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Abstract

We are inspired by the tensile buckling of a thin sheet with a slit to create a foldable planar metamaterial. The

buckled shape comprises two pairs of identical e-Cones connected to the slit, which we denote as a k-Cone. We

approximate this shape as discrete vertices that can be folded out of plane as the slit is pulled apart. We determine

their kinematics and we calculate generic shape properties using a simple elastic model of the folded shape. We

then show how the folded sheet may be tessellated as a unit cell within a larger sheet, which may be constructed a

priori by cutting and folding the latter in a regular way, in order to form a planar kirigami structure with a single

degree of freedom.

1 Introduction

Figure 1 indicates some of the cone motifs found when certain thin-walled elastic structures are constrained under

excessive deformations. A uniform cone is first pulled by its apex through a confining ring to form a second conical

indentation, the so-called c-Cone [1], Fig. 1(a), where “c”, tautologically, stands for “conical”. The more familiar

d-Cone [2] emerges instead when a flat disk, resting on the same ring, is pushed through at its centre, Fig. 1(b). In

this case, we assume “d” is for “developable”, as widely purported. A disk resting on a flat surface is splayed open

along a radial cut to produce an e-Cone in Fig. 1(c) [3]. Opening as such imposes angular excess around the cone

vertex, hence the “e” prefix; conversely, we may overlap the cut to create angular deficit and another type of d-Cone,

which is not shown. In forming e-Cones or d-Cones by manipulating the vertex angle, we are making disclinations i.e.

originally axisymmetrical surfaces now with line defects [4]. Finally, a creased disk can be made into a folded conical

sheet, or f-Cone, in Fig. 1(d), by pushing through and locally inverting the crease. For certain conditions, usually

after weakening the crease by repeated flexing, the f-Cone can remain inverted by itself [5].

These motifs are found in a range of natural problems, in: the coupled twisting and extension of thin strips

[6]; the packaging and crumpling of paper sheets [7]; the out-of-plane shaping of growing biological structures [8];

the textile wrapping and fitting of volumetric shapes by the draper or couturier [9]. When they form, these motifs

concentrate Gaussian (double) curvature locally at their vertices whilst enabling developable deformation elsewhere.

Higher deformation this way is energetically more efficient because stretching (or compression) is now relieved in

the bulk of the structure outside of the vertices. Of course, vertex plastic strains are inevitable but they too are

highly localised without incapacitating the structure. Controlling motif formation is becoming a rich research topic,

particularly for engineering metamaterials with novel responses—as in the f-Cone. Here, we make a similar proposal

based on a new cone motif found when a thin, singly slit sheet is put into tension.
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Consider the rectangular Mylar sheet in Fig. 2(a). Using a scalpel, a central enclosed slit is made parallel to

the short sides. The sheet is pulled normal to the slit by collinear point forces and then anchored by spots of

glue. Because the sheet is only 30 µm thick, it does not remain flat but immediately buckles above the surface. If

the experiment is repeated by holding the sheet above the surface and pulling between our fingers, the sheet can

displace anti-symmetrically about the slit into a different mode shape. Interaction between the sheet and the surface

is therefore essential for this mode shape, which comprises four conical regions symmetrically arranged about the

slit and separated by flat regions. Each cone is, in fact, a planar e-Cone similar to Fig. 1(c), which is reproduced

experimentally in Fig. 2(b) using a Mylar disk. After splaying open the radial cut, around one-third of the disk forms

a distinctive conical buckle. This elevated part is not static but can be manually moved around the vertex between

the open edges without changing its shape in a neutrally stable manner.

The in-plane stresses leading up to buckling can be compared to those near a slit, or crack, which does not deform

out of plane but which can potentially fail by fast fracture under tension. In this case, the stress intensity factor for

the crack determines the fracture stress conditions and is denoted by “K” [10]; in our sheet, because buckling is the

limiting response of similarly increasing local stresses, we suggest naming the composite motif as a “k-Cone”, with a

lower case prefix as standard; another reason is presented later. But before we think about how the stresses might

intensify, compressive buckling of a thin plate in tension presents something of a paradox; it is true that tension is

applied in the global sense but the sheet response produces local compression as follows.

The central slit opens horizontally under tension, where the application of point forces ensures that the middle of

the slit is more directly pulled apart than its ends—similar to how the open wedge is formed in Fig. 2(b). An e-Cone

must form at each end of the slit, which causes the flat regions on either side to be pulled inwards and to rotate. At the

same time, the outline of the open slit becomes trapezoidal and contracts in length, forcing the slit edges to displace

upwards. This movement couples to the rotations of adjacent horizontal planes, which enables lateral compression in

tapering “bands” away from the slit on both slides, where the points of application of force become a second pair of

e-Cone vertices. This pair obviously subtends the width of the slit; for the other pair, we find that they consistently

have a fixed, or natural, angular width of around 90◦ for many different proportions of sheet and slit.

Because the composite arrangement is more complex than a solitary e-Cone, we expect the natural angular widths

of their respective e-Cones to be different. But researchers over the last twenty years have reported that in certain cone

motifs, these widths appear to be invariant irrespective of the size and material of motif, which suggests a common

formation mechanism. The width in particular for d-Cones and e-Cones has been used to express the deformed shape

in compact terms, where analytical solutions using large displacement shell equations have been matched against

practical measurements. The case of Fig. 2(b), for example, is the “planar confined” e-Cone from [3], whose initial

buckled region is predicted to subtend close to 180◦. This would seem to be confirmed by Fig. 2(b) but the way

in which the detached buckled portion reflects light in the plan view in Fig. 2(b.i) suggests a smaller conical width,

around 120◦ − 130◦. The difference is due to the rate at which detachment occurs, encapsulated by the width of

so-called “transition regions” leading into the cone on either side. These regions are narrow but significant, of the

order of 10◦ − 20◦, and closer examination of the cone reveals that beyond them the deformed parts are much flatter

and connected together by a third transition region over the apex. Thus, the conical deformation has a strong facet

character, highlighted schematically in Fig. 2(b.iii) and recorded in other studies, for example, on d-Cones [2].

In this view, elastic deformation is mostly confined to the curved transition regions. If we now imagine their widths

becoming infinitesimally thin, the deformed shape is entirely faceted; and the e-Cone motif can be formed instead by
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discretely folding along certain lines in a slit disk. Figure 3(a) shows a symmetrical version made out of paper card.

Being much thicker than Mylar, fold lines can be made by scoring without penetrating the card, and the intervening

facets are much stiffer so that folded sheet has flat facets and holds its shape. The e-Cone is simulated by three fold

lines emanating from a common vertex: two valley folds along where the e-Cone begins to lift off on either side, and

one mountain fold along its central ridge. Here, the initial separation of the valley folds in plan is deliberately chosen

to be 120◦ in line with Fig. 2(b).

A discrete k-Cone motif can be similarly constructed, see Fig. 3(b). The outlines of four e-Cone vertices are scored

onto a flat rectangular card with an enclosed slit before folding out of plane. The angular width of the vertex pair

at the slit ends is initially set to be 90◦ to match the natural continuum width. As usual, the other pair subtends

the slit width from points in the middle of parallel edges. Overall, the folded card resembles an origami structure

but it is not because we have had to cut the card to make the slit, which is strictly forbidden [11]; it is a kirigami

structure (from Japanese kiru: to cut) and the previous soubriquet, “k”-Cone, is also fitting. When the card is pulled

apart by increasing forces, the rate of folding quickly diminishes: we observe the same tempering of deformation in the

continuum case. If instead we “pinch” e-Cones between our fingers for even higher deformation, the narrower e-Cones

may be closed into a single vertical plane with a mountain rotation equal to 180◦; correspondingly, the wider pair is

partially folded to some angle set by the geometry of sheet; and if the narrower e-Cones happen to subtend the slit,

the slit ends eventually meet each other. All of these features are demonstrated later and usefully exploited.

The above brings us, rather circuitously, to the aims of this paper. We wish to focus on discretely folded structures

because their operation is simpler and their analysis is largely algebraic in nature. We are also able to draw upon

an important property of discrete vertices in determining how they may be folded: that the angular deficit imposed

at a given vertex is equal to the area of the Gauss mapping of facet normal vectors. The method was originally

applied to d-Cones in [13] and recently extended for e-Cones in [14]. We repeat the derivation for clarity’s sake and

we solve for the fold angles between symmetrically arranged facets. In a novel step, we then endow fold lines as linear

torsional springs, as if to concentrate the elastic deformation of the continuum case into its narrow transition regions

c.f. Fig. 2(b.iii). We compute the strain energy stored and the external work performed on the system before seeking

minimal energy and hence, equilibrium, configurations. We are then able to predict the width of our solitary e-Cones

as well as the near right-angled e-Cones in the continuum k-Cone motifs. We can then infer some facts about the

relative folding properties of a given layout of discrete k-Cone. Although this is restricted to the small displacement

regime throughout, we can surmise on the shape of more heavily folded k-Cones—by themselves and when they are

interconnected, in order to synthesise an extensive sheet—our foldable metamaterial. We then conclude.

2 Discrete e-Cones and k-Cones

Figure 4(a) indicates the planar geometry of a discretely folded e-Cone with four facets A to D. The valley folds are

symmetrically separated by angle, 2β, with respect to the mountain fold, which is parallel to the radial slit. Other

non-symmetrical configurations are possible but are not of immediate interest. Facets A and B are separated by

opening the slit into a planar wedge subtending angle 2α, which is the angular excess imposed at the vertex: the other

facets, C and D, rotate out of plane as the mountain fold tilts upwards. When α is zero, there are no fold rotations,

and displacements are small enough everywhere so that the original planar layout of fold lines does not change in the

deformed plan view. We also assume that the sheet thickness is negligible compared to the disk radius, r, so that it
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does not interfere with the folded geometry even for large rotations.

The mountain fold rotation is denoted as φ, and for the valleys, as θ. Moving around the vertex counter-clockwise

gives us the vector direction of rotation according to the right-hand screw rule: for a mountain fold rotation, its vector

must point towards the vertex whilst a valley one points away. Each vector is now plotted in Fig. 4(b) moving from

facets B to C, C to D etc, which reveals a closed vector triangle where 2θ cosβ = φ. But as carefully described in [13],

this vector triangle is identical to the Gauss mapping of vectors normal to each displaced facet onto the so-called “unit

sphere” [12]: furthermore, the area enclosed by this spherical mapping is precisely the angular deficit, 2α, imposed

at the vertex. Given the small nature of rotations, this mapping viz. Fig. 4(b) is a planar figure of simple area

(φ/2) · θ sinβ. Note that the circulation of vectors is clockwise—in the opposite sense to the construction sequence,

suggesting that our area is strictly negative; but recall that angular deficit is defined to be positive, so there is no

conflict of sign when there is actually angular excess. After some manipulation, we find the compatibility relationships

for a discrete e-Cone as:

φ =

√
8α

tanβ
, θ =

√
4α

sin 2β
(1)

Each fold line behaves like a torsional spring elastically resisting out-of-plane rotation between pairs of facets. This

simulates the concentrated deformation in the real transition regions, so each spring stiffness is akin to the well-known

flexural rigidity of elastic plates [12]; fortuitously, there is evidence to suggest that actual fold lines behave this way

[15]. Our purpose is to find a natural value of β if our discrete e-Cone represents a first-order approximation of the

continuum case.

Let k be a constant rotational stiffness of fold per unit length of line with units [N m/rad m]. The strain energy

stored in a fold must be (k/2)×(rotation)2×(length), which amounts to 2×(k/2)rθ2+(k/2)rφ2 for the folded e-Cone.

The wedge angle is opened by a pair of equal and opposite forces, F , as shown in Fig. 3(a). These remain collinear

and planar whilst performing positive work equal to 2F × δ, where δ is the displacement of the line of action of each

force, r sinα. This work is then subtracted from the stored energy to reveal the total conservative potential of the

system, U , as

U = 4krα

[
1

sin 2β
+

1

tanβ

]
− 2Fr sinα (2)

when φ and θ are substituted from Eqn 1.

Assuming that k and r have specified values, U is a function of three parameters, α, β and F , although α is

the only generalised coordinate—our single degree-of-freedom. There are no dissipative nor inertia terms and thus,

equilibrium configurations are given by differentiating U with respect to α and setting equal to zero, to yield

F =
2k

cosα

[
1

sin 2β
+

1

tanβ

]
(3)

When the slit is closed, α = 0 and cosα = 1, giving non-zero F . Alternatively, if F is increased from zero, there is

no deformation until each force reaches a threshold value defined by cosα = 1 in the above expression: this is the

buckling load for a folded e-Cone. Afterwards, F rises nonlinearly with increasing gradient with respect to α as it

approaches the asymptote at α = 90◦. Such variation generally reflects what we see beyond small displacements—that

ever higher forces are needed to open the e-Cone further. The specific variation in F also depends on k but we are

not interested in finding this; instead, we seek the natural value of β, which is found from stationary values of U
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with respect to β. This calculation is trivial and does not depend on k, resulting in a final characteristic equation

cos2 β+ (1/2) cos 2β = 0 with an exact solution of β = 60◦ (in the range 0◦ to 90◦). This give us a total angular width

of 120◦, which is a fair result given the crudeness of Fig. 2(b), and a buckling load, F/k = 2
√

3.

The same model can be applied to the k-Cone motif. Our potential function only needs to consider the uncon-

strained e-Cone pair; the contribution from the other pair subtending the slit is only required if we wish to compute

the applied forces. Assuming a symmetrical layout in Fig. 4(c), the corresponding valley folds are longer than the

mountain fold by a factor of 1/ cosβ, which also multiplies the 1/ sin 2β term in the strain energy component of Eqn 2.

Minimising this component with respect to β sets 1− (3/2) cos2 β − cos3 β = 0, which gives a solution of 2β = 94.6◦

c.f. around 90◦ in the continuum case in Fig. 2(a).

We are not interested in the variation of the applied forces any further but now focus on the kinematics of a

discrete k-Cone for developing our metamaterial. The description is a straightforward extension of the result for a

single e-Cone, Eqn 1, when we consider how the deformation couples between adjacent pairs of e-Cones. Figure 5(a)

indicates the initial planar geometry of the sheet, slit and fold lines. We label the the two vertices at the slit ends as

A and A′, which have the same fold line pattern: when the sheet is flat, the symmetrical width between the valley

folds is measured by the usual 2β, which retains a general value since we can specify the fold line layout. For the

other vertices, B and B′, the equivalent angular width is set by 2γ, which also sets the slit length to be 2a tan γ for

a transverse side-length of 2a; conversely, the slit length determines γ. The sheet width is 2b which, with 2a, are

assumed to be much larger than the sheet thickness as usual.

The folded shape in Fig. 5(b) shows, first, the flat regions between e-Cones rotating in-plane by the same angle

in the required sense. We set this angle to be α, giving the usual angular excess of 2α for each vertex. As the facets

rotate upwards, all valley folds for the A and A′ e-Cones undergo the same rotation, θA, and their mountain folds

rotate by φA: for the B and B′ e-Cones, the equivalent fold lines rotate by φB and θB, respectively. Transcribing

expressions from Eqn 1 directly with appropriate subscripts, we have:

φA =

√
8α

tanβ
, θA =

√
4α

sin 2β
; φB =

√
8α

tan γ
, θB =

√
4α

sin 2γ
(4)

Recall that these expressions are only valid for small fold rotations. They do confirm, for example, that the narrower

e-Cone pair folds more quickly and hence, is likely to close first. In fact, the shape of the other wider e-Cone pair

is straightforward to calculate in this final state, assuming that β > γ, say: the flat parts have rotated by α = γ

and the wider e-Cones now subtend 2(β − γ) in plan view, see Fig. 5(c). Clearly, if β = γ = 45◦, the e-Cone at

A shares its valley folds with B and B′, and similarly for the e-Cone at A′, which can be clearly seen in another

demonstrator in Fig. 6(a). Because the e-Cones subtend the same angle, their initial rotations are synchronised in

Eqn 4 and subsequently for larger rotations, leading to zero width when they fold vertically, see Figs 6(b) and 6(c).

In plan view, the slit opens broadly before closing and reorienting itself by 90◦. We then choose to fold the e-Cones

over in Fig. 6(d) so that sheet has minimal out-of-plane thickness.

3 Folded k-Cone sheet

The discrete k-Cone motif behaves as a structural mechanism with a mobility of unity i.e. it has one degree-of-freedom

where folding couples localised out-of-plane bending to in-plane tension and compression. For planar metamaterials

with similarly novel kinematics, e.g as found in [16], we must focus on creating a structured material, which uses the
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k-Cone motif in a repetitive manner. One way to achieve this is to lay out the motif as contiguous unit cells in two

directions. The boundary outline of the initial motif and that of its folded state must each form as compatible unit

cells everywhere, and the continuity of fold lines between cells is also important. We must also think about the limits

of e-Cone folding, which can include the extreme case where all e-Cones may be fully folded. By definition, the layout

of slits will be a uniform pattern, and the final repetitive structure is ideally constructed by first cutting a series of

slits and then folding the entire sheet around them in sequence—typically performed from the outset in other studies.

We confine attention to planar deformation in the global sense, but others have tackled out-of-plane shaping directly

by recognising that kirigami structures can possess a net amount of Gaussian curvature not available from origami

counterparts; this is an inevitable consequence of Gauss’s Theorema Egregium [12], and successful developments have

led to so-called pluripotent materials [17]. Our planar solution is given in Fig. 7.

The unit cell has a very similar layout to Fig. 6 with fold lines at either 0◦, 45◦ or 90◦ except that the e-Cones

at the slit ends subtend the full width, 2a, which sets b = 2a, see Fig. 7(a). This yields a fully folded state with a

square boundary (unlike, say, Fig. 6) with facets between e-Cones being right-angled isosceles triangles rotated by

45◦ in plane. This folded, or closed, state can potentially tessellate because of its square outline; but if a pair of

cells are connected side-by-side, adjacent triangular facets—which could be connected to form interior squares, see

Fig. 7(b)—must cleave apart as they rotate in opposite senses; consequently, this double unit cell is not mobile at all.

In order to match rotations, we must stagger the cell connection along the 2b side by a half-length, b, see Fig. 7(c). A

connected pair of triangles can now rotate together as a single square up to 45◦, enabling the double cell to be mobile.

A row can then be fashioned by repeating the staggered layout with as many cells as are required. A second row is

formed by adding cells above or below the first row, which always results in e-Cones from adjacent cells sharing a

common boundary along their bases. During folding, these bases have to move away from each other and upwards,

so this boundary must be cut as a slit from the outset. This slit is formed at 90◦ to the usual central slit, giving two

slit configurations in the final sheet. The first and second rows, and so forth, are nevertheless physically connected by

adjacent triangles forming as interior squares in the usual way: and because the fold lines run to the corners of the

original unit cell, they run continuously over the entire sheet, making overall folding and construction more efficient.

A paper card demonstrator made in this way is given in Fig. 8, which shows the initial planar configuration,

intermediate folded shapes, and its closed state. The sheet has been turned over so that closed e-Cones can be tucked

underneath. What is not apparent from the figure is the natural cooperation in folding across the sheet once the fold

lines have been fully formed by flexing a few times: it clearly behaves as a single degree-of-freedom system. This is

keenly evinced when the sheet is turned over again so that e-Cones fold upwards; by pinching two or three e-Cones

shut, the rest of the sheet obligingly folds into its closed state. For this geometry, the in-plane contraction from the

initial state is 1/
√

2 in both directions, giving an effective Poisson ratio which is negative. The final state can be

simply unfolded by extending in two directions.

4 Conclusions

We have thought about how shallow deformations of a slit thin sheet may be used to mobilise interesting kinematics

in a folded sheet with a pattern of slits. Our approach has been mainly discursive because we wanted to highlight how

we might synthesise interesting behaviour informally. We have moved from continuous displacement fields (at least

outside of the slit) to folded shapes, from unit cells to full sheets, and the results of a simple discrete elastic model of
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an e-Cone are not too far from the actual shape properties of a continuum e-Cone—by itself and when it is part of

the deforming k-Cone motif. The behaviour of our material demonstrator is also elegant and definitive but there is

much more to learn and try. Clearly, we can tinker with the layout of slits and fold line patterns to achieve different

local deformations where, for example, not all e-Cones may need to fold vertically. The negative Poisson ratio effect

is an auxetic characteristic that can be tuned by varying this layout, and there is the possibility of engendering a net

variation of out-of-plane shape to give discrete approximations of doubly curved surfaces. Cutting, as well as folding,

we believe, enhances the much lauded capability and potential of origami-inspired engineering structures, most notably

by enabling net Gaussian curvature. There are also practical questions on endowing them with stiffness, if required,

using realistic engineering materials; we may even wish to actuate the folding process by embedding motors or smart

material elements such as shape memory alloys. These remain exciting avenues of further work for our sheets.
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5 Figures

(b) (c) (d)(a)

Figure 1: Various cone motifs described in the literature. In all, the surface is a thin elastic sheet incapable of carrying

compressive stresses: the top row is the unstressed initial shape and the bottom row is the deformed cone and its

distinctive buckled mode shape where the expediting forces are not shown. (a) A conical cone, or c-Cone, formed by

pulling a cone vertex through a confining rigid ring. (b) A developable cone, or d-Cone, formed by pushing a flat disk

supported on a circular rim at its centre. (c) A planar e-Cone formed by imposing angular excess along a radial cut

in a flat disk. (d) A folded cone, or f-Cone, formed by locally inverting a folded crease at its centre.

slit

e−Cone

e−Cone

(b.ii)

(b.iii)

(a.i)

(a.iii)

(a.ii)

(b.i)

Figure 2: (a) A slit sheet forming as a k-Cone motif under tension: (a.i) plan view of a taut Mylar sheet, 18 cm ×

6 cm and thickness 30 µm, with an initial central slit of length 3 cm, pulled apart by collinear forces applied to its

sides. The underlying surface constrains the buckled sheet to displace upwards and out of plane, and to form as four

e-Cones; (a.ii) close-up view of the lower e-Cone, highlighting its detached range of around 90◦; (a.iii) slightly inclined

view of (a.i) highlighting the out-of-plane shape of the lower e-Cone. (b) A planar-confined e-Cone: (b.i) plan view

after opening a Mylar disk of radius 4 cm. The out-of-plane buckle is highlighted and subtends approximately 125◦

in plan; (b.ii) a different view of (b.i) showing the displaced shape. Note the radial opening in the background and

the flatness of the nearest detached portions indicated by the double arrow; (b.iii) schematic view of (b.i) showing the

surface either as white flat facets (horizontal or displaced) or as grey regions of adjacent conical curvature.
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(a.i) (a.ii) (b.i) (b.ii) (b.iii)

Figure 3: (a) Discretely folded e-Cone made by cutting a paper card disk radially to form a slit before folding along

three radial lines: (a.i) plan view before opening; (a.ii) isometric view to highlight displacements after opening. (b)

Discretely folded version of the k-Cone motif in Fig. 2(a) made up of four discrete e-Cone vertices: (b.i) plan view

of initial layout of folds and central slit; (b.ii) plan view after opening by pulling across the slit, which forms as a

trapezoid; (b.iii) inclined view of (b.ii) to observe folding out of plane. In all sub-figures, each vertex has two valley

folds and one mountain fold; the flat intervening facets remain flat but rotate in-plane as the e-Cones fold out of plane.

C

ββ

D

BA

2α

β β

FF

CD

A B

0,a,b

c

d

θ

θ

φ
β

β

φ

θθ

2α

(a) (b) (c)

Figure 4: Schematic plan layout of a discretely folded e-Cone. (a) The disk is prised apart along a radial slit by a pair

of forces, F , to give an angular separation of 2α. Valley folds are drawn as solid grey lines separated by β on either

side of the single mountain fold shown as dashed; their respective rotations are θ and φ. (b) Gauss mapping for the

rotation vectors from (a). These are drawn when circulating counter-clockwise around the central vertex; lower case

letters denote the particular facets in upper case from (a), and a “0” signifies a datum rotation of zero. (c) Rendering

of an e-Cone at the top of the slit in a k-Cone motif as a discrete e-Cone whose valleys and mountain folds have

unequal lengths compared to (a). The angular excess imposed at the vertex is also 2α, and in all cases α has been

shown somewhat exaggerated in size.
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Figure 5: Schematic layouts of the discretely folded k-Cone motif from Fig. 3. (a) Initial unfolded sheet. The side-

lengths are 2a and 2b, and the four vertices are circles labelled A and A′ at the top and bottom ends of the slit, and

B and B′ in the middle of the sides. The e-Cones are described by valley folds drawn as solid grey lines and mountain

folds as dashed lines; the central slit has a black boundary. Angles β and γ describe the width of e-Cones and the

length of slit. (b) Partially folded shape in which each flat facet, shaded light grey, rotates by α. The corresponding

valley fold rotations are θ and mountain fold rotations are φ. (c) Fully folded shape for this geometry, where β > γ.

The vertices at B and B′ are folded vertically and close whilst A and A′ remain open. The slit configuration has

rotated, which can be confirmed in Fig. 6.

(a) (b) (c) (d)

Figure 6: Fold line layout with β = γ = 45◦ so that all e-Cones can fully fold and close. (a) Initial geometry. (b)

Intermediate configuration with α ≈ 20◦. (c) Fully folded state, α = 45◦, with all e-Cones fully closed and standing

upright normal to the page. Note how the slit becomes reconfigured compared to (a). The arrows indicate a second

folding stage in which the upright e-Cones are folded flat, to give the fully flattened configuration in (d).
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Figure 7: Tessellation of individual sheets as unit cells within a larger sheet. The unit cell is similar to Fig. 6 but with

b = 2a so that the valley folds run to the sheet corners. (a) Top: plan view of initial unit cell; middle: partially folded

state; bottom: fully folded version with upright closed e-Cones, as per Fig. 5(c). Note that the boundary is now square

and that the flat facets between e-Cones, shaded light grey, have rotated by 45◦. (b) Prospective tessellation using (a)

twice and side-by-side. Top: adjacent triangular facets are now connected to form single squares, light grey. Bottom:

the original triangular facets, however, rotate in opposite directions and separate. (c) Alternative side-by-side pairing

with a linear offset of b along one side. Top: adjacent triangular facets, again, make a common square. Bottom:

rotation of the square is compatible with the original triangular facets and folding can proceed. (d) Formation of

a second row by adding a third unit cell to (c). Top: adjacent e-Cones between rows cannot be connected but are

separated by a second, horizontal slit. Bottom: partially folded triumvirate, which can be repeated indefinitely. For

all sub-figures inside each initial unit cell, valley folds are solid black lines at ±45◦, mountain folds are dashed at 0◦

or 90◦, and slits are solid grey lines.
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(c)

(a) (b)

(d)

Figure 8: Folding of a sheet made with the unit cell layout of Fig. 7(d). (a) Initial configuration where diagonal fold

lines are mountain folds and the rest are valley folds: these have been reversed compared to Fig. 7 because we have

turned the sheet over, and the slits open into the page. (b) and (c) Progressive folding of the sheet until it becomes

fully closed, (d), with e-Cones tucked flat underneath.
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