain stationary, pinned by slightly less negligible disorder (at

least up to timescales relevant to experimental observation). This is demonstrated

with time snapshots of the condensate density, shown in Fig. 2.4(d,e). Figure 2.4

shows a time snapshot of a spontaneously formed breathing ring soliton after the

system has reached its final, quasistationary state (b), as well as a time integrated

image of that state (c). Further we note that we find the rings to be stable against

finite noise. Thus we predict that long-lived breathing ring solitons are directly

observable, and that their ring shaped character, radii, locations and numbers are

directly measurable as well. Again, state of the art experiments have recently

become capable of the simultaneous resonant and nonresonant pumping needed to

observe these novel and fundamental excitations [39]; experiments have simply

not probed the second-order resonant regime owing to a perception that the physics

would not be distinct from that of first order resonance experiments.

2.3.5 As a Probe of Critical Phenomena

The mechanism by which breathing ring solitons have been shown to form for high

g resembles Kibble-Zurek (KZ) mechanism of defect formation in equilibrium

systems [94, 95]. The KZ mechanism was first understood in the context of the

phase transitions in the early Universe [96–98], and later in liquid 4He and 3He,

liquid crystals, superconductors [99–102], equilibrium Bose-Einstein condensates

[103, 104]. The similarities and differences between the KZ transition and pattern

formation in nonequilibrium systems are the subject of intense exploration, with

an emphasis on the common mechanism of the defect formation: locally uniform

symmetry breaking in separate parts of the system which cannot communicate in

a finite time, and which thus form to be globally nonuniform to a degree set by the

speed of the phase transition (the quench rate). The main difference between the
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KZ transition and pattern forming in nonequilibrium systems is that in the former,

it is assumed that the system is driven out of equilibrium only in the vicinity of

the phase transition [98]. In spite of extensive research on both the KZ transition

and on pattern formation in a wide variety of nonequilibrium systems, questions

remain regarding the nature of the cross-over between the two mechanisms, and

regarding the types of the defects that they can result in. Numerical experiments

regarding the rate of polarization defect formation between quasi-1D spinor

polariton condensates formed in chains of microcavities have been performed

[105], but to our knowledge no proposal of this kind of study has been made in

regard to uniform polariton condensates formed on ordinary GaAs samples, or in

regard to phase defects.

Fig. 2.5 Number of rings in the quasistationary state as a function of pump strength
(P = P̄ = const), in units of the threshold pump strength Pth. Results are averaged
over 10 random iterations of initial noise and potential disorder. Ring solitons
were counted algorithmically, using built-in computer vision tools in Mathematica
to detect nested circular edges. A linear fit is shown in blue. The inset shows a
log-log plot of the number of rings in the quasistationary state as a function of
warmup-time, defined as the time over which the pumps are increased to a fixed
amplitude (P = P̄ = 4.2Pth). A dashed blue line shows the power law t−2.
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We investigate this relationship by counting the number of quasistationary

rings formed spontaneously from random initial noise in the presence of a small

sample disorder, modelled by setting Vext to a randomly distributed set of needle-

like potentials, with Gaussian profile and width much smaller than the healing

length of the condensate. This disorder does not hamper the formation of rings,

but rather acts like sandpaper, resisting their movement across its surface. Fig. 2.5

shows the resulting linear, positive correlation between pump power and ring soli-

ton density. To elucidate the effect of the quenching time on the defect formation,

we repeated our simulations linearly increasing the pumps from zero to P = P̄

over different timescales. The results, shown in the inset of Fig. 2.5, reveals a t−2

power law. We note that recent theoretical work on nonequilibrium holographic

superfluids have shown qualitatively similar results: a linear dependence of ex-

citation strength (temperature in that context) on defect (vortex) density, and a

power law dependence of quench time on defect density [106]. Due to the unclear

relationship between quench rate and the parameters tuned here, it is not clear how

the power law exponent itself compares to theory. Here it is more important to

show that there is any power law, which is highly suggestive of having probed

the physics of interest here [94, 107]: the purpose of this section is to serve as

a proposal to open the door to Kibble-Zurek type experimental probes of scalar

polariton condensates, as had been thought impossible[105].

In conclusion, we have theoretically predicted the spontaneous formation of

stable breathing ring solitons in exciton-polariton condensates. The proposed

experimental realisation for such novel topological defects is well within the

current experimental conditions and properties of existing microcavities. These

structures represent the first fundamental solitonic breather and the first stable

ring soliton in any quantum hydrodynamical system, and are made possible

by the polariton condensates’ unique combination of inherent nonequilibriation

with the existence of a hot exciton reservoir which scatters particles into the
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condensate while repulsively interacting with condensed particles. We have shown

how combining resonant and nonresonant forcing can be used to suppress the

snake instability, and have discussed how the robust stability of breathing ring

solitons can be exploited to study nonequilibrium defect formation statistics, and

thus to probe the fundamentals of nonequilibrium phase transitions. Further, we

have proposed an experimental scheme by which these statistics could be probed

over the continuous crossover between equilibrium and nonequilibrium phase

transitions. This work highlights the exceptional promise of exciton-polariton

condensates in the highly interdisciplinary field of nonlinear pattern formation.

2.4 Polygonal Breathers

Polygon Breathers - One of the powers of polaritonic systems is that pumping can

take on any optically feasible profile. We can thus consider the interesting case

of spatially dependent resonant forcing, so that the degree to which the phase is

symmetry broken can vary spatially.

We thus consider the scenario of a large disk-shaped region of uniform non-

resonant pumping, with a resonant pump of Gaussian profile P̄exp(−αr2) at the

centre of that region, with α characterizing the inverse width of the pump, so that

the degree of the symmetry breaking of the phase depends on the radial distance

from the center of the pump. This is the most extreme when P̄ and α are chosen

such that the condensate wavefunction is forced into the phase locked regime at

the centre, but can be seen to transition into the regime in which the symmetry

breaking is negligible. With direct numerical integration of Eqs. 2.1-2.2, we

simulate this geometry. For large α (small spot), density oscillations are driven

around the center at the radius at which the condensate is in the breathing regime,

forming a breathing ring.
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For larger resonant pump spots however, the behavior changes drastically:

as the pump spot width is increased (keeping P̄ constant), the radius of the dark

ring increases, and existing out of the bistable regime, reaches the circumference

at which the ring becomes unstable to the “snake-instability", the well known

phenomenon in which azimuthal modes of the annular defect shatter the dark

soliton into an integer number of chiral defects [108, 14, 109]. This instability can

be understood by computing the Bogoliubov modes of the dark soliton solution

in a finite 2D domain: a soliton shorter than the lengthscale of a healing length

has only real frequency modes, whereas for a soliton of increased length there

appear a countable number of complex eigenmodes, with each corresponding to a

point where a vortex antivortex nucleation will appear [108]. This instability thus

naturally quantizes the number of vortex-antivortex pairs produced as a function

of the ring radius. This quantization is demonstrated in Fig. 2.6, which shows the

dependence of the emergent polygonal symmetry as a function of the Gaussian

half-width in units of healing lengths, as determined from numerical experiments.

Once the rotational symmetry breaks after a finite number of oscillation cycles,

the symmetry remains broken, and a new dynamically stable structure is formed

which, though evolving dynamically, is at every time symmetric under transfor-

mations of the dihedral group Dm (the group of symmetry transformations of the

polygon of degree m). Fig. 2.7 shows density profiles of two polygonal breathers

at several times during their evolutions. The bottom panel of that figure shows the

inner product | ⟨ψ0|ψt⟩ | (denoting the wavefunction at time t as ψt) of the m = 4

(square-symmetric) breather, where we arbitrarily set ψ0 to the wavefunction at

the time shown in (a). This shows that the wavefunction indeed forms a closed

periodic cycle once the symmetry has broken, despite the rotational symmetry of

the physical system. We note that the periodicity of the breather is almost exactly

equal to twice the predicted periodicity of the density oscillations studied in 0D.

This period doubling comes from the broken rotational symmetry in real space:
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Fig. 2.6 Top: From direct numerical integration of Eqs. 2.1-2.2, density profiles
exhibiting m = {2..6} spatial symmetry, adopted spontaneously for fixed homoge-
nous nonresonant pump (P = 2) and 2nd− order resonant pumping with Gaussian
profile P̄exp(−αr2) at fixed strength (P̄ = 15) and varying width parameter α .
Here red represents high density, while blue represents low density. Bottom:
Corresponding dependence of spontaneously adopted symmetry order m on the
Gaussian half-width in units of the healing length.
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Fig. 2.7 From direct numerical integration of Eqs. 2.1-2.2, density profiles over
the evolution of two breathing structures exhibiting different degress of quantized
spatial symmetry breaking, under uniform nonresonant pumping P = 2 and a
Gaussian n = 2 resonant pump of the form P̄exp(−αr2) , with P̄ = 10. (a)-(e)
shows the dynamics of the breather formed when α = 0.05, which spontaneously
adopts degree-4 polygonal symmetry, and then evolves in a closed cycle: the
bottom panel shows the inner product of the condensate wavefunction over time
with that shown in (a), showing that the wavefunction perfectly repeats periodically
(as at (e). (f)-(j) show the evolution of a degree-5 symmetric breather, formed
spontaneously when α = 0.03.

the period of the polygonal breather is 2π/µ , but up to a rotation of real space,

the period is π/µ .

Orientation Glass - While these spontaneously polygon-symmetric excitations

are translationally fixed by the location of a Gaussian resonant pump, they do

posses a rotational degree of freedom. As breathers, the polygonal structures

radiate density oscillations through the condensate, and these radiation patterns

possess the polygonal symmetry of their source. We might thus imagine the

emergence of orientational order in a lattice of polygonal breathers. Fig. 2.8 shows

the direct numerical simulation of a condensate forced by uniform nonresonant

pumping and by a square lattice of Gaussian pumps with width parameter α . When
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Fig. 2.8 Detail of condensate under uniform nonresonant pumping, simultaneously
pumped by a square lattice of resonant pumps with Gaussian profile P̄exp(−αr2) .
Orientations of central lattice site excitations highlighted in white. (a) Spontaneous
orientational order emerges when α is chosen such that the lattice site excitations
match the symmetry of the lattice. (b) A glassy ordering emerges instead when α

is chosen such that the symmetry of the lattice site excitations is incommensurate
with that of the lattice. P = 1.5 and P̄ = 10. α = 0.1 in (a) and α = 0.075 for (b).
Lattice length is set at 35µm, with periodic boundaries.
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α is chosen such that the lattice sites exhibit square-symmetric excitations, the

symmetries of the excitations and the lattice are commensurate and spontaneously

align (a). When α is instead chosen such that the lattice sites exhibit pentagonal

symmetry, the symmetries of the lattice and the lattice sites are incommensurate,

causing geometric frustration resulting in a glassy state. These are the analogues

of the ferromagnetic and spin glass states, but where the spin degree of freedom

(parameterized by Zn for discrete spins) is replaced by the polygonal orientation

degree of freedom (parameterized by Dm).

2.5 Closing Remarks

In conclusion, we have introduced a generic mechanism of breather formation

in nonequilibirum condensates forced by simultaneous resonant and nonresonant

pumping. In the case of 2nd-order resonant pumping, we have shown that this

mechanism can lead to highly nontrivial dynamical behaviour, including the spon-

taneous adoption of unusual spatial symmetries and emergent order. I hope that

the result sparks interest in the physics of condensates forced by multiple driving

frequencies, and that it sheds some light on the importance of the underlying

symmetries imposed by those forces, especially on emergent spatial symmetries.





Chapter 3

Multiply Charged Vortices

3.1 Introduction

From their macroscopic coherence it follows that Bose Einstein condensates

(BECs) may only support rotational flow in the form of quantized vortices [110].

These vortices are thus topological in nature, and are characterized by a phase

rotation of integer (ℓ) steps of 2π around a phase singularity. However, while in

principle quantized vortices may take on any topological charge, in practice it is

understood that only vortices of charge ℓ=±1 are dynamically stable: higher order

vortices quickly shatter into constellations of unit vortices due to the energetics of

the system. This shattering process has been detailed theoretically and observed

experimentally in the context of stationary, harmonically trapped atomic BECs

[19–21].

The case is somewhat different for superharmonically trapped, rapidly rotated

condensates, for which there exists a critical rotation rate above which the vorticity

of the system becomes concentrated within a single effective core. This state, in

which all vorticity is within a single effective core, has been called the giant vortex

state by its first experimental observers [23], the theoretical framework of which

was then built by [24]. However, while this approach does theoretically result in
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the collection of vorticity into a single vortex core, such complete concentration of

vorticity has not yet been achieved in experiments, which instead see the a giant

vortex in the centre of a lattice of unit strength vortices. This precludes the study of

the giant vortex in isolation, a significant blow to hopes of studying the structures

in the context of analogue gravity [111]. Further, the very nature of the mechanism

of vorticity concentration generates its own limitation. It is the centrifugal force

from the rotation which leads to the buildup of density at the potential walls, and

by extension to the low density region in the condensate centre in which the vortex

cores may then merge due to their increased core size (the effect of the local

density reduction) [24]. The mechanism is therefore to exert, via the same rotation

which imparts vorticity, a Mexican hat potential, which in the extreme results in

an annular condensate, in which the requirement for topological charge to result

in a singularity at all disappears. This approach, even when performed in theory,

has two issues. The first is somewhat ironic: to concentrate vorticity requires high

rotation rates, producing more vortices! This essentially precludes the formation

of what are potentially the most interesting objects, the stable multiply charged

vortex of low or moderate vorticity, for example a doubly or triply charged vortex.

The second issue is perhaps somewhat aesthetic: concentrating vorticity in the

lowest density region feels like cheating!

The difficulty of forming any higher-than-unit vortex in a BEC thus remains

difficult at best, and it remains an open problem to see the stability of a multiply

charged vortex in isolation, or in the high-density region of a condensate, or at low

(but higher-than-unit) vorticities. However, in this chapter I will show that in all

of these open problems sort themselves out naturally in the polaritonic BEC, due

explicitly to its nonconservation of particles.

Such giant vortex is, therefore, different from a state in which there is a single

point singularity with topological charge magnitude greater than one – multiply

charged vortex, however, in practice it is often impossible to distinguish between
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the two. On the one hand, the density in the vortex core is negligible, which

hinders the resolution of singularity. On the other hand, the structure of interest

is hydrodynamical, and thus only has meaning up to the length scales for which

the hydrodynamical treatment applies. The classical field description being a

long wavelength approximation of something which is in reality granular and

nonclassical, the hydrodynamic description only applies down to the healing

length. Singularities of like charge which are bound to within a healing length are

thus, to any probe in the hydrodynamical regime, indiscernible from the theoretical

multiply charged vortex. Thus from here on we find it useful to call all such vortex

structures multiply charged.

In our study we focus on a BEC away from the thermodynamical equilibrium

supported by continuous gain and dissipation such as polariton [40], photon [112]

or magnon [113, 114] condensates. To be more specific we will use the example

of polariton condensate however the results reported may be relevant to other

nonequilibrium condensates.

While a polariton condensate may settle into a steady state (a state in which

the wavefunction is time invariant up to a global phase shift), such a state is one in

which dissipation is balanced by particle gain. The corollary is that steady state

flows are possible. It is well understood that that the pattern forming capabilities

of nonequilibrium, nonconservative systems is richer than those of equilibrium,

conservative systems [115], making the polariton condensate a fascinating object

with which to explore the possibility of novel quantum hydrodynamical behaviors

[3].

In this chapter, we show theoretically that multiply charged vortex states can

appear spontaneously and remain throughout the coherence time in a BEC of

exciton-polariton quasiparticles excited by a ring-shaped laser profile, without the

application of any external rotation, trapping potentials, or stirring. Previously, the

spontaneous formation of multiply charged vortices of a given charge has been
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theoretically proposed and experimentally realised in polariton condensates by

pumping in an odd number of spots around a circle [116], or by the engineering

of helical pumping geometries [117]. In the first case the central vortex in this

geometry is created driven by the antiferromagnetic coupling of the neighboring

condensates and the frustration arising from their odd number. In the second case

the helical patterns are engineered so that the condensate is pumped explicitly

with orbital angular momentum. Another recent proposal has shown that phase

imprinted vorticity might remain concentrated at a localized mirror defect [118], in

contrast to another recent work in which nonresonant pumping with a higher-order

Laguerre-Gaussian beam resulted in the clear transfer of total vorticity, while

failing to form a multiply charged vortex structure [119]. Yet other works have

exploited the lack of simple connectedness of condensates confined to annular

traps, both in equilibrium [31] and exciton-polariton condensates [120]; in an

annular condensate, rotation does not necessitate a vortex defect. Interestingly,

a central multi-charged vortex was observed in a numerical study of polariton-

condensates under the weak Mexican hat-type pump (see supplemental material

of [121]). There, the particle fluxes exist from the center outwards as the pumping

profile peaks at the center. As the pumping intensity increases the central vortex

of small multiplicity (three in that case) breaks into the clusters of single-charge

vortices trapped by the minima of the pumping potential. The multiply charged

vortices we discuss in here differ from these works in the geometry considered

(ring-pumped trapped condensates, long coherence times), formation mechanism

(probabilistic and spontaneous during condensation, away from the hot reservoir)

and the vortex properties (vortices exist on the maximum density background

and so are truly nonlinear in nature). We describe their formation, stability, and

dynamics. The dynamics of two and more interacting multiply charged vortices

are also studied. We find that our results apply for a wide range of possible
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experimental parameters, suggesting that these structures are general to ring-

pumped trapped polariton BECs in the strong coupling regime.

The dynamics of the polariton BEC in the mean field are described by the

complex Ginzburg-Landau equation (cGLE) coupled to a real reservoir equation

representing the bath of hot excitons in the sample, restated for this chapter as:

i∂tψ = −(1− iηNR)∇
2
ψ + |ψ|2ψ +gNRψ + i(NR − γ)ψ (3.1)

∂tNR = P− (b0 +b1|ψ|2)NR, (3.2)

3.2 Spontaneous Formation

Polaritons can be confined all-optically by shaping the excitation laser beam.

By using spatial light modulators to shape the optical excitation, ring shaped

confinements were generated with condensates forming inside the ring [92, 122],

and have been predicted to support the spontaneous formation of unit vortices

[123]. Long-lifetime polaritons in ring traps are emerging as a platform for studies

of fundamental properties of polariton condensation largely decoupled from the

excitonic reservoir and, therefore, having significantly larger coherence times

[124–127]. We represent the profile of the ring pump by a Gaussian annulus of

the form P(r,θ , t) = Pe−α(r−r0)
2

with inverse width α and radius r0, which excites

local quasiparticles which then flow outward. The closed-loop pump geometry

has two major implications. The first is that the condensation threshold is first

achieved not where the sample is pumped, but within the borders of the pumping

ring. This results in the effective spatial separation of Eqs. (3.1-3.2), which makes

the parameters related to the excitonic reservoirs such as b0, b1, and g irrelevant

to the condensate dynamics up to a change of pump strength. The second and

most critical implication of the ring pump geometry is the existence of constant
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fluxes towards the centre of the ring. Such fluxes carry the matter together with

spontaneously formed vortices and force vortices to coalesce.

Fig. 3.1 Formation of a non-vortical, flat-disk shaped condensate within a ring
pump, from numerical integration of Eqs. (3.1-3.2). Density (top row) and phase
(bottom row) snapshots are shown at various stages of the condensate formation.
For clarity, each density profile is rescaled to unit maxima. The pumping profiles
are superposed in black (in units of P), showing the spatial separation between
the pump and the condensate. At the beginning of the condensate formation;
due to the pump geometry, matter wave interference leads to annular zeros in the
wavefunction (a). These ring singularities are theoretically unstable to dynamical
instabilities, but here they extend to the condensate boundary before instabilities
take over (b,c), and a nearly uniform condensate fills the region circumscribed by
the ring pump (d). Here P = 5 and r0 = 10µm. In this chapter all simulations use
zero boundary conditions, and are calculated with 4th order extrinsic Runge Kutta
methods, in which mesh size is set to be at least several times smaller than the
healing length.

It is well known that vortices can form during the rapid condensation of a Bose

gas, via the Kibble-Zurek mechanism [96–98, 95, 94, 99–102, 104]. However, in

our system there exist a different mechanism of spontaneous defect generation

in our system, which requires a relatively slow condensate formation. Due to the

inward flow of particles in our system, the condensation threshold is reached first

in the center of the system. Assuming a large enough ratio of new particle flow to

dissipation, this young condensate will grow into a relatively uniform disk within

the boundary of the pump. However, in between these two stages, radial matter

wave interference is to be expected, with higher frequency during the early stages
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of condensation. The zeros of the radial interference pattern are well studied

under a different name: the dark ring soliton [87, 115, 65]. As has been shown

previously, these dark solitons are unstable to transverse (‘snake’) perturbations,

and break apart into pairs of unit vortices of opposite charge [109, 128]. Thus

for a slowly condensing system, it is reasonable to expect that these solitons have

enough time to break down to produce a chaotic array of vortex singularities. This

process resembles a two-dimensional case of the collapsing bubble mechanism of

vortex nucleation [129]. As the condensation process completes and the vortex

turbulence decays, there is some finite chance of the condensate being left with

a net topological charge, as vortex pairs may unbind near the boundary and one

or the other may leave to annihilate with its image. These like-charged vortices

would then coalesce in the center of the condensate.

Direct numerical integration of Eqs. (3.1-3.2) not only confirms that this

process can take place, but that for low pump power, the condensate takes on a

net topological charge more often than not 1. We reiterate that this coalescence of

vortices is despite the lack of external rotation, or sample nonuniformity. Repeating

the numerical experiment with many iterations of random initial wavefunction

noise, we find multiply charged vortex states of stochastic sign and magnitude.

The average topological charge magnitude is found to depend significantly on

the radius of the pump ring, increasing for larger radii. An example of these

dynamics is presented in Fig. 3.2, which shows the main steps in the process

by which the condensate spontaneously adopts a topological charge of two: the

formation of a central condensate surrounded by annular discontinuities in Fig.

3.2(a), the breakdown of an annular discontinuity into vortex pairs in Fig. 3.2(b),

vortex turbulence in Fig. 3.2(c), and the final bound vortex state Fig. 3.2(d).

For Fig. 3.2 we use the system parameters η = 0.3, γ = 0.05, g = 1, b0 = 1,

1The initial wavefunction is set to a profile of low amplitude random noise. All simulations are
repeated for many of these profiles.



68 Multiply Charged Vortices

b1 = 6, but the result was found not to depend sensitively on these choices; up to

a rescaling of pump strength this behavior was reconfirmed for a large range of

sample parameters: g ∈ [0.1−2], b0 ∈ [0.01−10], for γ ∈ [0.05−0.1], and for all

reasonably physical values of η (including η = 0.)

Fig. 3.2 Spontaneous formation of a multiply charged quantum vortex in a ring
pumped polariton condensate by numerical integration of Eqs. (3.1-3.2). Density
(top row) and phase (bottom row) snapshots are shown at various stages of the con-
densate formation. For clarity, each density profile is rescaled to unit maxima. The
pumping profiles are superposed in black (in units of P), showing the spatial sepa-
ration between the pump and the condensate. At the beginning of the condensate
formation; due to the pump geometry, matter wave interference leads to annular
zeros in the wavefunction (a). These ring singularities are unstable to dynamical
instability, become asymmetrical (b) and can be observed to break into more stable
unit vortices (locations marked with white circles) in as the condensate continues
to develop. The condensate fills a disk shaped region with near uniformity within
the ring pump, but remaining vortices interact chaotically in (c). The vortex turbu-
lence eventually decays, leaving a net topological charge [130, 131]. The vortex
charge is equal to the number of 2π phase windings around the singularity; here
the final vortex has charge two. Repeating these simulations with different random
initial conditions, the magnitude and sign of the final vorticity varies. Here P = 5
and r0 = 10µm.

An advantage of the spatial separation of the condensate from the reservoir

in ring pumped geometry is in the enhanced coherence time that exceeds the

individual particle lifetime by three orders of magnitude [132]. Therefore, spon-

taneously created multiply charged vortices might soon be observable in single

shot experiments within one condensate realisation. However, for now only the
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average wavefunctions of many iterations of the stochastic condensate formation

are observable in experiment. In a perfectly uniform sample, one would expect

an equal chance of the stochastic formation of vortex charges of either handed-

ness, which would cancel in the experimentally observable mean wavefunction.

However, it has been established in experiments that the slight inhomogeneities

inherently present in all physical samples act to favor one handedness over the

other [116]. Thus the only experimental observable is the mean magnitude of

the vorticity distribution. This magnitude is well above zero for a wide range of

parameters 2 , making the experimental observation of this effect highly feasible

within the current state of the art.

3.3 Stability and Form

Another way to study the multiply charged vortices is to imprint them explicitly

upon a fully formed, uniform condensate [53]. This allows for the study of the

structure and dynamics of carefully controlled systems of vortices. To model

the result of experimental pulsed phase imprinting, we first model the formation

of fully developed non-singular condensate disks. To prevent the spontaneous

formation of vortices by the process described above, a relatively strong pump

amplitude is used, so that the condensate forms too quickly for the decay of

ring-singularities into vortices. After the background condensate is formed, phase

singularities are imprinted instantaneously and their dynamics is observed. To first

understand the structure of isolated multiply charged vortices, we imprint a series

of condensates with different topological charges, and allow these structures to

form steady states. When imprinted in equilibrium BEC, multiply charged vortices

quickly break into vortices of a single unit of quantization [133].

2For example: mean vorticity amplitudes determined from direct simulations of Eqs. (3.1-3.2)
for pump radius 12µm tends linearly from 2.5 to 4.9 as the pump strength is decreased from P = 9
to P = 5.
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From the spatial separation of the condensate and the reservoir, the reservoir

density is negligible near the central core of the multiply charged vortex, so that

Eq. (3.1) takes the familiar form of the damped nonlinear Schrödinger equation

(dNLSE): i∂tψ =−∇2ψ + |ψ|2ψ − iγψ.

Under the Madelung transformation ψ =A exp[iS− iµt] where µ is the chem-

ical potential, the velocity is the gradient of the phase S: u = ∇S and the density

is ρ(r) = A 2, the imaginary part of the dNLSE yields ∇ · (ρu) =−γρ. Except

for a narrow spatial region where the density heals itself from zero to the density

of the vortex free state the density is almost a constant, so the radial component of

the velocity becomes ur =−γr. The real part of the dNLSE reads

∂
2
r A +∂rA /r+(µ −u2 −A 2)A = 0, (3.3)

which coincides with the corresponding steady state equation for the equilibrium

condensates where velocity profile plays the role of the external potential. We

therefore expect the structure of the vortices to be similar to those in equilibrium

condensates with the external potential given by u2. Close to the centre of the

condensate the velocity becomes u =−γrr̂+ ℓ
r θ̂ , where r̂ and θ̂ are unit vectors

in polar coordinates. When this expression for u is substituted into Eq. (3.3) it

becomes the equation on the vortex amplitude in the centre of the harmonic trap,

where γ characterises the frequency of the “trap." In the vortex core, for small

r, the centrifugal velocity dominates the radial velocity, so the equation on the

rescaled amplitude A = A /
√

µ with r̃ =
√

µr becomes

∂r̃2A+∂r̃A/r̃+
(

1− ℓ2

r̃2 −A2
)

A = 0. (3.4)
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The profiles A take the approximate form

A =
r̃|ℓ|

(r̃n +w)|ℓ|/n
, (3.5)

with parameters w and n in which we incorporated the power expansion behaviour

of the amplitude A ∼ r̃|ℓ| as r̃ → 0. Figure 3.3 shows the amplitude cross-section

profiles of stable giant vortices with different topological charges ℓ ∈ {1,2, ...,10}

as the solutions of Eq. (3.4), along with Eq. (3.5) , showing a compelling fit

between vortex profiles seen in the full numerical simulations of the coupled

condensate-reservoir system (without an external trap) and those of the steady

state solutions of an equilibrium condensate under harmonic trapping, as predicted

by our theory.
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Fig. 3.3 Wavefunction amplitude cross sections
√

ρ(r) of multiply charged vor-
tices. For clarity, and without loss of generality, we show only odd topological
charges less than ℓ= 10. Profiles from the full numerical integration of Eqs. (3.1-
3.2) (normalized) for r0 = 20µm, P = 12, and γ = 0.3 are shown in black, and
illustrate the decay of the condensate near the pump ring (outside shown frame,
the condensate density continues to decay to zero). The numerical solutions
of the reduced equation Eq. (3.4) are marked by circles colored by charge, and
the corresponding fits to the ansatz Eq. (3.5) by squares with matching colors.
From these fits, we can write the approximate parameterization of Eq. (3.4) as
n(ℓ) = (1.1)ℓ1.6 −2.8 and w(ℓ) = 2.3+(0.6)ln(ℓ)).

We have shown above that the inward fluxes necessitated by the closed pump-

ing geometry result in an effective trapping potential - independent from any

effective trapping from the reservoir near the edge of the condensate - which drives
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the vortices closer together. Our analysis above, which shows that the forces from

the inward fluid fluxes overcome the topological repulsion of like-signed vortices,

applies when the condensate is nearly uniform, which is the case until the vortices

begin to overlap. At this stage there is a further interaction between vortices: it has

long been understood that in nonequilibrium systems the topological repulsion of

like-signed vortices can be balances due to the nontopological force emerging from

the effective variations in the supercriticality stemming from the density decrease

surrounding the defects [18]. The variable-supercriticality force is negligible until

the vortices are close enough for significant overlap between their associated

density structures. In our system, the radial flux forces bring the vortices of like

sign to within the regime at which they may bind to form a multiply-charged

vortex.

3.4 Acoustic Properties of the Multiply Charged Vor-

tex

Next we consider the arrangements of multiple multiply charged vortices imprinted

away from the trap center and brought together by the radial fluxes. Fig. 3.4 shows

two examples of the coalescence dynamics of imprinted phase defects. In the

first case, three unit vortices coalesce while moving in inward spirals towards

the center of the condensate, where there is no net lateral flow. In the second

case, which shows the coalescence of two doubly charged vortices, it is observed

that both doubly charged vortices hold together for a while before merging in the

center to form a single vortex of multiplicity four. These results are found to be

repeatable for a wide range of system parameters, suggesting that this behaviour

is to be expected for any system parameters which allow the formation of the

trapped condensate within a ring pump. We note that in this system, the center of
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the condensate corresponds to the location of maximum background fluid density,

in stark contrast to systems designed to collect virtual vorticity into a low-density

area [31].

As two (or more) vortices merge while spiralling around the center they

excite density waves in the otherwise uniform background fluid. These acoustic

excitations are long lived, and take on a frequency set by the angular frequency of

the vortex spiral. For well separated vortices, this frequency increases consistently

as time progresses and their separation shrinks. However, as the vortices begin

to share a these dynamics become even more complicated and the new physics

dominated by the processes in the vortex core emerges [134].

Figure 3.5 shows the relative amplitudes of the density waves radiated during

the motion of two vortices of unit charge imprinted with a large initial separation.

Density waves are sampled directly from densities in direct simulations, using

sample regions near the condensate edge. The average frequency of ”acoustic”3

radiation is found to increase with time at a fixed rate until the vortex cores begin

to overlap (left vertical line). During this phase, the frequency distribution narrows

and the average radiation frequency increases linearly at a much lower rate than

in the well-separated vortex regime. This continues until the singularities within

the core overlap within a healing length (right vertical line), after which a fixed

narrow band of acoustic radiation is emitted. As shown in Fig. 3.5, the narrowband

acoustic emission dominates the "surface wave" physics of the system.

Of course, multiply charged vortices may also collide: we find that from

merger of two equal multiply charged vortices of increasing topological charge,

the characteristic acoustic resonances have decreasing frequency, in the near-

terahertz regime. This is because the effective mass of the vortex increases with

topological charge, so that vortices of larger multiplicity orbit more slowly. As

expected, we see that in contrast, when multiple singly charged vortices placed

3Here we use acoustic to refer to soundlike density oscillations.
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Fig. 3.4 From Top: Density (first row) and phase (second row) resolved dynamics
of three unit vortices of like charge in a condensate formed within the boundary
of an annular pump (green). Over time, the three vortices approach each other
in an inward spiral, eventually merging to an inter-singularity length scale less
than the healing length of the condensate. Density (3rd row) and phase (4th row)
of two doubly charged vortices (each having topological charge n = 2), which
over time merge into a single fourth-order vortex. Here P = 10 and r0 = 15µm.
Colour scales are the same as in Fig. 3.2. At bottom, a density isosurface of the
two merging second-order vortices, with time shown along the horizontal axis ,
from 12 ps (left) to 240 ps (right).
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Fig. 3.5 Power spectral density of acoustic waves radiated by the approach and
merger of two vortices, resolved in time-frequency space. Top panel shows the
merger of two unit vortices, and vertical lines mark the time of transition from
well separated vortices to vortices sharing a common low-density core (left) and
the time at which the singularities have merged to within a healing length (right).
Middle and bottom panels show the acoustic spectra of two merging doubly
charged vortices (middle) and two merging triply charged vortices (bottom). The
ring pump radius is 20µm. In the case of two single vortices, one vortex is
imprinted at the condensate center, and the other at a distance of 18µm from the
center. In the cases of two multiply charged vortices, both vortices are imprinted
18µm from the center.
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evenly about a common radius merge, they emit higher frequency radiation as

the number of unit vortices is increased. Once the multiply charged vortex has

formed and is allowed to settle, low energy density perturbations can be applied to

the condensate. To model this, we simulate the effect of a small Gaussian laser

pump pulse centered on the vortex. The observed effect is the emission of an

acoustic energy pulse at the characteristic frequency of the vortex, as is seen in

from the merger of the equivalent number of unit vortices. As in any physical

system there exist many small perturbations due to intrinsic disorder, it is likely

that multiply charged vortices in a real system are regularly being excited and

emitting acoustic radiation. The amplitude of these density oscillations were found

to start on the order of 1% of the density, decreasing exponentially over time. This

makes experimental observation, while certainly not easy, not out of the realm of

possibility.

3.5 Nonconservative Kelvin-Helmholtz Instability

Next we will establish the limit on the vortex multiplicity that the trapped conden-

sate can support. This limit is set by the maximum counterflow velocity that can

be supported between the condensate and the reservoir, therefore, is determined by

the onset of a Kelvin-Helmholtz instability (KHI). KHI is the dynamical instability

at the interface of two fluids when the counterflow velocity exceeds a criticality. It

appears in variety of disparate systems, both classical and quantum, but has never

been discussed in the context of the polaritonic systems. In quantum fluids KHI

manifests itself via nucleation of vortices at a counterflow velocity exceeding the

local speed of sound vc =
√

U0ρ

m . It has been extensively studied for the interface

between different phases of 3He [135], two components in atomic BECs [136] or

for the relative motion of superfluid and normal components of 4He [137, 138].

In trapped condensates considered here, the counterflow is that between the con-
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Fig. 3.6 Plotted is the critical topological charge at which the KHI sets in, as a
function of pump radius. This is obtained by the direct numerical simulations of
Eqs. (3.1-3.2). The dashed line represents the theoretical expectation of Eq. 3.6.

densate of radius R (which rotates with velocity ℏ
m
|ℓ|
R at the boundary), and the

reservoir particles along the ring, that are stationary. Thus it is expected that KHI

should be initiated when the topological charge of the multiply charged vortex

state is high enough so that the velocity of condensate particles at the ring pump

radius reach vc. Thus the maximum topological charge ℓc allowed is set by

|ℓc|=
√

R2mU0ρ

ℏ
. (3.6)

Fig. 3.6 shows Eq. 3.6 (dashed line) along with the critical topological charges

found by direct numerical integration of Eqs. (3.1-3.2) (dots). In these numerical

experiments, we begin with a fully developed, vortex-free condensate. A unit

topological charge is imprinted in the center of the condensate, and the system is

allowed to settle, before another unit charge is added. This process is repeated

until the onset of the KHI leads to the vortex nucleation followed by annihilation

of vortex pairs and, therefore, by the reduction in the topological charge of the

system. This dynamical process is shown in Fig. 3.7. We note that the question of

the critical velocity in superfluids is always a subtle one. Even in the simplest case
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of a homogeneous, zero-temperature, equilibrium superflow around a 2D disk as

first studied in [139], both numerical and experimental data fluctuate significantly

around the analytical prediction of criticality [140]. Thirty years later, there has

not been a significantly better analytical estimate. Still, though we have a much

more complicated nonequilibrium system on a nonuniform background with a

nonuniform reservoir, our numerical data as compared to the analytical estimate is

rather accurate and shows the correct trend. Thus while there are certainly higher

order corrections to make to the analytical treatment of this system (as they remain

to be made in simpler equilibrium systems), the result presented here has shown

substantial evidence that the simple underlying physics of the instability are the

same in a nonequilibrium system. Further, we have shown that this fundamental

instability can not only be engineered to appear in polariton condensates, but that

it serves as a basic mechanism of capping vorticity.

In conclusion, we have shown that exciton-polariton condensates excited by an

annular pump can spontaneously rotate despite a uniform sample and no angular

momentum applied, forming multiply charged vortices. The formation, dynamics

and structure of these vortices were studied. We would like to emphasise that the

Kelvin-Helmholtz instability mechanism is quite specific to the ring-like pumping

configuration we considered. In the gain-dissipative condensate systems, the

particle fluxes exist even in the steady state connecting the regions where they

are predominantly created to the regions where they are predominantly dissipated.

With the ring-like pumping, the fluxes are oriented strictly towards the center

stabilizing the multiply-charged vortex while preventing the formation of localised

vortex clusters elsewhere. When other pumping profiles are considered, a more

complicated flux distribution emerges. In some localised parts of the sample

radial fluxes may exist similar to our ring-like pumping but much weaker and less

controllable. This may create conditions for the formation of multiply-charged

vortices, but of rather small multiplicity and that are quickly destroyed by the
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Fig. 3.7 For a great enough topological charge (compared to the size of the
condensate), the rotational flow at the boundary of the condensate reaches the
critical velocity for the Kelvin-Helmholtz instability to set in, which results in the
reduction of topological charge via the nucleation of new vortices, with charges
opposite to that of the multiply charged vortex and further pair annihilation. Shown
are density profiles from a direct simulation of Eqs. Eqs. (3.1-3.2) exhibiting this
process (radius 7µm,P = 10). The initial topological charge is imprinted one
quanta at a time, and the dynamics observed. After the fourth quanta of rotation is
imprinted, the system loses stability and expels some rotation through the KHI
mechanism, ending with unit topological charge.

small changes in parameters (e.g. pumping intensity or the pumping spot size).

For instance, a Mexican hat pumping profile in [121] gives rise to the outward

particle fluxes from the center in addition to the inward fluxes from the annular

pump, so a vortex of small multiplicity (two or three) is destroyed as the pumping

intensity is increased, instead bringing about clusters of vortices stabilized where

the fluxes from the center meet the radially inward fluxes. This destruction of

the multiply-charged vortices in this and similar cases can not be attributed to the

Kelvin-Helmholtz instability.





Chapter 4

Nonconservative Turbulence

4.1 Introduction

The phenomenon of turbulence is ubiquitous in nature, but its quantitative under-

standing is a notoriously difficult problem. Turbulence occurs in many everyday

fluids as well as in exotic systems such as plasmas and quantum fluids. The

quantization of vorticity in the latter leads to significant differences between the

dynamics of quantum and classical turbulence. However, at large Reynolds num-

bers the motion of well–separated vortices in incompressible classical flows can

have similar features to superfluid turbulence: in this case the turbulent vortex

dynamics of superfluids are nearly classical, being well described by the classical

Biot-Savart law. As such, the behavior of superfluid turbulence has been exten-

sively studied [141]. However, polaritonic systems hold promise of a distinct form

of quantum turbulence, in which the particle number of the condensate is itself

changing chaotically as a feature of its turbulent dynamics: unlike other quantum

fluid systems which see turbulence decay and which must see continued stirring or

other energy input to sustain turbulence, here the fluid itself is decaying and must

be replaced, and as I will show, sustained turbulence may be a self-generated state.
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Further, superfluid turbulence is not the only type of turbulent behavior seen in

quantum fluidic systems. It has been shown somewhat recently that by introducing

an external oscillatory perturbation to a trapped atomic Bose-Einstein condensate

(BEC), it becomes possible to obtain a large number of disordered vortices [76],

the dynamics of which differed dramatically from the vortex dynamics observed in

both classical and superfluid turbulence. In that system, the characteristic distance

between vortices is comparable to the size of its core; because of this, the chaotic

behaviour of the system extends down to the length scale of single vortices which

are therefore not well structured and thus do not obey the Biot-Savart law for

intervortex interactions (which severely complicates the treatment of interactions;

for one, compressibility can no longer be neglected). Together with the system

of [76] being in a strongly non-equilibriated state, this represented a novel and

highly nontrivial regime of turbulent behavior, called strong turbulence.

As with other nonlinear systems such as plasmas, classical fluids and nonlinear

optics, there exists, beyond the regime of strong turbulence, the regime of weak

turbulence, in which the dynamical structure of the system extends to beneath the

length scale of single vortices, so that the phase structure of the complex wave-

function is effectively destroyed, becoming essentially random. Weak turbulence

is thought to play an important role in the kinetics of Bose-Einstein condensation,

with it having been shown that a strongly non-equilibrium Bose gas evolves from

the regime of weak turbulence to that of superfluid turbulence, via states of strong

turbulence in the long-wavelength region of energy space [103].

Recently all three regimes (superfluid, strong, and weak turbulence) were

observed at different temperatures in 2D cold atomic gases, showing a universal

scaling [142]. It has, however, remained an important open question whether

it is possible to force a condensate system to pass through these stages in a

reverse order. The purpose of this short chapter is to demonstrate that polariton

condensates, given their inherent far-from-equilibrium nature, allow for just this:
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we will see that the mean inter-vortex spacing, in units of healing length, can be

tuned continuously from the well separated vortices of the superfluid regime, to

the regimes of strong and then weak turbulence.

Towards Polaritonic Turbulence

The mechanisms of vortex generation and turbulence in equilibrium condensates

are quite well known: examples include the energy exchanges between rarefaction

pulses [143], the supercritical flow past barriers [139], and the modulational

instabilities of density variations such as with the breakdown of dark solitons

into vortices [144–146, 129, 109], and some of these mechanisms are known to

produce vortices in polariton condensates as well. For instance, the flow of exciton-

polaritons about a spatially extended defect can produce vortex pairs of opposite

circulation depending on the flow velocity [147]. In the third chapter of this thesis,

we showed that vorticity can also be spontaneously generated via the breakdown

of dark solitons [4]. However, by nature of being permanently out-of-equilibrium

and thus being characterised by persistent particle fluxes, polariton condensates

can form vortices by distinct mechanisms as well. For instance, an inhomogeneity

of the pump or the potential can form steady currents which can produce vortices

through a pattern forming symmetry breaking mechanism [45].

As discussed already in the preliminary chapter, the formation of vortices in

polariton condensates has been demonstrated in a number of experiments, and

via various mechanisms. However, the observation of polaritonic turbulence has

remained elusive. Various pump geometries have been used to experimentally

generate vortices in polariton condensates [148, 149], and with four pumping spots

arranged in a square grid it was observed that the vortex locations fluctuate, but

remain very close to stationary pinning points [148]. A more disordered formation
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of vortices was experimentally demonstrated by the pumping of a cavity sample

which possessed a random potential [52].

A fundamental issue in any experiment involving polaritonic turbulence is that

chaotic dynamics are not resolvable in time with current technology: dynamical

evolutions of polaritonic systems are observed in experiment by repeating the

experiment many times, each time recording single-time data at slightly later

moments in the dynamics. In this way the dynamics of a repeatable process are

time resolved. For a behaviour as chaotic as turbulence, this is not possible, and

experimentalists are restricted to measuring time-integrated wavefunctions. Thus,

even when a turbulent state may exist in polariton condensate systems, it is not

obvious how one might demonstrate the signatures of that turbulent state.

4.2 Modeling Experiments

Recently the Advanced Photonics Lab in Lecce, headed by Dr. Daniele Sanvitto,

performed experiments which recorded the time-integrated wavefunctions of a

polariton condensate fed by a single Gaussian pump, on a semiconductor sample

with a naturally inhomegeneous surface structure. Intuitively, we should expect

the nucleation of vortices from a large enough flow past the disordered potential

barriers/wells, and for a larger flow might expect turbulence.

The Lecce group has shared their unpublished experimental results with us,

and has kindly allowed me to discuss it here. In this section I will repeat their

physical experiment in the form of a numerical experiment, and will show that

their data is consistent with having recorded the time-integrated wavefunctions of

polaritonic turbulence. As it stands, the experimental data that I discuss here is the

only of its kind, and is thus the only experimental data point with which to ground

our theories.
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We begin by modeling the Lecce experiment geometry: we consider a single

Gaussian pump of the form P = P0 exp(−wr2), where w is a width parameter, and

introduce a disordered potential in a region displaced from the central pump spot.

Our disordered potential is composed of a sum of many randomly parameterized

Gaussian potentials, the locations of which are randomly distributed about square

lattice positions, so as to prevent the overlap of randomly placed inhomogeneities;

the parameters of the disordered potential (for example the distribution of inho-

mogenuity widths) are chosen to approximately match the experimental sample.

For convenience we restate our model as

i∂tψ = −(1− iηNR)∇
2
ψ + |ψ|2ψ +gNRψ + i(NR − γ)ψ, (4.1)

∂tNR = P− (b0 +b1|ψ|2)NR, (4.2)

with all quantities defined to match the experimental parameters of the Lecce

experiments 1.

The behavior of the system depends critically on pump strength. For low

pump strengths, we observe the formation of vortices which are pinned to the

local minima of the potential and remain stationary, as in the experimental work

of Lagoudakis et al. [52]. As the pump strength is increased, the positions of these

vortices begin to fluctuate, as was seen in the experiments of Tosi et al. [148]

(though for a different system geometry). As the pump strength is further increased,

vortex fluctuations become great enough that the vortices are freed from the local

minima of the potential where they had been trapped, and interact chaotically; this

represents the creation of a turbulent state of the polariton condensate.

The behaviour we see in our numerical simulations is consistent with the

experimental results. The experimental images (necessarily time-averaged) are

1In this chapter, the parameter values in our simulations are fixed to g = 1.1, b0 = 1, b1 = 6,
γ = 0.01, and η = 0.3
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Fig. 4.1 Top two rows: Numerically simulated time-averaged amplitude (bluescale)
and phase (greyscale) of a polariton condensate pumped by a single Gaussian spot
(outside the image frame, to the left) in the presence of a disordered potential.
Lower two rows: corresponding experimental images. Each column represents
the result of a different pump strength, which increase to the right. The numerical
frames show the time averaged states which were stationary (g(2)=2.0), nonsta-
tionary (g(2)=1.7), and turbulent (g(2)=1.5), which had second-order correlations
consistent with the experimental images. Experimental images courtesy of Dr.
Daniele Sanvitto and the Advanced Photonics Lab, Lecce, Italy.
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shown for several pump intensities in Fig. 4.1. As in our numerical results, we see

that as the pump strength is increased, the time-averaged images become blurrier

and blurrier, as would be expected given increased motion: disordered motions

should "average out" in the integrated image, while stationary disorder should

remain sharply disordered. To quantify this we introduce the correlation function

g2 = ⟨|ψ|4⟩/⟨|ψ|2⟩2. This function, borrowed from quantum optics, represents a

measurement of the relative order of a complex wavefunction. For a very disor-

dered system, the function approaches g(2) = 2, while for a uniform wavefunction

it approaches g(2) = 1. Measuring g(2) of the intrinsically time-averaged experi-

mental data and of the explicitly time-averaged numerical simulations, we see a

strong quantitative match, as shown in Figs. 4.1, with an inverse dependence of

g(2) on pump intensity.

This dependence, again, comes from the high degree of spatial disorder in sta-

tionary state (left column): in the case of low pump strength, states are stationary

and thus time-averaged images fully resolve that disorder, resulting in a high value

of g(2). As the pump strength increases and vortices become nonstationary and

eventually turbulent, the time-averaged images become blurrier and more uniform,

resulting in lower values of g(2). As expected, the value of g(2) remains high when

calculated for non-time-averaged numerical data, for all pump strengths.

While our numerical modelling has demonstrated that the Lecce experiment

is consistent with representing a transition to turbulence, it does not prove the

existence of any such transition. However, with current experimental apparatuses,

there is simply no way to directly observe turbulence, so all we may hope for is a

signature. This will be discussed again at the end of this chapter.
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4.3 Generating Turbulence without Extrinsic Disor-

der

Again, there are many ways one might approach the generation of a turbulent

state in a polariton condensate. Very recently a numerical study considered the

generation of turbulence in polariton condensates using "spoon stirring" with a

laser, or with many stirrers obeys Brownian motion [150]. This is not dissimilar

in approach to the system of [52], where the flows past physical inhomogeneities

in the sample are relied upon for the nucleation of vorticity - this is still essentially

nuleation via flow past external obstacle - with the disorder imposed externally.

However, such proposals are quite complicated, in that it requires external drivers

of turbulence with their own particularities. Moreover, these approaches squander

the ability of polariton condensates to exhibit self-driving turbulence, a property I

will demonstrate now.

We will do this by first introducing our pumping geometry, which actually

matches that of the experiment of [52], which did not observe signs of turbulence,

except for one key difference: unlike that experiment which required sample

disorder to nucleate and trap vortices, we will consider the more general scenario

of a uniform sample. We thus consider the system pumped nonresonantly by

four Gaussian pump spots arranged in an even grid, with the distance between

nearest pump spots denoted as d. With such a setup, our degrees of freedom are

the pump strengths, and the pump spot distance d (for simplicity we will say that

the spots are pumped evenly, and we will fix their Gaussian width as that variable

turns out to be redundant). We thus perform numerical experiments for various

choices of these variables, and again find that for suitably high pump strength

turbulent states are generated. An example of such a state is shown in Fig. 4.2,

which shows a snapshot of the condensate density (in the plane), and also shows
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Fig. 4.2 A visual representation of a 2D nonconservative quantum turbulence. In
the plane, the densities of the BEC at a snapshot in time are plotted; the turbulence
is initiated and sustained from the flow of particles from the four pump spots with
grid spacing 50µm (dark spots). The black lines represent the paths of central
vortex points over time (out of plane axis). Both the in and out-of-plane structures
are the results of direct numerical simulations, but do not match in scale.

the paths of vortices over the time evolution of the condensate (out of the plane).

Vortex paths are determined by marking the intersections of real and imaginary

zero-crossing lines at each time-slice. Paths of individual vortices are separately

marked by a depth-first search of nearest-neighbor vortices in consecutive time

frames, where which the vortex line is determined to start/end when there is not a

correspondingly close neighbor in the preceding/proceeding frame.

4.4 Strong and Weak Regimes

So far we have demonstrated that polariton condensates can self-generate sus-

tained turbulence without requiring the explicitly imposed disorder of a randomly

structured sample. This is itself not really new, having been demonstrated already
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(though for a simpler model) more than a decade ago in the unpublished preprint

of Berloff [151]. However, we have set out to demonstrate something more inter-

esting: that depending on the pump geometry, we can observe not only superfluid

turbulence, but also strong and weak turbulence.

Thus we need to quantify the concentration of vorticity in our system. It is

possible to mark the locations of vortices throughout the computed wavefunction

at each timestep, which can be done precisely by finding the intersections of the

real and imaginary zero-surfaces. In this way, the vortex number density can

be determined. However, it is important to note that achieving strong or weak

turbulence is not quite as conceptually simple as increasing the pump strength:

doing so does increase the number of vortices seen, but also increases the back-

ground condensate density and correspondingly shortens the healing length. As

the regimes of interest are defined relative to that lengthscale, this strategy is

fruitless.

Instead, we will opt for what I will contend is the second most intuitive strategy:

increasing the pump spot separation. The intuition behind this is as follows: as the

pump spots are separated further, the density of interference fringes arising from

their interacting particle fluxes increases relative to the density of the condensate

(more fringes, less condensate). The regular grid of density zeros associated with

the four-wave interference pattern are necessarily vortices, arranged in an unstable

lattice. Obviously keeping the pump strength constant while increasing the area of

inward particle fluxes results in a lower condensate density in that region.

This idea is confirmed with direct numerical simulation, from which we

measure the vortex density (vortices per square healing length unit cell) of the

turbulent flow for different distances between pump and potential (with healing

length measured separately for each separation difference). The result is shown

in Fig. 4.3. As expected, as the distance increases between the pump spots and

the region of interest, the average number of vortices found per healing length
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Fig. 4.3 Vortex density, scaled nondimensionally as the vortices per square healing
length unit-cell, plotted several distances between pump spots and the disordered
potential (where the vortex densities are sampled). As this distance increases, the
vortex density increases. The range of vortex densities shown here represents
a transition from superfluid (vortex density< 1) to strong (≈ 1) to weak (> 1)
turbulent states as this distance is increased.

increases. This shows directly that our system exhibits a smooth transition between

regimes of quantum turbulence, here showing such a transition from superfluid

turbulence (vortex density< 1) through the strong turbulent state (vortex density

≈ 1), and into the regime of weak turbulence (vortex density> 1). Fig. 4.4 shows

corresponding snapshots of density and phase for turbulent states formed with

different distances between the four pump spots. It shows clearly that as the lattice

spacing increases from left to right, so does the absolute vortex density. Of course

as the pump spots are moved apart the wavefunction density in the central region

also decreases, which increases the healing length.
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Fig. 4.4 Density (bluescale) and phase (greyscale) snapshots (top) of simulated
polariton turbulence, formed by the four-spot system. From left to right, the
distance between pump spots increases (the spots are out of the frame in the
far right column). The bottom rows show time-averaged images of the same
simulations. The time averaged phase images show order on finer and finer length
scales as the vortex density increases (left to right). From left to right, inter-pump
distances d are 40µm, 60µm, and 100µm.
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4.5 Turbulent Structure

Wavenumber Spectra

To better understand the nature of the turbulence that we observe, we calculate

the wavenumber spectra of these states. The spectra of turbulent states with

varying vortex density are shown in Fig. 4.5. From that figure it is clear that

the spectra shown are all nearly identical and fit a k−3 dependence. In two-

dimensional equilibrium Bose-Einstein condensates, this dependence is associated

with acoustic turbulence, which was derived from the assumption of weakly

nonlinear random excitations, and is conceptually similar to weak turbulence

[152]. It is not clear why the polaritonic turbulence appears to fit to this spectrum

regardless of vortex density. Regardless, the spectrum does not survive the time-

averaging process; we find that the spectra of time-averaged data no longer fits

to k−3 (dashed), but rather fits to k−2 which is consistent with the (necessarily

time-averaged) Lecce data, although the reason for this particular relationship is

not immediately clear.

Fractality

The study of random laser scatter has revealed that the vortices which naturally

appear in such fields trace out complicated paths through the propagation axis, and

have fractal dimension d = 2 (matching that of paths characteristic of Brownian

motion) [153]. Representing a completely linear random wave limit, the optical

scatter in a sense represents a "weaker than weak turbulence", and might thus help

us understand how vortex propagation lines are to be structured when nonlinearity

is not a dominating component of their dynamics (as would be consistent with the

acoustic-like wavenumber spectrum).

Taking time as our propagation axis, we track the vortex lines from our direct

numerical simulations of polaritonic turbulence, algorithmically separating indi-
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Fig. 4.5 Wavenumber spectrum of the fully time-resolved turbulent states, plotted
along with k−3 (dashed). States correspond to those in Fig. 4.4, with pump spac-
ings of 40µm (blue), 60µm (red), and 100µm (green). Marked are the wavenum-
bers kD = 2π/D (where D is the size of the studied area), kδ = 2π/δ (where δ is
the mesh size), and k̄ξ = 2π/ξ , which is the wavenumber corresponding to the
average healing length. Not shown are the wavenumbers kℓ, which correspond to
the typical intervortex lengthscale. These are 1.1, 2.6, and 5.9 for each plotted
spectrum, respectively. In other two-dimensional quantum turbulent systems this
spectral dependence is associated with what is known as acoustic turbulence [152].

vidual vortex lines from each other and analyzed. In this setup, the line structure

represents more than a snapshot of the condensate structure, but rather includes

the entire dynamics: any fractality of such a line, as in the paths of Brownian

particles, encodes information about how the velocity of the vortex changes over

time and in space.

The fractal dimension is at its most fundamental a measure of complexity, and

a system described by a single fractal dimension over a range of length scales can

formally said to be self similarly complicated over those length scales. There are

many definitions of the fractal dimension (Hausdorff, packing, box-counting, etc),

but we will use that of Mandelbrot in his treatment of random walks, in which the

fractal dimension d = log(N)/log(L), where N and L are the path integrated and

Pythagorean distances between points along the path, respectively [154].

What is found is that regardless of vortex density, the vortex lines in our simu-

lations are self similar with fractal dimension d ≈ 2 for lower lengthscales. Fig.
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Fig. 4.6 Path integrated distance vs point-to-point distance between points along
many vortex paths from a direct numerical simulation of quantum turbulence in
the superfluid regime (corresponding to spot separation 40µm in Fig. 4.4). In this
space, linearity indicates self similarity, and the slope indicates the fractal dimen-
sion: that corresponding to d = 2 is shown in red. The dropoff of fractal dimension
at higher lengthscales is thought to come from the effects of the maximum system
lengthscale: the turbulence is only approximately isotropic at lengthscales smaller
than that of the pump lattice.

4.6 shows the vortex line path distance as a function of Pythagorean distance for a

characteristic simulation of polaritonic turbulence in the regime of well separated

vortices. Thus at least at lower lengthscales, the fractal structure is consistent with

that of vortex lines propagating in a linear random wave system. Combined with

the finding that our simulations yield wavenumber spectra consistent with that of

weakly nonlinear random wave (acoustic) turbulence, it appears that our numerical

probes consistently suggest that the turbulent states we are probing, regardless of

vortex density, are surprisingly similar in structure to weakly nonlinear disordered

systems.
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4.6 Closing Remarks

This chapter has discussed the topic of polaritonic turbulence, a subject about

which very little is understood; in this chapter I have reported on new ideas, but

have admittedly not come to any clear conclusions. In the first part of the chapter I

discussed the possibility that the Lecce group has already observed the signatures

of polaritonic turbulence. However, while I showed that their results are consistent

with turbulent states, there was no smoking gun. One possibility I have proposed

is to look for the scars of rogue waves (rare non-Gaussian amplitude spikes) which

are associated with turbulence in nonlinear-Schrodinger type equations. Due to

their non-Gaussian statistics, these would appear as heavier-than-Gaussian tails

(kurtosis higher than three) in the amplitude distributions of the time integrated

data. Early data from the Lecce group appears to find this sudden change in the

tail-heaviness, and is being probed further. As for developing an understanding of

the structure of polaritonic turbulence, we simply need further study. My work

here has been entirely numerical, and this has been useful to gain some intuition

as to what is going on. However, an analytical theory of polaritonic turbulence is

clearly as necessary as it is difficult to realize.
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Conclusion

Over the course of this work, we have investigated the fundamental dynamics

of nonconservative quantum fluids, composed of condensed exciton-polariton

quasiparticles. In doing so, we have demonstrated how fundamentally distinct the

behaviours of such systems are from their equilibrium counterparts. Equilibrium

condensates do not allow for spatially localized breathers or for stable vortices of

higher-than-unit topological charge, yet here we have shown that in the noncon-

servative condensate both structures emerge naturally. Clearly, the structural and

dynamical limitations of equilibrium systems no longer apply far from equilib-

rium, but the ways in which this manifests itself is not always so clear; beyond

introducing and probing new quantum hydrodynamical structures, a main result of

this thesis is simply that the hydrodynamics of nonconservative quantum fluids

are quite far from being fully understood. In this thesis I have looked for some

of the most fundamental structures, - vortices and the fundamental excitations of

dual-forcing - but surely more interesting structures remain undiscovered. Thus

while I conclude this thesis with many questions remaining, knowing that even

the structures discussed here are in possession of more secrets to yield, my hope

is that this work provides a sense of intuition and direction which helps, in some
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small way, to orient this new field of nonconservative quantum hydrodynamics

towards a deeper and more coherent understanding.
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