

An introgressed wing pattern acts as a mating cue

Journal:	Evolution
Manuscript ID:	14-0656.R2
Manuscript Type:	Brief Communication
Date Submitted by the Author:	n/a
Complete List of Authors:	Sanchez, Angela; Universidad Central, Departamento de Ciencias Naturales Pardo-Diaz, Carolina; Universidad del Rosario, Programa de Biología, Facultad de Ciencias Naturales y Matematicas Enciso-Romero, Juan; Universidad del Rosario, Programa de Biología, Facultad de Ciencias Naturales y Matematicas Munoz, Astrid; Universidad de la Salle, Departamento de Ciencias Básicas Jiggins, Chris; University of Cambridge, Zoology Salazar, Camilo; Universidad del Rosario, Programa de Biología, Facultad de Ciencias Naturales y Matematicas Linares, Mauricio; Universidad del Rosario, Programa de Biología, Facultad de Ciencias Naturales y Matematicas
Keywords:	Reproductive Isolation, Heliconius, Adaptive introgression, Homoploid hybrid speciation

1	An introgresse	d wing pattern	acts as a mating cue
2			
3 4	Angela P. Sánchez ¹ , Ca Jiggins ⁴ , Camilo Salaza	urolina Pardo-Diaz ² , Juan ur ^{2*} , Mauricio Linares ^{2*+}	n Enciso-Romero ² , Astrid Muñoz ³ , Chris D.
5			
6 7 8	¹ Universidad Central, E D.C., Colombia.	Departamento de Ciencia	as Naturales. Carrera 5 No. 21 - 38, Bogotá
9	² Biology Program, Fac	ulty of Natural Sciences	and Mathematics. Universidad del Rosario.
10	Carrera. 24 No 63C-69	, Bogotá D.C., 111221. (Colombia.
11	³ Universidad de la Sall	a Dopartamento da Cia	nains Pásians, Carrora 2 No. 10, 70, Pagatá
12	D.C. Colombia	e, Departamento de Cier	iicias Basicas. Carreia 2 No. 10 – 70, Bogota
14	D.C., Coloniola.		
15	⁴ Department of Zoolog	gy, University of Cambr	idge. Downing Street, Cambridge, CB2 3EJ,
16	United Kingdom.		
17	-		
18	*These two authors con	tributed equally to this v	vork
19	⁺ Corresponding author		
20	Contact information:	Angela Sánchez	ap.sanchezd@gmail.com
21		Carolina Pardo-Diaz	geimy.pardo@urosario.edu.co
22		Juan Enciso-Romero	enciso.juan@urosario.edu.co
23		Astrid Muñoz	charitonia@gmail.com
24		Chris Jiggins	c.jiggins@zoo.cam.ac.uk
25		Camilo Salazar	salazarc.camilo@urosario.edu.co
26		Mauricio Linares	mauricio.linares@urosario.edu.co
27	Key words: Heliconius	s, reproductive isolation,	, homoploid hybrid speciation, magic trait
28	Running title: An adap	ptive trait elicits assortat	ive mating
29	Word, figures and tab	les count: 4,950 words,	3 figures, 1 tables
30			

31 Abstract

33	Heliconius butterflies provide good examples of both homoploid hybrid speciation and
34	ecological speciation. In particular, examples of adaptive introgression have been detected
35	among the subspecies of Heliconius timareta, which acquired red color pattern elements
36	from <i>H. melpomene</i> . We tested whether the introgression of red wing pattern elements into <i>H</i> .
37	timareta florencia might also be associated with incipient reproductive isolation from its close
38	relative, H. timareta subsp. nov., found in the eastern Andes. No choice experiments show a
39	50% reduction in mating between females of <i>H</i> . <i>t</i> . subsp. nov. and males of <i>H</i> . <i>t</i> . <i>florencia</i> , but
40	not in the reciprocal direction. In choice experiments using wing models, males of H.
41	<i>timareta</i> subsp. nov. approach and court red phenotypes less than their own, while males of <i>H</i> .
42	t. florencia prefer models with a red phenotype. Intrinsic post-zygotic isolation was not
43	detected in crosses between these H. timareta races. These results suggest that a color pattern
44	trait gained by introgression is triggering reproductive isolation between <i>H. timareta</i> subsp.
45	nov. and <i>H. t. florencia</i> .

46 Introduction

47

48	The mode and tempo of speciation remains controversial among evolutionary biologists
49	(Mayr 1942; Turelli et al. 2001; Coyne and Orr 2004; Scopece et al. 2007). One highly
50	debated area is the possible role of hybridization in species formation, especially among
51	zoologists, who often see hybridization as a process that retards speciation (Dowling et al.
52	1997; Mallet 2007). While it is true that gene flow can impede divergence in sympatry, it is
53	becoming recognized that hybridization might also contribute useful genetic variation, i.e.
54	adaptive introgression (Arnold 1997; Dowling et al. 1997; Seehausen 2004; Mallet 2007;
55	Abbott et al. 2013). Currently several examples of adaptive introgression in animal species
56	are known and include warfarin resistance in mice, coat color in wolves, insecticide resistance
57	in Anopheles, wing color pattern in Heliconius and several traits gained by modern humans
58	from Neanderthals and Denisovans (Anderson et al. 2009; Green et al. 2010; Coulson et al.
59	2011; Song et al. 2011; Consortium 2012; Mendez et al. 2012b; Mendez et al. 2012a; Pardo-
60	Diaz et al. 2012; Hedrick 2013; Mendez et al. 2013; Clarkson et al. 2014; Norris et al. 2015).
61	Adaptive introgression and hybridization are processes with potential to facilitate hybrid
62	speciation when the novel traits or parental genome reorganization promote reproductive
63	isolation (RI) and/or adaptive divergence (Abbott et al. 2013; Seehausen et al. 2014). Hybrid
64	swarms, for example, might contribute to speciation by founding populations with novel
65	characteristics not seen in parents, and a number of examples are known where recently
66	derived species show evidence for admixed genomes derived from different parental taxa
67	(Edelist et al. 2009; Whitney et al. 2010; Czypionka et al. 2012). Nonetheless, the evidence
68	for hybrid speciation remains controversial, and in particular, strong evidence for traits of
69	hybrid origin contributing to RI remains elusive in most systems (Schumer et al. 2014). A
70	simple way to test whether adaptive introgression leads to speciation in animals is by
71	assessing its potential to generate RI in early stages of divergence. This however has been

tested only a handful of times (Schumer et al. 2014; Selz et al. 2014) and, in particular, the
contribution of adaptive introgression to develop novel mating preferences has only been
investigated in artificial hybrids that do not occur in nature (Doherty and Gerhardt 1983;
Segura et al. 2011; Selz et al. 2014).

76

77 Butterflies of the genus Heliconius are famous for their adaptive wing color patterns (Mallet 78 and Jackson 1980; Jiggins 2008; Merrill et al. 2011) and provide one of the best animal 79 examples in which hybridization is known to play a role in speciation (Mavarez et al. 2006; 80 Melo et al. 2009). For instance, Heliconius heurippa is a novel non-mimetic species 81 established as a result of hybridization, leading to both a novel wing pattern and a novel 82 derived mating preference, constituting a case of ecological speciation where an adaptive 83 character, acquired by hybridization, drives RI (Mavarez et al. 2006; Melo et al. 2009; Salazar 84 et al. 2010). Additional cases of adaptive introgression in *Heliconius* include the species H. 85 timareta (Consortium 2012; Pardo-Diaz et al. 2012). Phylogenetic analysis shows this taxon 86 as sister species to *H. cydno*, a species usually displaying yellow and white wing coloration 87 (Beltran et al. 2007; Giraldo et al. 2008). However, recent studies have uncovered several 88 previously undescribed populations of *H. timareta* with red pattern elements (Giraldo et al. 89 2008; Merot et al. 2013; Nadeau et al. 2014). In the eastern Colombian Andes the endemic 90 race H. t. florencia, displays an orange 'dennis-ray' wing color pattern (Giraldo et al. 2008), 91 the most common Heliconius mimicry Müllerian ring in the Amazon basin (Mallet and 92 Jackson 1980) whereas in Peru, the race H. t. thelxinoe shows a forewing red-banded 93 phenotype (Merot et al. 2013). Such discoveries were unexpected because mimicry between 94 closely related sympatric species such as H. timareta and H. melpomene had been considered 95 unlikely (Giraldo et al. 2008; Merot et al. 2013). However, recent analysis of genomic data 96 and genetic markers across the red color interval, have shown that red color patterns of these 97 H. timareta races have been acquired through multiple adaptive introgression events from H.

melpomene, permitting these two species to become mimetic in the Florencia region of
Colombia and in the San Martin region of Peru (Consortium 2012; Pardo-Diaz et al. 2012;
Merot et al. 2013).
In the light of evidence that the red coloration of *H. t. florencia* has been acquired via
hybridization, we here aim to determine whether the introgression of the rayed wing pattern

103 from *H. melpomene* into *H. t. florencia* is associated with RI from its close relatives. We

study closely related taxa in the melpomene/cydno/timareta clade found in the eastern Andes.

105 These include the 'dennis-ray' *H. m. malleti* and an undescribed endemic taxon found near to

106 San Vicente del Caguán (Colombia), H. timareta subsp. nov., for which morphological and

107 molecular data support its identity as another subspecies of *H. timareta*. This taxon has a

108 black background with a yellow band in the forewing, similar to nearby forms of *H. cydno*

109 (Figure 1; Giraldo et al. *in prep*). Although this *H. t.* subsp. nov. occurs geographically close

110 to *H. t. florencia*, a contact zone is unknown for these subspecies (Figure 1, Linares pers.

111 obs.), mostly due to security issues in the region.

Here, we evaluated whether pre-zygotic isolation barriers have evolved between *H. t.*

113 florencia and H. t. subsp. nov.. We also included H. m. malleti and H. c. cordula in these

114 experiments, in order to determine the role of the novel *H. t. florencia* wing color pattern in

115 RI from other parapatric and sympatric taxa from the same geographic region. In addition,

- these comparisons across multiple stages of divergence (from races to 'good' species) shed
- 117 lights on how RI develops along the speciation continuum. This will help to understand the
- 118 importance of wing color pattern acquired through adaptive introgression as a cause of
- 119 speciation in the *Heliconius* butterflies.

120 Methods

122 SAMPLING AND EXPERIMENTAL POPULATIONS

123

124	During 2009 and 2010 we collected a minimum of 25 wild individuals of each H. t. florencia
125	(Tf) and H. m. malleti (Mm) from Las Doraditas (2°41'04''N-74°53'17''W, Caquetá,
126	Colombia), H. c. cordula (Cc) from San Cristobal (7°47'566''N-72°11'566''W, Venezuela),
127	and <i>H. timareta</i> subsp. nov. (<i>Tn</i>) from Las Morras (01°45'02" N-75°37'55"W, Caquetá,
128	Colombia) and Guayabal (2°41'04"N-74°53'17"W, Caquetá, Colombia) (Figure 1). We used
129	these wild individuals to establish experimental populations in outdoor insectaries of 2x3x2m ³
130	in La Vega (Colombia), that were provided with the host plants Passiflora oerstedii, P. edulis,
131	P. maliformis and P. ligularis for oviposition and larvae feeding. For the adults, we provided
132	the nectar and pollen source plants Lantana sp., Gurania sp. and Psiguria sp., and artificial
133	nectar solution (Merrill et al. 2011).

134

135 MATING EXPERIMENTS

136

137	To determine the presence and strength of pre-zygotic barriers to gene flow between <i>H. t.</i>
138	florencia and H. t. subsp. nov., H. c. cordula and H. m. malleti, we used two types of
139	experiments, no-choice mating experiments and color pattern models. We expect that as
140	species divergence increases the strength of RI does. Thus, given the recent introgression of
141	the 'dennis-ray' in H. t. florencia we expect that both H. timareta races show some
142	indications of RI based in coloration pattern. This isolation should accentuate between the
143	species <i>H. timareta</i> and <i>H. cydno</i> , whilst between the more divergent <i>H. timareta-H. cydno</i>
144	and <i>H. melpomene</i> , isolation should be strong despite some of them display similar wing
145	color pattern.

No-choice mating experiments

149	We classified the no-choice matings, including direct and reciprocal, into three categories: (i)
150	control (same race), (ii) conspecific (same species, different race) and (iii) heterospecific
151	(Supplementary table 1). For each combination, a virgin female was placed with a male of at
152	least 8 days old inside an insectary for a maximum period of 8 days. The success or failure of
153	mating was recorded either by direct observation of mating or by the presence of the
154	spermatophore inside the female abdomen. After mating, the female was isolated in a
155	different insectary while the male was returned to the stock. Mated males were used only
156	once whereas unmated males were reused (Mavarez et al. 2006; Muñoz et al. 2010).
157	A Bayesian hierarchical model was used to estimate the probability of success for each
158	mating type. For the full model (Supplementary table 1, Supplementary Figure 1A), we
159	assume there is an overall rate of mating success μ for any mating class and each one of these
160	is assumed to have a rate of mating success θ_i which comes from a distribution centered
161	around μ . The number of times a mating success was registered y_i follows a binomial
162	distribution with rate of success θ_i and n_i trials. For the population specific model, we assume
163	different groups of crosses (Supplementary table 1, Supplementary Figure 1B) to have a
164	preference p_k , drawn from the overall distribution centered around μ . In this case θ_{lk} is the rate
165	of mating success for each type of cross l in each group of crosses k . As above, y_{lk} is the
166	number of successes in each experiment and follows a binomial distribution with rate of
167	success θ_{lk} and a total number of trials n_{lk} . These graphical models were implemented in the
168	JAGS software (Plummer 2003) using the R package R2jags (Su and Yajima 2009). We used
169	six independent Monte Carlo Markov Chains each with 20,000 collected samples and 5,000
170	burn-in samples. The \hat{R} statistic was used to verify convergence and autocorrelation as well as
171	to check that samples are good approximations to posterior distributions (Gelman et al. 1996).
172	Further, we used Bayes factors (BF henceforth) (Kass and Raftery 1995) to determine

173 whether rates of mating success are the same or different between mating types. In each case, 174 the Savage-Dickey approximation method (Lee and Wagenmakers 2013) was used to 175 estimate the value of the BF by comparing prior and posterior densities of the parameters (i.e. 176 calculating the ratio between of evidence supporting the null hypothesis and that of the 177 alternative hypothesis (H_q/H_1)). In our case, the null hypothesis is that success rate is no 178 different between mating types (i.e. $\delta = 0.5$, where δ is the difference between the success 179 rates of any pair of mating types) and thus, BF values below 1 support the alternative 180 hypothesis. Finally, for comparison purposes and following previous studies in Heliconius 181 (Jiggins et al. 2001b; Muñoz et al. 2010), we estimated mating preference using likelihood 182 (supplementary likelihood analysis).

183

184 Color pattern models

185

186 Color pattern models consisted of dissected wings of dead females and were used to test the 187 role of the color pattern preference of the males of *H. t. florencia* and *H. t.* subsp. nov.. A 188 single male of at least 8 days old of either H. t. florencia or H. t. subsp. nov. was presented 189 simultaneously with two female models, one being a control model (same race) and the 190 second, the experimental model, which could be either H. m. malleti, H. c. cordula, H. t. 191 florencia or H. t. subsp. nov. Both, the control and the experimental models were hanging 192 from a nylon string in the center of a spherical area (60 cm diameter) and gently shaken in 193 order to simulate real flying. We recorded the male response as approach (entered the sphere) 194 or courtship (fluttered towards the model) (Melo et al. 2009). In total, we tested 60 males of 195 H. t. florencia and 90 males of H. t. subsp. nov. and for each of them, we recorded a total of 196 20 approaches and courtships (Supplementary table 2).

In order to test the male response to the models we analyzed mate preference data using ahierarchical random effects Bayesian model for count data, which accounts for variation at

199	both individual and population levels and has been recently implemented in ecology and
200	evolution studies that analyze count data (Merrill et al. 2011; Lee and Wagenmakers 2013;
201	Finkbeiner et al. 2014). In our model we estimated the rate π_j with which males of type <i>j</i>
202	approached or courted experimental over control wing models, thus being the key parameter
203	of interest. We assumed there is an overall preference μ of choosing the control wing model
204	over the experimental in any case, and also, that each male of <i>H. t. florencia</i> and <i>H. t.</i> subsp.
205	nov. has a preference for their control wing model type that comes from the distribution
206	centered around μ (supplementary figure 2). It was also assumed that there is between-
207	butterfly individual differences drawn from a distribution with mean π_j so that the <i>ith</i> butterfly
208	on the <i>jth</i> condition has a latent preference q_{ij} . Finally, we assumed that the number of times
209	the control type was chosen (y_{ij}) follows a binomial distribution out of a total of n_{ij} events.
210	Beta distributions were used to model the preferences π_j and q_{ij} . The graphical model
211	illustrating our Bayesian approach (supplementary figure 2) was implemented in JAGS
212	(Plummer 2003) as described above. We also calculated BFs (Kass and Raftery 1995) using
213	the Savage-Dickey approximation method (Lee and Wagenmakers 2013) to: (i) address
214	whether males of <i>H. t. florencia</i> and <i>H. t.</i> subsp. nov. have an actual preference for their
215	control wing pattern or if they choose a different wing pattern as frequently as their own and,
216	(ii) address whether pairs of group mean preferences were the same or different (see BF
217	interpretation above). Once more, for comparison purposes we estimated color pattern
218	preference using likelihood (supplementary likelihood analysis).

220 ANALYSIS OF POST-MATING ISOLATION

221

Using the successful matings obtained in the no-choice mating experiments, we calculated

hatching proportion as a measure of egg viability relative to control crosses. For this, once the

female was mated we isolated her in an individual insectary with food resources and host

225 plant for oviposition. Eggs were collected daily and larvae were reared individually. We 226 recorded the number of eggs laid and their hatching success. The data were analyzed with the 227 likelihood approximation implemented in BETABINO 1.1 (Jiggins et al. 2001a). Basically, a 228 betabinomial distribution is used with count data (number of eggs) to obtain the maximum 229 probability of observing an event (success of hatching) through different classes (category of 230 no-choice mating). This likelihood function considers the variability within replicates of the 231 same category and between different categories of no-choice matings. The program calculates 232 the maximum log-likelihood under four models considering variation in the hatching 233 proportion among classes. Likelihood ratio tests were used to differentiate among alternative 234 models with dissimilar number of parameters (Jiggins et al. 2001a; Naisbit 2002; Salazar et 235 al. 2005). With these experiments, we expect to observe intrinsic isolation barriers only 236 between the more divergent taxa (H. timareta-H. cydno and H. melpomene). 237

238 **Results**

239

240 MATING EXPERIMENTS

241

242 The Bayesian approach with hierarchical models used here allowed us to quantify uncertainty

- of individual and population preferences that we had not been able to estimate using
- 244 likelihood methods alone that assume a single parameter to describe the preference of all
- 245 individuals (supplementary likelihood analysis). However, the results obtained by both
- approaches were largely consistent.

248 Conspecific comparisons

250	In no-choice mating experiments we performed a total of 23 conspecific comparisons that
251	involved both H. timareta races and contrasted them against 105 control comparisons (Figure
252	2, supplementary Table 3). In trials involving \bigcirc <i>H. t.</i> subsp. nov. x \bigcirc <i>H. t. florencia</i> , the
253	frequency of successful mating was about half that of control matings (Figure 2, BF =
254	0.01384), while in trials with \bigcirc <i>H. t. florencia</i> x \bigcirc <i>H. t.</i> subsp. nov., matings occurred in the
255	same proportion as controls (Figure 2, $BF = 5.54426$). Although it is clear that there is a
256	reduction of inter-population mating, these experiments had a small sample size due to
257	availability of specimens so it is not clear whether the asymmetric mating probability reflects
258	a biological reality. In wing model experiments, males of <i>H. t. florencia</i> and <i>H. t.</i> subsp. nov.
259	showed a similar preference strength in approaches and courtships (Figure 3). The males of
260	H. t. florencia discriminated against the wing models of H. t. subsp. nov. in approaches and in
261	courtships (Figure 3A). Similarly, when H. t. subsp. nov. males were exposed to wing
262	models, they preferred their own color pattern over that of <i>H. t. florencia</i> in approaches and in
263	courtships (Figure 3B). The model that best fits the no-choice conspecific mating experiments
264	consisted of three parameters (Pop. Sp. 1 in supplementary table 1; pD=5.7, DIC=26.3), being
265	better than the initial full model with a single mating probability (full in supplementary Table
266	1; pD=14.3, DIC=57.8). The first parameter grouped control crosses (p_1 =0.863), the second
267	parameter only included the cross \bigcirc <i>H. t. florencia</i> x \bigcirc <i>H. t.</i> subsp. nov. (p ₃ =0.810) and the
268	last parameter consisted only of the cross \bigcirc <i>H</i> . <i>t</i> . subsp. nov. x \bigcirc <i>H</i> . <i>t</i> . <i>florencia</i> (p ₂ =0.644).
269	Overall, our results seem to support that incipient mating preferences are triggering RI
270	between H. timareta races.

Heterospecific comparisons

274	A total of 163 heterospecific comparisons were made and further compared with those of
275	controls (supplementary Table 3). Both H. t. florencia and H. t. subsp. nov. preferred to mate
276	with their own when tested against <i>H. m. malleti</i> (BF= 4.41×10^{-13} - 4.35×10^{-6} ; Figure 2). The
277	extent of such pre-zygotic isolation is similar to that observed between <i>H. m. malleti</i> and <i>H. c.</i>
278	<i>cordula</i> (BF= 1.27×10^{-5} - 4.09×10^{-3} ; Figure 2) and between other <i>H. cydno</i> and <i>H. melpomene</i>
279	races studied previously (Naisbit et al. 2001). Similarly, matings between the more closely
280	related <i>H. timareta</i> races and <i>H. c. cordula</i> were as frequent as those of their controls (BF
281	=2.29 – 7.31, Figure 2), except for \bigcirc <i>H. t.</i> subsp. nov. x \bigcirc <i>H. c. cordula</i> whose mating was
282	only 35.5% as likely (BF= $4x10^{-3} - 0.18$, Figure 2). The males of <i>H. t. florencia</i> discriminated
283	against the wing models of H. c. cordula in approaches and courtships but failed to
284	differentiate models of <i>H. m. malleti</i> , that display their same wing phenotype (Figure 3A).
285	This suggests that the presence of red wing elements, and in general the color pattern, plays a
286	major role in mate discrimination in H. t. florencia. Similarly, when H. t. subsp. nov. males
287	were exposed to wing models, they preferred their own color pattern over that of H . m .
288	malleti and H. c. cordula when approaching and courting (Figure 3B) indicating that initial
289	recognition of color pattern helps identifying possible mates and other factors likely of
290	chemical nature, determine the success of a mating in <i>H. t.</i> subsp. nov For heterospecific no-
291	choice experiments, an initial full model with a single mating probability (supplementary
292	Table 1) was established across all trials ($pD=14.3$, $DIC = 57.8$). To test different hypotheses,
293	the Bayesian hierarchical model was fitted in a stepwise manner by adding parameters to the
294	initial model. When mating probabilities were estimated in a model of four parameters
295	separating (i) control crosses, (ii) crosses involving <i>H. m. malleti</i> females, (iii) crosses with <i>H</i> .
296	timareta females and (iv) crosses involving H. c. cordula females, this led to a significant
297	improvement in the fitting of the model (pD=13.6, DIC=56.3, Pop. Sp. 2 in supplementary
298	Table 1). This possibly reflects different mating preferences of females from different species,
299	mostly females of <i>H. m. malleti</i> which are highly selective ($p_2=0.091$).
300	

301 ANALYSIS OF POST-MATING ISOLATION

302

303	The likelihood model that better explained the observed hatching proportions was that of a
304	common mean with different variances (mvvv; G_{17} =33.19; p=0.0106). None of the
305	heterospecific crosses involving either race of H. timareta and/or H. c. cordula showed
306	significant differences in egg hatching as compared to the control crosses (Table 2; $G_9=13.6$;
307	p=0.13). F_1 hybrid males were always fertile (G_7 =9.22; p=0.23; Table 2) while F_1 hybrid
308	females showed significant reduction in their hatching proportions when compared to those of
309	control, conspecific or heterospecific crosses (G_7 =15.87; p=0.026 and G_9 =18.89; p=0.0261,
310	respectively). Interestingly, this significant reduction seems to be due only to F ₁ hybrid
311	females from the cross \bigcirc <i>H. m. malleti x</i> \bigcirc <i>H. t. florencia</i> , as when they were removed from
312	the comparisons, the remaining F_1 females (that is, the ones resulting from the crosses $\bigcirc H$. <i>t</i> .
313	<i>florencia</i> $x \stackrel{{}_{\circ}}{\circ} H$. <i>t</i> . subsp. nov., $\stackrel{{}_{\circ}}{\rightarrow} H$. <i>t</i> . subsp. nov. $x \stackrel{{}_{\circ}}{\circ} H$. <i>t</i> . <i>florencia</i> and $\stackrel{{}_{\circ}}{\rightarrow} H$. <i>c</i> . <i>cordula</i> $x \stackrel{{}_{\circ}}{\circ}$
314	<i>H. t.</i> subsp. nov.) did not show any signal of egg inviability (G_6 =8.828; <i>P</i> =0.1835 in the
315	comparison with control crosses and $G_8=12.509$; $P=0.1299$ in the comparison with
316	heterospecific crosses). Consistently, when females from the reciprocal cross ($\bigcirc H$. <i>t</i> .
317	<i>florencia</i> $x \stackrel{\circ}{\circ} H$. <i>m. melpomene</i>) were tested, none of the eggs they laid hatched (Table 1).
318	These results indicate that there is no post-zygotic isolation between <i>H. cydno</i> and <i>H.</i>
319	timareta, but there is between H. melpomene and H. timareta, consistent with previously
320	observed crosses between other races of <i>H. melpomene</i> and <i>H. cydno</i> (Jiggins et al. 2001a;
321	Naisbit 2002; Salazar et al. 2005).

322 **Discussion**

323

Recently there have been studies documenting adaptive introgression and hybrid speciation in
animals (Mavarez et al. 2006; Schwarz et al. 2007; Anderson et al. 2009; Green et al. 2010;

326	Hermansen et al. 2011; Song et al. 2011; Consortium 2012; Pardo-Diaz et al. 2012; Hedrick
327	2013; Mendez et al. 2013; Clarkson et al. 2014; Lucek et al. 2014; Norris et al. 2015)
328	however, few have experimentally shown whether introgression directly affects adaptation
329	and/or leads to speciation when the hybrid and parents are not temporarily and/or spatially
330	separated (Schwander et al. 2008; Melo et al. 2009; Schumer et al. 2014; Selz et al. 2014). In
331	particular, the potential of adaptive introgression to promote RI in animal systems remains a
332	largely unexplored question (Schumer et al. 2014).

334 An important requirement to address this question is having an animal system where adaptive 335 introgression occurred recently to assess whether it is triggering RI between the forms of the 336 newly formed polymorphic population. To our knowledge only few cases have investigated 337 the contribution of recent hybridization to RI. Four studies showed that hybrids prefer to mate 338 with themselves rather than with the parental species (Doherty and Gerhardt 1983; Melo et al. 339 2009; Segura et al. 2011; Selz et al. 2014) however, three out of those four cases namely 340 Anastrepha flies, cichlid fishes and Hyla frogs, tested preference in F_1 artificial hybrids that 341 do not occur in nature.

342

In *Heliconius, H. timareta* has recently acquired wing pattern elements by hybridizing with *H. melpomene* (Consortium 2012; Pardo-Diaz et al. 2012). This gene sharing allowed the
diversification of *H. timareta* across the east of the Andes by allowing it to enter mimetic
rings already established between *H. melpomene* and *H. erato*. The present study shows that
besides the intrinsic adaptive value of the novel mimetic and aposematic wing coloration in *H. timareta*, the introgression of this trait into this species contributes to some degree of
incipient RI.

350

In the south east of the Colombian Andes the introgression of the 'dennis-ray' pattern from *H*.
 m. malleti into the ancestor of *H. timareta* led to the diversification of this species, resulting

353 in the co-existence of the races H. t. florencia ('dennis-ray') and H. t. subsp. nov. that, 354 according to our data, are developing incipient assortative mating based on presence/absence 355 of the 'dennis-ray'. Specifically, we observed a reduction in mating frequency in no-choice 356 experiments between *H. timareta* races. This reduction can be due to several behavioral and 357 ecological factors, but is likely mostly explained by the fact that females of *H. t.* subsp. nov. 358 and males of *H. t. florencia* are less prone to mate with each other. Furthermore, males of 359 both H. t. subsp. nov. and H. t. florencia approached and courted wing models of the other 360 subspecies substantially less than those of their own. Thus, it seems that mating success is 361 largely due to the males' color pattern preference. However, females of H. t. florencia and 362 males of *H. t.* subsp. nov. mated with each other despite the choosiness showed by these 363 males in wing model experiments. This may be explained by the nature of no-choice 364 experiments, which simulate natural situations of one to one encounters in the field, and 365 measure reluctance but not choice. Thus, males of *H. t.* subsp. nov. prefer females of their 366 own if they are given the choice but, when that is not the case, they are opportunistic and 367 mate with *H. t. florencia*.

368

369 In agreement with the incipient RI detected in our experiments, we have collected hybrids 370 between H. t. florencia and H. t. subsp. nov. in the wild (~3%; 5 out of 150 individuals 371 sampled, that have a broader forewing band typical from *H. t.* subsp. nov. and 'dennis-ray' 372 from *H. t. florencia*). However, this value is likely an underestimation. Given the dominant 373 inheritance of the 'dennis-ray' phenotype, F₁ hybrids between these races will look 374 phenotypically identical to *H. t. florencia* and can be mistakenly classified as 'pure'. This is 375 indeed likely, as some wild-caught H. t. florencia females have produced offspring with both 376 rayed and non-rayed phenotypes (Linares pers. comm.). Finally, a comprehensive sampling 377 across the zone of contact has not been possible due to political instability. In the light of the 378 lack of evidence for the extent of hybridization in the wild and that the degree of RI between 379 these morphs is likely insufficient to merit species status (and they may not necessarily

diverge into good species), we prefer to think of this study as an example of what may happen

during early stages of hybrid trait speciation *sensu* Jiggins et al. (2008).

382

383	On the other hand, when we examined mating behavior involving comparisons between <i>H</i> .
384	timareta with other species, interesting observations emerged. First, matings between females
385	of H. t. subsp. nov. and males of the closely related taxon H. c. cordula were infrequent
386	(Figure 2), despite these two species have a very similar wing coloration (mainly
387	differentiated by the presence of iridescence and brown hind wing forceps in <i>H. c. cordula;</i>
388	Figure 1). This RI may be the result of both female and male choice. Males may be using
389	iridescence as a mating cue. We observed that although males of H. t. subsp. nov. (non-
390	iridescent) approach wing models of H. c. cordula (iridescent), they avoid courting them
391	(Figure 3). In addition, as <i>Heliconius</i> females have odor receptors (Briscoe et al. 2013) and
392	the males produce sex pheromones (Vanjari pers. comm.), females of H. t. subsp. nov. may be
393	recognizing their conspecifics males from those of H. c. cordula using chemical cues,
394	although this remains untested. However, this isolation is asymmetrical as H. c. cordula
395	females mate freely with H. t. subsp. nov. males (Figure 2). Second, the pre-mating isolation
396	between <i>H. timareta</i> and <i>H. melpomene</i> is strong and mediated by color and, perhaps,
397	chemical cues. Females of H. t. subsp. nov. almost never mated males of H. m. malleti (only 1
398	successful cross in 30 attempts) and the reciprocal cross never occurred in our experiments
399	(Figure 2), perhaps explained by the differences in color pattern between these species. In
400	consequence, males of <i>H. t.</i> subsp. nov. approached and courted wing models of <i>H. m. malleti</i>
401	in less than 30% of the trials (Figure 3). In contrast, phenotypically identical co-mimics H. t.
402	florencia and H. m. malleti were strongly assortative, but did mate more frequently than the
403	non-mimetic pair (less than 20%; Figure 2 and (Giraldo et al. 2008)). Furthermore, males of
404	H. t. florencia approached and courted wing models of H. m. malleti as much as theirs (Figure
405	3). This suggests that recognition is likely primarily based on pheromones. There is evidence
406	supporting this, as males of H. t. florencia and H. m. malleti are known to produce different

407	pheromone blends (Vanjari pers. comm.). The isolation we found between <i>H. timareta</i> and <i>H.</i>
408	melpomene is also consistent with previous studies that found that interspecific crosses
409	between H. cydno (closely related to H. timareta) and H. melpomene, are highly infrequent
410	(Jiggins et al. 2001b; Mavarez et al. 2006).
411	
412	There was no egg inviability in F ₁ individuals from crosses between <i>H. cydno</i> and <i>H. timareta</i>
413	or between <i>H. timareta</i> races, while eggs laid by F_1 female hybrids between any race of <i>H</i> .
414	timareta and H. melpomene always failed to hatch (Table 1), a result also observed between
415	H. cydno and H. melpomene (Naisbit 2002). These results are consistent with the idea that the
416	early stages of speciation are driven by divergent ecological or sexual selection, with intrinsic
417	postzygotic isolation arising later in the speciation continuum (Seehausen et al. 2014). Here,
418	races of the same species (H. t. subsp. nov. and H. t. florencia) show incipient mating
419	preference, closely related species (H. timareta – H. cydno) have stronger assortative mating
420	without intrinsic genetic incompatibilities and, finally, more distant species (<i>H. timareta/H.</i>
421	<i>cydno – H. melpomene</i>) have developed both prezygotic and postzygotic isolation.
422	
423	The presence of prezygotic isolation barriers in early stages of speciation has also has been
424	documented between sister taxa of recent origin such as Pundamilia cichlids (Seehausen
425	2009), Littorina ecotypes (Conde-Padín et al. 2008; Saura et al. 2011), races of Rhagoletis
426	(Powell et al. 2014), Ophrys spp. orchids (Scopece et al. 2007), Haplochromine cichlids
427	(Stelkens et al. 2010) and other Heliconius butterflies (Merrill et al. 2011). However, in none
428	of those cases RI resulted as consequence of an introgressed trait. Additionally, our study is
429	one of the few documenting the subsequent evolution of intrinsic postzygotic barriers in later
430	stages of speciation (although see (Naisbit 2002; Stelkens et al. 2010; Merrill et al. 2011)).
431	
432	In summary, we have confirmed that <i>H. timareta</i> is a taxon more closely related to <i>H. cydno</i> ,
433	but that the introgression of red color wing elements from <i>H. melpomene</i> has contributed to

- 434 the divergence between *H. t. florencia* and *H. t.* subsp. nov. through the development of
- 435 incipient assortative mating. We do not know whether this incipient mate recognition will
- 436 lead to the formation of two different species but, at present, this case reflects the potential of
- 437 adaptive introgression to promote and facilitate hybrid trait speciation.

439 Acknowledgments

440

- 441 We thank Universidad del Rosario for awarding Mauricio Linares the project FIUR, DVG-
- 442 122, which funded part of the fieldwork and the maintenances of insectary cages at La Vega,
- 443 Cundinamarca. We also thank Facultad de Ciencias at Universidad de los Andes for awarding
- 444 Angela Sánchez and Mauricio Linares a 'Proyecto Semilla', and private donations to the
- latter, towards the funding of part of this project. We also thank the Autoridad Nacional de
- 446 Licencias Ambientales of Colombia (ANLA), for the collecting permit number 161. Dr.
- 447 Nicola Clerici provided help with the production of Figure 1.

448

449 **References**

450	Abbott, R., D. Albach, S. Ansell, J. W. Arntzen, S. J. E. Baird, N. Bierne, J. Boughman, A.
451	Brelsford, C. A. Buerkle, R. Buggs, R. K. Butlin, U. Dieckmann, F. Eroukhmanoff,
452	A. Grill, S. H. Cahan, J. S. Hermansen, G. Hewitt, A. G. Hudson, C. Jiggins, J. Jones,
453	B. Keller, T. Marczewski, J. Mallet, P. Martinez-Rodriguez, M. Möst, S. Mullen, R.
454	Nichols, A. W. Nolte, C. Parisod, K. Pfennig, A. M. Rice, M. G. Ritchie, B. Seifert,
455	C. M. Smadja, R. Stelkens, J. M. Szymura, R. Väinölä, J. B. W. Wolf, and D. Zinner.
456	2013. Hybridization and speciation. Journal of Evolutionary Biology 26:229-246. doi:
457	210.1111/j.1420-9101.2012.02599.x.
458	Anderson, T. M., B. M. vonHoldt, S. I. Candille, M. Musiani, C. Greco, D. R. Stahler, D. W.
459	Smith, B. Padhukasahasram, E. Randi, J. A. Leonard, C. D. Bustamante, E. A.
460	Ostrander, H. Tang, R. K. Wayne, and G. S. Barsh. 2009. Molecular and evolutionary
461	history of melanism in North American gray wolves. Science 323:1339-1343.
462	doi:1310.1126/science.1165448.
463	Arnold, M. L. 1997. Natural hybridization and evolution. Oxford University Press, Oxford.
464	Beltran, M., C. D. Jiggins, A. V. Z. Brower, E. Bermingham, and J. Mallet. 2007. Do pollen
465	feeding, pupal-mating and larval gregariousness have a single origin in Heliconius

466	butterflies? Inferences from multilocus DNA sequence data. Biological Journal of the
467	Linnean Society 92:221-239. doi:210.1111/j.1095-8312.2007.00830.x.
468	Briscoe, A. D., A. Macias-Muñoz, K. M. Kozak, J. R. Walters, F. Yuan, G. A. Jamie, S. H.
469	Martin, K. K. Dasmahapatra, L. C. Ferguson, J. Mallet, E. Jacquin-Joly, and C. D.
470	Jiggins. 2013. Female behaviour drives expression and evolution of gustatory
471	receptors in butterflies. PLoS Genet 9:e1003620. doi:
472	1003610.1001371/journal.pgen.1003620.
473	Clarkson, C. S., D. Weetman, J. Essandoh, A. E. Yawson, G. Maslen, M. Manske, S. G.
474	Field, M. Webster, T. Antão, B. MacInnis, D. Kwiatkowski, and M. J. Donnelly,
475	2014. Adaptive introgression between <i>Anopheles</i> sibling species eliminates a major
476	genomic island but not reproductive isolation. Nat Commun
477	5:doi:10.1038/ncomms5248.
478	Conde-Padín, P., M. Carballo, A. Caballero, and E. Rolán-Alvarez, 2008. The relationship
479	between hatching rate and number of embryos of the brood pouch in <i>Littorina</i>
480	saxatilis. Journal of Sea Research 60:223-225. doi:
481	210 1016/i seares 2008 1006 1003
482	Consortium T H G 2012 Butterfly genome reveals promiscuous exchange of mimicry
483	adaptations among species Nature 487.94-98 doi:10.1038/nature11041
484	Coulson T D R MacNulty D R Stahler B vonHoldt R K Wayne and D W Smith
485	2011 Modeling effects of environmental change on wolf population dynamics trait
486	evolution and life history Science 334:1275-1278 doi: 1210.1126/science.1209441
487	Covne I A and H Orr 2004 Speciation Sinauer Associates Inc. Sunderland MA USA
488	Czypionka T. L.I.F. Cheng A. Pozhitkov and A.W. Nolte 2012 Transcriptome changes
400	after genome-wide admixture in invasive sculning (<i>Cattus</i>) Molecular Ecology
400	21:4797-4810 doi: 4710 1111/j 1365-4294X 2012 05645 x
430 //Q1	Doherty I F and H C Gerhardt 1983 Hybrid tree frogs: vocalizations of males and
102	selective nhonotaxis of females Science 220:1078-1080
492	Dowling T.F. Secon and I. Carol 1997 The role of hybridization and introgression in the
494	diversification of animals. Annual Review of Ecology and Systematics 28:593-619.
495	doi: 510 1146/annurey ecolsys 1128 1141 1593
496	Edelist, C., X. Raffoux, M. Falque, C. Dillmann, D. Sicard, L. H. Rieseberg, and S.
497	Karrenberg 2009 Differential expression of candidate salt-tolerance genes in the
498	halophyte <i>Helianthus paradoxus</i> and its glycophyte progenitors H annuus and H
499	netiolaris (Asteraceae) American Journal of Botany 96.1830-1838
500	doi:1810.3732/aib.0900067
501	Finkbeiner S D A D Briscoe and R D Reed 2014 Warning signals are seductive.
502	Relative contributions of color and nattern to predator avoidance and mate attraction
503	in <i>Heliconius</i> butterflies Evolution 68:3410-3420 doi: 3410.1111/evo.12524
504	Gelman A X Meng and H Stern 1996 Posterior predictive assessment of model fitness
505	via realized discrepancies. Statistica Sinica 6:733-807.
506	Giraldo, N., C. Salazar, C. D. Jiggins, E. Bermingham, and M. Linares, 2008. Two sisters in
507	the same dress: <i>Heliconius</i> cryptic species. BMC Evolutionary Biology
508	8 doi:10 1186/1471-2148-1188-1324
509	Green R E J Krause A W Briggs T Maricic U Stenzel M Kircher N Patterson H Li
510	W Zhai M H-Y Fritz N F Hansen E Y Durand A -S Malasninas I D Jensen
511	T Marques-Bonet C Alkan K Prüfer M Meyer H A Burbano I M Good R
512	Schultz A Aximu-Petri A Butthof B Höber B Höffner M Siegemund A
513	Weihmann C Nushaum E S Lander C Russ N Novod I Affourtit M Egholm
514	C Verna P Rudan D Braikovic Z Kucan I Gusic V B Doronichev I V
515	Golovanova C Lalueza-Fox M de la Rasilla I Fortea A Rosas R W Schmitz P
516	L F Johnson E E Eichler D Falush E Rirney I C Mullikin M Slatkin R
517	Nielsen, J. Kelso, M. Lachmann, D. Reich and S. Pääbo 2010. A draft sequence of
518	the Neandertal genome Science 328:710-722 doi: 710.1126/science 1188021
910	the realidertal genome. Genere 520, 10-722, doi: /10.1120/selence.1100021.

519	Hedrick, P. W. 2013. Adaptive introgression in animals: examples and comparison to new
520	mutation and standing variation as sources of adaptive variation. Molecular Ecology
521	22:4606–4618. doi: 4610.1111/mec.12415.
522	Hermansen, J. S., S. A. Sather, T. O. Elgvin, T. Borge, E. Hjelle, and GP. Saetre. 2011.
523	Hybrid speciation in sparrows I: phenotypic intermediacy, genetic admixture and
524	barriers to gene flow Molecular Ecology 20:3812-3822 doi: 3810.1111/i.1365-
525	3294X 2011 05183 x
526	Jiggins C 2008 Ecological speciation in mimetic butterflies BioScience 58:541-548
520	doi:510 16/1/R580610
527	Ligging C. M. Lingrag, P. Naishit, F. C. Salazar, Z. Vang, and I. Mallet. 2001a. Say linked
528 529	hybrid sterility in a butterfly. Evolution 55:1631-1638.
530	Jiggins, C. D., R. E. Naisbit, R. L. Coe, and J. Mallet. 2001b. Reproductive isolation caused
531	by colour pattern mimicry. Nature 411:302-305. doi:310.1038/35077075.
532	Kass, R. and A. Raftery. 1995. Bayes factors. Journal of the American Statistical Association
533	90:773-795.
534 525	Lee, M. and EJ. Wagenmakers. 2013. Bayesian cognitive modeling. Cambridge University
555	Lucely K. M. Lamaina and O. Sachausan 2014 Contamporary contumin divergence during a
530	Lucek, K., M. Lenionie, and O. Seenausen. 2014. Contemporary ecotypic divergence during a
557	Ecclustical comparison was facilitated by adaptive introgression. Journal of
538	Evolutionary Biology 27:2233-2248. doi: 2210.1111/je0.12475.
539	Mallet, J. 2007. Hybrid speciation. Nature 446:279-283. doi:210.1038/nature05706.
540	Mallet, J. L. B. and D. A. Jackson. 1980. The ecology and social benaviour of the Neotropical
541	butterfly <i>Heliconius xanthocles</i> Bates in Colombia. Zoological Journal of the Linnean
542	Society /0:1-13. doi: 10.1111/j.1096-3642.1980.tb00845.x.
543	Mavarez, J., C. A. Salazar, E. Bermingham, C. Salcedo, C. D. Jiggins, and M. Linares. 2006.
544	Speciation by hybridization in <i>Heliconius</i> butterflies. Nature 441:868-8/1.
545	doi:810.1038/nature04738.
546	Mayr, E. 1942. Systematics and the origin of species. Columbia University Press, New York.
547	Melo, M. C., C. Salazar, C. D. Jiggins, and M. Linares. 2009. Assortative mating preferences
548	among hybrids offers a route to hybrid speciation. Evolution 63:1660–1665. doi:
549	1610.1111/j.1558-5646.2009.00633.x.
550	Mendez, F. L., J. C. Watkins, and M. F. Hammer. 2012a. Global genetic variation at OAS1
551	provides evidence of archaic admixture in Melanesian populations. Molecular
552	Biology and Evolution 29:1513-1520. doi: 1510.1093/molbev/msr1301.
553	Mendez, Fernando L., Joseph C. Watkins, and Michael F. Hammer. 2012b. A haplotype at
554	STAT2 Introgressed from Neanderthals and serves as a candidate of positive
555	selection in Papua New Guinea. The American Journal of Human Genetics 91:265-
556	274. doi: 210.1016/j.ajhg.2012.1006.1015.
557	Mendez, F. L., J. C. Watkins, and M. F. Hammer. 2013. Neandertal origin of genetic variation
558	at the cluster of OAS immunity genes. Molecular Biology and Evolution 30:798-801.
559	doi: 710.1093/molbev/mst1004.
560	Merot, C., J. Mavarez, A. Evin, K. K. Dasmahapatra, J. Mallet, G. Lamas, and M. Joron.
561	2013. Genetic differentiation without mimicry shift in a pair of hybridizing
562	Heliconius species (Lepidoptera: Nymphalidae). Biological Journal of the Linnean
563	Society 109:830–847 doi: 810 1111/bii 12091
564	Merrill R M Z Gompert L M Dembeck M R Kronforst W O McMillan and C D
565	Jiggins 2011 Mate preference across the speciation continuum in a clade of mimetic
566	butterflies Evolution 65:1489-1500 doi: 1410.1111/j.1558-5646.2010.01216 x
567	Muñoz A G C Salazar I Castaño C D Jiggins and M Linares 2010 Multiple sources
568	of reproductive isolation in a himodal butterfly hybrid zone. Journal of Evolutionary
560	Biology 23:1312-1320
570	Nadeau N. M. Ruiz P. Salazar, R. Counterman, I. A. Medina, H. Ortiz Zuazaga, A.
570	Ivadeau, Iv., Ivi. Kuiz, I. Saiazai, D. Countenniail, J. A. Mcuilla, II. Oluz-Zuazaga, A.
E71	Morrison W/ O McMillon C D ligging and D Dans 2014 Demulation commission of

5/2	parallel hybrid zones in the mimetic butterflies, <i>H. melpomene</i> and <i>H. erato</i> . Genome
5/3	Research. doi: 10.1101/gr.109292.109115.
5/4	Naisoit, K., E., Jiggins, C. D., Linares, M., Salazar, C., Mallet, J. 2002. Hybrid sterility,
5/5	161.1517 1526
5/6	101.131/-1320.
5//	Naisoit, K. E., C. D. Jiggins, and J. Mallet. 2001. Disruptive sexual selection against hybrids
578	contributes to speciation between <i>Heliconius cyano</i> and <i>Heliconius melpomene</i> .
579	Proceedings of the Royal Society B: Biological Sciences 268:1849-1854. doi:
580	1810.1098/rspb.2001.1/53.
581	Norris, L. C., B. J. Main, Y. Lee, I. C. Collier, A. Forana, A. J. Cornel, and G. C. Lanzaro.
582	2015. Adaptive introgression in an African malaria mosquito coincident with the
583	increased usage of insecticide-treated bed nets. Proceedings of the National Academy
584	of Sciences 112:815-820. doi:810.10/3/pnas.1418892112.
585	Pardo-Diaz, C., C. Salazar, S. W. Baxter, C. Merot, W. Figueiredo-Ready, M. Joron, O. W.
586	McMillan, and C. D. Jiggins. 2012. Adaptive introgression across species boundaries
587	in <i>Heliconius</i> butterflies. PLoS Genet 8:e1002752.
588	doi:1002710.1001371/journal.pgen.1002752.
589	Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs
590	sampling <i>in</i> F. L. Hornik, and A. Zeileis, ed. Proceedings of the 3rd international
591	workshop on distributed statistical computing, Vienna, Austria.
592	Powell, T. H. Q., A. A. Forbes, G. R. Hood, and J. L. Feder. 2014. Ecological adaptation and
593	reproductive isolation in sympatry: genetic and phenotypic evidence for native host
594	races of <i>Rhagoletis pomonella</i> . Molecular Ecology 23:688-704. doi:
595	610.1111/mec.12635.
596	Salazar, C., S. W. Baxter, C. Pardo-Diaz, G. Wu, A. Surridge, M. Linares, E. Bermingham,
597	and C. D. Jiggins. 2010. Genetic evidence for hybrid trait speciation in Heliconius
598	butterflies. PLoS Genet 6:e1000930. doi:1000910.1001371/journal.pgen.1000930.
599	Salazar, C. A., C. D. Jiggins, C. F. Arias, A. Tobler, E. Bermingham, and M. Linares. 2005.
600	Hybrid incompatibility is consistent with a hybrid origin of Heliconius heurippa
601	Hewitson from its close relatives, Heliconius cydno Doubleday and Heliconius
602	melpomene Linnaeus. Journal of Evolutionary Biology 18:247-256. doi:
603	210.1111/j.1420-9101.2004.00839.x.
604	Saura, M., M. Martínez-Fernández, M. J. Rivas, A. Caballero, and E. Rolán-Alvarez. 2011.
605	Lack of early laboratory postzygotic reproductive isolation between two ecotypes of
606	Littorina saxatilis (Mollusca, Gastropoda) showing strong premating sexual isolation.
607	Hydrobiologia 675:13-18. doi: 10.1007/s10750-10011-10788-z.
608	Schumer, M., G. Rosenthal, and P. Andolfatto. 2014. How common is homoploid hybrid
609	speciation? Evolution 68:1553-1560. doi: 1510.1111/evo.12399.
610	Schwander, T., S. S. Suni, S. H. Cahan, and L. Keller. 2008. Mechanisms of reproductive
611	isolation between an ant species of hybrid origin and one of its parents. Evolution
612	62:1635-1643. doi: 1610.1111/j.1558-5646.2008.00387.x.
613	Schwarz, D., K. D. Shoemaker, N. L. Botteri, and B. A. McPheron. 2007. A novel preference
614	for an invasive plant as a mechanism for animal hybrid speciation. Evolution 61:245-
615	256. doi: 210.1111/j.1558-5646.2007.00027.x.
616	Scopece, G., A. Musacchio, A. Widmer, S. Cozzolino, and J. True. 2007. Patterns of
617	reproductive isolation in Mediterranean deceptive orchids. Evolution 61:2623-2642.
618	doi: 2610.1111/j.1558-5646.2007.00231.x.
619	Seehausen, O. 2004. Hybridization and adaptive radiation. Trends in Ecology & Evolution
620	19:198-207. doi:110.1016/j.tree.2004.1001.1003.
621	Seehausen, O. 2009. Progressive levels of trait divergence along a 'speciation transect' in the
622	Lake Victoria cichlid fish <i>Pundamilia</i> . Pp. 155–176 in R. K. Butlin, J. Bridle, and D.
623	Schluter, eds. Speciation and Patterns of Diversity. Cambridge University Press,
624	Cambridge.

625	Seehausen, O., R. K. Butlin, I. Keller, C. E. Wagner, J. W. Boughman, P. A. Hohenlohe, C.
626	L. Peichel, GP. Saetre, C. Bank, A. Brannstrom, A. Brelsford, C. S. Clarkson, F.
627	Eroukhmanoff, J. L. Feder, M. C. Fischer, A. D. Foote, P. Franchini, C. D. Jiggins, F.
628	C. Jones, A. K. Lindholm, K. Lucek, M. E. Maan, D. A. Marques, S. H. Martin, B.
629	Matthews, J. I. Meier, M. Most, M. W. Nachman, E. Nonaka, D. J. Rennison, J.
630	Schwarzer, E. T. Watson, A. M. Westram, and A. Widmer. 2014. Genomics and the
631	origin of species. Nat Rev Genet 15:176-192. doi: 110.1038/nrg3644.
632	Segura, D. F., M. T. Vera, J. Rull, V. Wornoayporn, A. Islam, and A. S. Robinson. 2011.
633	Assortative mating among Anastrepha fraterculus (Diptera: Tephritidae) hybrids as a
634	possible route to radiation of the fraterculus cryptic species complex. Biological
635	Journal of the Linnean Society 102:346-354. doi: 310.1111/j.1095-
636	8312.2010.01590.x.
637	Selz, O. M., R. Thommen, M. E. Maan, and O. Seehausen. 2014. Behavioural isolation may
638	facilitate homoploid hybrid speciation in cichlid fish. Journal of Evolutionary
639	Biology 27:275-289. doi: 210.1111/jeb.12287.
640	Song, Y., S. Endepols, N. Klemann, D. Richter, FR. Matuschka, CH. Shih, M. W.
641	Nachman, and M. H. Kohn. 2011. Adaptive introgression of anticoagulant rodent
642	poison resistance by hybridization between old world mice. Current Biology
643	21:1296-1301. doi:1210.1016/j.cub.2011.1206.1043.
644	Stelkens, R. B., K. A. Young, and O. Seehausen. 2010. The accumulation of reproductive
645	incompatibilities in African cichlid fish. Evolution 64:617-633. doi: 610.1111/j.1558-
646	5646.2009.00849.x.
647	Su, Y. and M. Yajima. 2009. R2jags: A Package for Running jags from R. R.
648	Turelli, M., N. H. Barton, and J. A. Coyne. 2001. Theory and speciation. Trends in Ecology
649	& Evolution 16:330-343.
650	Whitney, K., R. Randell, and L. Rieseberg. 2010. Adaptive introgression of abiotic tolerance
651	traits in the sunflower Helianthus annuus. New Phytol 187:230-239. doi:
652	210.1111/j.1469-8137.2010.03234.x.

Page 23 of 28

654 Figure legends

655

656	Figure 1. Geographic distribution and phenotypes of <i>H. timareta</i> across South America. The
657	species H. m. malleti and H. c. cordula are also depicted. The distributions of taxa are
658	estimated from locality data compiled by Neil Rosser and Claire Merot (Rosser et al. 2012;
659	Merot et al. 2013). Circles represent possible (but not confirmed) contact zones. Background
660	map image was downloaded from ETOPO (Amante and Eakins 2009).
661	
662	Figure 2. Mating frequency in no-choice mating experiments with virgin adult females. <i>Tn:</i>
663	H. timareta subsp. nov; Tf: H. timareta florencia; Cc: H. cydno cordula; Mm: H. m. malleti.
664	Cross type is specified as <i>female x male</i> . Error bars represent 95% credible interval of the
665	posterior distribution.
665 666	posterior distribution.

668 courtships of males of (A) *H. t. florencia* and (B) *H. timareta* subsp. nov. (depicted at the top

of each panel) to female wing models of *H. m. malleti*, *H. c. cordula*, *H. t.* subsp. nov. and/or

670 *H. t. florencia* (bottom of each panel). The y-axis corresponds to the preference towards the

671 experimental model π_j . Values above 0.5 suggest preference for the own pattern while those

below 0.5 suggest preference for the experimental model.

Cross type (♀ genotype x	∂ gei	10type)	No. of broods	No. of eggs	Proportion of viable eggs	SE	Variance	SE
	Tn	x	Tn	4	288	0.63	0.07	0.01	0.01
Control	Tf	x	Tf	4	111	0.76	0.07	0.15	0.01
Control	Сс	x	Сс	29	1377	0.64	0.05	0.06	0.01
	Mm	x	Mm	4	103	0.60	0.13	0.05	0.04
Consposifie	Tf	x	Tn	3	210	0.70	0.03	0.0001	
Conspectite	Tn	x	Tf	4	192	0.55	0.05	0.003	0.006
	Сс	x	Tn	3	236	0.53	0.04	0.003	0.005
	Tn	x	Сс	3	138	0.61	0.04	0.0001	
Heterospecific	Tn	x	Mm	5	485	0.51	0.06	0.01	0.01
	Mm	x	Tf	2	83	0.43	0.18	0.06	0.04
	Mm	x	Tn	0					
	[Tf x Tn]	x	Tn/Tf	5	390	0.53	0.02	0.0001	
F	[Tn x Tf]	x	Tn/Tf	6	375	0.60	0.06	0.01	0.01
г	Tf	x	[Tf x Tn]	1	43	0.64	0.07	0.0001	
	Tn	x	[Tn x Tf]	4	261	0.55	0.03	0.0001	0.003

Table 1. Proportion of viable eggs in control (same races), conspecific (same species, different race), heterospecific and F₁ crosses

[Cc x Tn]	х	Cc/Tn	4	331	0.59	0.02	0.0001	0.002
[Mm x Tf]	x	Mm	2	70	0.28	0.05	0.0001	
[Tf x Mm]	x	Tf	2	80	0			
[Tn x Mm]	x	Mm/Tn	12	816	0			
Mm	x	[Mm x Tf]	2	106	0.64	0.20	0.10	0.06
Tn/Mm	x	[Tn x Mm]	8	970	0.41	0.05	0.02	0.01

674 Crosses are specified as female genotype x male genotype. The symbol (/) means or.

Geographic distribution and phenotypes of H. timareta across South America. The species H. m. malleti and H. c. cordula are also depicted. The distributions of taxa are estimated from locality data compiled by Neil Rosser and Claire Merot (Rosser et al. 2012; Merot et al. 2013). Circles represent possible (but not confirmed) contact zones. Background map image was downloaded from ETOPO (Amante and Eakins 2009). 301x175mm (300 x 300 DPI)

Approach Courtship

Page 28 of 28