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Approximately half the world's population lives in the tropics, and future changes in 20 

the hydrological cycle will impact not just freshwater supplies but also energy 21 

production in areas dependent upon hydroelectric power. It is vital that we understand 22 

the mechanisms/ processes that affect tropical precipitation and the eventual surface 23 

hydrological response to better assess projected future regional precipitation trends 24 

and variability. Paleoclimate proxies are well suited for this purpose as they provide 25 

long time series that pre-date and complement the present, often short instrumental 26 

observations. Here we present paleo-precipitation data from a speleothem located in 27 

Mesoamerica that reveal large multi-decadal declines in regional precipitation whose 28 

onset coincides with clusters of large volcanic eruptions during the 19
th

 and 20
th

 29 

centuries. This reconstruction provides new independent evidence of long-lasting 30 
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volcanic effects on climate and elucidates key aspects of the causal chain of physical 31 

processes determining the tropical climate response to global radiative forcing. 32 

Introduction 33 

  Speleothems are increasingly used as terrestrial archives of past climate and 34 

environmental change because they can provide long, continuous, precisely U-series dated 35 

and high-resolution time series and are generally unaffected by post-depositional diagenetic 36 

alteration. The data for this study derive from stalagmite GU-XI-1 collected 250 m inside the 37 

large cavern of Xibalba in the Campur Formation
1
 located in the Maya Mountains of 38 

Guatemala near the Belize border (Fig. 1, 16.5ºN, 89ºW). The in-cave elevation is 350 m, 39 

with a cave mean annual temperature of 23°C. GU-XI-1 was actively dripping at the time of 40 

collection, and chosen for its candle-shape, its distance from outside atmospheric influences, 41 

and its location of 30 meters above the nearby modern river level; the karst surface is 42 

generally 100-150 m above the cave passages (Supplementary Fig. 1). The specimen is 33 43 

cm tall, but only the upper 18 centimeters are used for this study (Supplementary Fig. 2). 44 

Our age model (Supplementary Fig. 3) is highly constrained by nine U/Th multicollector 45 

inductively coupled plasma mass spectrometry dates (Supplementary Information Table S1) 46 

and the collection date in 2007. 47 

 The climate of Mesomerica is characterized by a boreal summer/fall (June-October) 48 

rainy season and a relatively dry winter
2
. Low-level atmospheric circulation in the region is 49 

dominated by the North Atlantic northeast trade winds. The largest amounts of annual 50 

precipitation in the region fall on the high mountain ranges of Guatemala to the southwest of 51 

the cave. Summer precipitation values in the Maya Mountains reach upwards of 400 52 

mm/month, but are approximately half that amount in the study area. A strong inverse 53 



 

 

3 

correlation between speleothem δ
18

O and tropical precipitation intensity
3
 has previously 54 

been observed for the region
4.  

A plot of speleothem δ
18

O lagging precipitation from nearby 55 

Belize City over the interval of instrumental overlap data by six years shows a significant 56 

correlation (Fig. 2). 57 

 The complete three-century precipitation-proxy record is characterized by 58 

interannual to sub-decadal variability superimposed on several distinct multi-decadal drying 59 

episodes (Fig. 3c). Mesoamerica’s rainfall is influenced by moisture, originating usually 60 

from the vicinity of the ITCZ via transport into the monsoonal system over Belize, via the 61 

Caribbean low-level jet, and by localized convection. In summer, the ITCZ migrates to its 62 

northern position, its core stretching across the northern tropical Atlantic at ~10°N into 63 

northern South America and from there turning north over Central America to the East 64 

Pacific, reaching to ~12°N and causing widespread rainfall over the land portion
5
. Because 65 

the two ITCZ segments respond to variations in sea-surface temperatures (SSTs) in both the 66 

tropical Atlantic and the Pacific Oceans, Mesoamerica is exposed to complex hydrological 67 

fluctuations on a broad range of timescales
6
. Today, year-to-year rainfall variability in the 68 

Guatemala mountain regions is correlated with the thermal gradient between SSTs in the 69 

western tropical Atlantic and eastern tropical Pacific
2
. Colder (warmer) than normal tropical 70 

Atlantic SSTs, which are consistent with a stronger (weaker) and more southward 71 

(northward) displaced Atlantic Subtropical High, lead to drier (wetter) than normal 72 

conditions in Central America
7,8

. Similarly, anomalously warm (cold) eastern equatorial 73 

Pacific SSTs, e.g., during El Niño (La Niña) events, force an equatorward (northward) 74 

displacement of the east Pacific ITCZ and contribute to drying (wetting) in most of Central 75 

America
9,10

 (Supplementary Fig. 4). 76 
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Results 77 

Mesoamerican hydrological reconstruction and large volcanic eruptions 78 

The most prominent aspects of our reconstruction are the occurrences of three distinct 79 

multi-decadal drying trends during the 19
th

 and 20
th

 centuries (Fig. 3c). Based on the modern 80 

relationship between δ
18

O and regional precipitation anomalies
11

, the speleothem data indicate 81 

a 25% decrease in precipitation between 1810 and 1845 C. E., another comparable 82 

precipitation decrease between 1883 and 1925 C. E., and a third, smaller decrease from 1963 to 83 

the present. The drying steps are separated from one another by brief intervals of precipitation 84 

recovery in mid-century. Our and other available δ
18

O records from Mesoamerica correlate 85 

with each other with variable strength during the reconstruction period (Fig. 4, Supplementary 86 

Fig. 5), in part reflecting large dating uncertainties in some of the reconstructions. The 87 

different reconstructions feature similar drying trends during the early and – less so – late 19th 88 

century, suggesting a broader regional phenomenon. The three pronounced decreases in 89 

regional precipitation coincided with clusters of strong tropical volcanic eruptions (Fig. 3a). 90 

The most prominent of these eruptions are the 1809 eruption of unknown location and 91 

Tambora in 1815 (cluster 1), Krakatau in 1883 (cluster 2), Agung in 1963 and Pinatubo in 92 

1991 (cluster 3). Reconstructed precipitation decreases throughout each cluster such that the 93 

cumulative volcanic radiative forcing best describes the precipitation evolution during these 94 

periods (Fig. 3b, Supplementary Figs. 6, 7). For the 19
th

 century clusters, the drying trend only 95 

reverses when volcanic activity substantially weakens. The precipitation recovery is only 96 

partial, possibly as part of recurrent drying trends in Mesoamerica
4,12

. Aerosols are a known 97 

critical part of the overall anthropogenic as well as natural forcing of climate (the latter 98 

associated with aeolian dust and volcanic eruptions)
13,14,15

. Thus we surmise that the decadal 99 
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drying trends in the early and late decades of the 19
th

 century and during the second half of the 100 

20
th

 century are largely a consequence of the clustered volcanic forcing, with the most recent 101 

period superposed on long-term anthropogenic drying
16

. Periods of strong volcanic activity 102 

during the last millennium often coincide with periods of anomalous solar activity. This is the 103 

case, for instance, for the first volcanic cluster that coincides with the prolonged period of 104 

weak solar activity known as Dalton Minimum
17

. Therefore, we cannot attribute the 105 

reconstructed changes to volcanic forcing alone. 106 

 107 

Dynamical interpretation of reconstructed changes 108 

Based on the close agreement between the drying phases and the eruption clusters, we 109 

hypothesize that volcanic clusters played a primary role in these climatic changes. This, we 110 

propose, was driven by changes the eruption induced in patterns of SST variability that 111 

crucially influence the Pacific-Atlantic tropical SST gradient, which in turn dominate the 112 

Mesoamerican hydroclimate. These are the El Niño Southern Oscillation (ENSO) in the 113 

equatorial Pacific and the long-term variations of tropical Atlantic SSTs, which is governed by 114 

the Atlantic Multidecadal Oscillation (AMO)
18

. An increasing number of studies based on 115 

climate reconstructions and simulations describe statistical and dynamical connections between 116 

volcanic forcing and both ENSO
19

 and AMO
20-22

. Indeed, drying (recovery) phases during the 117 

volcanic clusters correspond to cold (warm) phases in a recent marine-proxy-based AMO 118 

reconstruction
23 (Supplementary Fig. 8), while reconstructed data

24
 suggest an increased role 119 

for ENSO in interdecadal Mesoamerican precipitation variability during the 20
th

 century 120 

(Supplementary Fig. 8). Such changes in the relative roles of climatic modes indicates that 121 

internal dynamics play a substantial role in communicating to the surface the evolution during 122 
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the different volcanic eruption clusters. It also exemplifies the complexity of a dynamical 123 

interpretation, hence attribution, of the reconstructed changes in Mesoamerican precipitation. 124 

Moreover, reconstructions of climate modes often lack robustness due to the inherent 125 

uncertainties implicated in reconstructing large-scale features from a limited number of local 126 

climate proxies. This has been shown, for instance, for the North Atlantic Oscillation
25

 that 127 

captures a dominant part of the large-scale atmospheric circulation short- and long-term 128 

variability over the North Atlantic, which is a known factor influencing Mesoamerican 129 

precipitation (Supplementary
 
Fig. 4) and is sensitive to volcanic forcing. 130 

A warranted dynamical interpretation based on modeling results is also complicated by the 131 

fact that last-millennium simulations from state-of-the-art global climate models do not show a 132 

consistent response of Mesoamerican precipitation to strong volcanic activity (Supplementary 133 

Fig. 9), failing to robustly reproduce the evolution reconstructed from our speleothem. The 134 

discrepancy between our reconstruction and the simulations can be ascribed to general 135 

deficiencies still affecting the simulated representation of key chemical and physical processes 136 

related to aerosol forcing, and the consequent large uncertainties in the simulated climate 137 

response to volcanic forcing
15,26

. Further possible explanations are the common model 138 

deficiencies concerning regional precipitation variability at the decadal and multidecadal time 139 

scales
27

, which is linked to poor and hence not robust simulated representation of dominant 140 

modes of large-scale climate variability and associated teleconnections including ENSO
28

 and 141 

the AMO
29

. Large uncertainties also affect the reconstructed forcing
30

 and we have very 142 

limited knowledge about the background climate conditions at the time of volcanic eruptions 143 

that occurred prior to the last half of the 20
th

 century
22

. 144 

 145 
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Conclusions 146 

The prolonged post-eruption drying conditions in Mesoamerica described by our new 147 

stalagmite-based data provide independent evidence that volcanic effects on tropical climate 148 

persist well beyond the duration of the direct radiative imbalance. We suggest that 149 

volcanically-induced changes induced in dominant modes of large-scale, ocean-atmosphere 150 

climate variability is a likely physical mechanism contributing to such persistence. Further 151 

studies are needed to clarify the dynamics governing the response. Still, our observation 152 

relating clusters of large volcanic eruptions to prolonged decreased Guatemalan precipitation 153 

should expand the emerging discussion fostered by indications from global climate models 154 

regarding the strong sensitivity of the world’s other monsoons to external forcing
31,32

. Our 155 

results in combination with studies of global streamflows after large volcanic eruptions
33

 156 

imply that certain tropical hydroclimates may be highly sensitive to volcanic forcing or more 157 

generally to large stratospheric aerosols loading. Global climate models have become 158 

increasingly important to our physical understanding of such “global forcing to regional 159 

response” connections. As discussed here, however, related uncertainties affecting the 160 

simulated representation (or lack thereof) of key processes as well as the reconstructed 161 

external forcing that is imposed to paleo-simulations remain considerable. Thus, we need to 162 

better understand such critical aspects of reconstructed as well as simulated pre-industrial 163 

tropical climate evolution in order to increase our confidence in projected future regional 164 

precipitation trends and variability and to potentially customize solutions for particular 165 

regions. 166 

  167 

 168 
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Methods Summary 169 

 We collected the GU-XI-1 stalagmite in 2007 from the Xibalba cave located in the 170 

Guatemala/ Belize border, and mapped its underground location relative to the surface. The 171 

stalagmite was cut into two sections and a 1 cm-thick slab was produced from one of the 172 

sections. Nine 
230

Th dates were analyzed in the upper 175mm of GU-XI-1 (Supplementary 173 

Figs. 2; 3, Table 1), resulting in an age control point approximately every 30 years in the 174 

speleothem slab. The age model for the speleothem is based on a parabolic curve fit to the 175 

230
Th dates. We used the resulting polynomial equation to convert each sample depth to 176 

calendar ages from the speleothem, which we used for our age model. 595 samples, each 177 

containing about 200 micrograms of powder, were continuously milled at 0.3 mm intervals 178 

along the stalagmite growth axis resulting in annual to sub-annual resolution for our stable 179 

isotope data. Volcanic forcing estimates from ECHAM5/MPIOM and Bergen Climate Model 180 

(BCM) are derived from volcanic forcing-only last-millennium simulations. Volcanic forcing 181 

estimates for CCSM4 are derived from the full-forcing last-millennium simulation 182 

(past1000_r1) available in the repository of the Coupled Model Intercomparison Project 5 183 

(CMIP5). Long-term influences from greenhouse gases in CCSM4 are accounted for by 184 

removing the fourth-order polynomial trend over the period 1750-2005. Volcanic forcing is 185 

then estimated based on clear-sky top-of-atmosphere radiative fluxes to discard cloud related 186 

feedbacks. 187 
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Figure Captions 328 

Figure 1 Location map of Mesoamerica and our speleothem site.   329 

 330 
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Figure. 2: Comparison between the time series of Guatemala-Belize border annual 331 

speleothem δ
18

O (this study, black line units in permil) and Belize City, Belize, June to 332 

November precipitation anomalies (deviation from climatology in mm, blue line) smoothed 333 

with a 2-nd order binomial filter. The δ
18

O time series is shown here lagging the rainfall time 334 

series by six years (i.e., speleothem δ
18

O for 1945 is plotted in the year 1940 and so on). This 335 

lag maximizes the correlation between the two time series and emphasizes the delay associated 336 

with the transition between rainfall and carbonate deposits in the speleothem in the particular 337 

cave. The lag was determined based on a cross correlation analysis between the two time series 338 

with lags varying between -10 and +10 years. With this lag cross correlation value is 0.43. 339 

Given that the binomial smoothed 71-year precipitation record shown here only has 15 degrees 340 

of freedom, this correlation value is significant at the 95% level using a directional test 341 

(appropriate in this case as we can surmise that the precipitation is the driver of the δ18O 342 

variations and not vice versa). Data for Belize-City precipitation is from the National Oceanic 343 

and Atmospheric Administration, monthly Global Historical Climatology Network  (GHCN: 344 

http://www.ncdc.noaa.gov/ghcnm/).  345 

 346 

Figure 3 (A) Volcanic radiative forcing from 1700-2000 C. E. after
20

. Dark-brown boxes 347 

embeds volcanic eruption clusters noted in the text. (B) Different estimates of cumulative 348 

radiative forcing (based on cumulative adding the forcing of each volcanic event through time) 349 

from last-millennium climate simulations using different reconstructions of aerosol optical 350 

properties for volcanic forcing: ECHAM5/MPIOM
34

 (brown) and BCM
20

 (red) use the 351 

reconstruction by
35

; CCSM4
36

 (green) uses the reconstruction by
37

. (C) Speleothem GU-Xi-1 352 


18

O for the same time period as (A). Interpolated annual 
18

O is shown and the black line 353 

http://www.ncdc.noaa.gov/ghcnm/
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represents an eleven-point moving average of the annually interpolated data emphasizing the 354 

long-term variability in this figure.  Multi-decadal drying events are coincident with volcanic 355 

eruption clusters 1, 2, and 3. The different estimates of cumulative volcanic forcing are 356 

provided to exemplify the effects of uncertainties such as those in reconstructed aerosol optical 357 

properties (which are used as volcanic forcing input to climate models), due to presence of 358 

additional varying forcing factors, and in the model-specific implementation of volcanic 359 

forcing. 360 

 361 

Figure 4 Comparison of the Gua-Xi-1 with two other stalagmite records from 362 

MesoAmerica
38,39. 363 

The Guatemala stalagmite significantly correlates with both other series, but the Medina and 364 

Lachniet records do not correlate with one other (see Supplementary Fig. 5). The difference in 365 

alignments of these records depends on their age models (note poor age control of the
39 

record) 366 

sampling resolution and extent of local and cave environmental overprinting. 367 


