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Abstract

Noise and vibration from underground railways is a documented disturbance to indi-

viduals living or working near subways. Much work has been done to understand and

simulate the dynamic interactions between the train, track, tunnel and soil resulting in

numerical models which can predict ground-borne vibration around the tunnels and at

the soil surface. However, all such numerical models rely on simplifying assumptions to

make the problems trackable: soil is assumed homogenous, tunnels are assumed long

and straight, the soil is assumed to be in perfect contact with the tunnel, etc. This

dissertation is concerned with quantifying the uncertainty associated with some of these

simplifying assumptions to provide a better estimation of the prediction accuracy when

numerical models are used for “real world” applications.

The first section investigates the effect of voids at the tunnel-soil interface. The

Pipe-in-Pipe model is extended to allow finite-sized voids at the interface by deriving

the discrete transfer functions for the tunnel and soil from the continuous solution.

The results suggest that relatively small voids can significantly affect the rms velocity

predictions at higher frequencies (100-200Hz) and moderately effect predictions at lower

frequencies (15-100Hz). The results are also found to be sensitive to void length and

void sector angle.

The second section investigates issues associated with assuming the soil is homoge-

neous: the effect of inclined soil layers; the effect of a subsiding soil layer; the effect of

soil inhomogeneity. The thin-layer method approach is utilized as its semi-analytical

formulation allows for accurate predictions with relatively short run times. The results

from the three investigations suggest that slight inclination of soil layers and typical lev-

els of soil inhomogeneity can result in significant variation in surface results compared

to the homogeneous assumption. The geometric effect of a subsiding soil layer has a less

significant effect on surface vibration.

The findings from this study suggest that employing simplifying assumptions for the

cases investigated can reasonably result in uncertainty bands of ±5dB. Considering all

the simplifying assumptions used in numerical models of ground vibration from under-

ground railways it would not be unreasonable to conclude that the prediction accuracy

for such a model may be limited to ±10dB.
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Chapter 1

Introduction

The study of ground-borne vibration due to underground railways using numerical mod-

els requires a balance of model accuracy and efficiency to produce useful results in a

reasonable time-frame. Assumptions made during the modeling process carry inherent

uncertainty which is not well understood. This chapter acts to introduce the motivation

for studying these uncertainties, to describe the objectives of the current research, and

to provide an outline of the chapters comprising this dissertation.

1.1 Motivation for Research

Underground railways are proving to be an effective means of transporting large numbers

of people in densely populated areas. Urban rail systems are increasingly promoted as

developments in tunneling, rail and train technologies allow old lines to be upgraded

and new lines to be constructed under existing city infrastructure. However ground-

borne vibration from these underground railways is a major source of disturbance for

individuals either working or living near subway tunnels, so much so that the European

Union has prioritized research into this area.

The CONVURT project [1] (CONtrol of Vibrations from Underground Rail Traffic)

was established as a grant funded project under the 5th Framework of the European

1
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Union Programme for Research, Technological Development and Demonstration and

ran from 2000 to 2003. A main goal of the consortium was to create innovative nu-

merical models to predict ground-borne vibration. Although progress was made by the

consortium during these three years and has been continued by the participants, there

is still much research required to develop accurate models for predicting vibration.

1.2 Objectives of the Research

Researchers at the University of Cambridge, a member of the CONVURT consortium,

have continued to study and develop numerical models for predicting ground vibration

due to underground railways. A key objective of the research group is to develop quick

and accurate models which can be run in minutes to give designers meaningful predic-

tions to help streamline the design process. The goal is not to predict absolute vibration

levels but to give estimates of the relative difference in ground vibration when attributes

of the model are varied (e.g. soil properties, slab properties, tunnel geometry, etc.).

These types of numerical models are becoming accepted in both academic and indus-

trial circles. In the following chapter a review of the literature gives many examples of

different models currently in use which have been verified through experiment to varying

extent. Unfortunately the numerical predictions and experimental findings often exhibit

large differences over the frequency range of interest. This variation between simulation

and reality can largely be attributed to simplifying assumptions used to reduce the com-

plexity of the model and deal with unknowns in model parameters. A non-exhaustive

list of issues which may require simplification includes:

• can the tunnel be modelled as an infinitely long, straight section or must changes

in altitude and direction be included?

• what are the important excitation mechanisms between the train and the tunnel?

• what type of vehicle model is required?
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• is the tunnel in continuous contact with the soil or do voids form at the tunnel-soil

interface?

• what elements of the tunnel geometry need to be included in the model?

• is the soil layered and if so are the layers horizontal, inclined, randomly distributed?

• what are the soil properties and how do the properties of each major soil layer

vary in the horizontal and vertical directions?

• how does the water table affect ground vibration?

• is accounting for subsidence or frost-heave important?

• do other subway tunnels (used or vacant) significantly affect vibration levels?

• how do building foundations affect vibration propagation?

As shown in the literature review, a common approach to dealing with these issues

is to simplify: the tunnel is assumed infinitely long and periodic in the axial direction;

the soil is assumed to be a horizontally layered halfspace with homogeneous material

properties; additional tunnels and building foundations are neglected; the vehicle is

simulated using moving point loads; etc. These sorts of assumptions are necessary

to facilitate the development of models in a timely and economic manner which can

be run in an acceptable length of time. However, these assumptions introduce inherent

uncertainty which must be understood to provide designers with a more realistic measure

of model accuracy and allow for more informed decisions when designing for vibration

attenuation guidelines and vibration mitigating countermeasures.

The objective of the current research is to quantify the level of vibration prediction

uncertainty associated with four simplifying assumptions including:

• assuming the the soil is in continuous contact with the tunnel - what is the effect

of a void at the tunnel-soil interface?
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• assuming the soil is layered horizontally - what is the effect of inclined soil layers?

• assuming the layers remain horizontal - what is the effect of a soil subsidence

trough developing over the tunnel?

• assuming the soil layers are homogeneous - what is the effect of localized soil

inhomogeneity?

1.3 Outline of the Thesis

The thesis is broken into three main chapters: a literature review of previous work

relevant to this research, the development of three-dimensional model to simulate voids

at the tunnel-soil interface, and the development of a two-dimensional semi-analytic

model to simulate variation in soil homogeneity.

Chapter 2 is a literature review of previous work relating to ground-borne vibration

from underground railways. Areas of interest include the impact of vibration on humans,

vibration excitation mechanisms associated with rail traffic, and analytic and numerical

methods for simulating ground vibration problems.

Chapter 3 investigates the effect of voids at the tunnel-soil interface on ground vi-

bration due to underground railways. A three dimensional model is developed which

simulates a railway tunnel with a void at the interface subjected to moving loads. The

results for the case with no void are compared to an existing model to validate the new

method. The effect of various void geometries are then investigated.

Chapter 4 introduces the thin-layer method as a means of modelling semi-infinite me-

dia, complete with element derivations. Predicted vibration for validation cases are com-

pared to the analytical solution and boundary element predictions to verify the method.

The chapter finishes with three sections investigating various simplifying assumptions

related to soil homogeneity: inclined layers, soil subsidence, soil inhomogeneity.

Overall conclusions and ideas for potential future work are presented in Chapter 5.



Chapter 2

Literature Review

This chapter reviews previous work relevant to the current study. Sections include the

impact of traffic induced vibration, railway excitation mechanisms, methods of simu-

lating ground vibration, and physical evidence which calls into question the validity of

some common simplifying modelling assumptions.

2.1 Impact of Vibration

Transportation noise and vibration has become a major source of disturbance and is

predicted to worsen with increasing traffic and population densities. Numerous studies

over the last thirty years show that inhabitants of urban areas who are subjected to

air, road and rail traffic noise report high levels of annoyance and sleep disturbance

which negatively impacts quality of life [28,30,87,102,129]. Sleep disturbance is considered

one of the most serious effects of traffic noise [11]; experimental studies have found par-

tial sleep deprivation (i.e. being woken through the night, increasing the time to fall

asleep, reduction of hours asleep, etc.) has negative effects on performance and mood [21].

Some argue that prolonged exposure to such disturbance could have long-term health

implications [27].

More recent studies focus on correlating annoyance and sleep disturbance with quan-

5
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tified noise levels and durations. Öhrström et al. [112] investigates how annoyance is

affected by single and combined sound exposures from road and railway traffic. The

findings suggest combined exposures from two sources, road and railway traffic, induce

more extensive annoyance than noise from a single source. Furthermore, at sound levels

between 51 and 60dB(A) the proportion of people annoyed by railway noise is higher

than that annoyed by road traffic; above and below the 51-60dB(A) noise range the

levels of annoyance are approximately the same. Griefahn et al. [49] report a similar

finding while assessing the effects of noise emitted from road, rail and air traffic: higher

annoyance levels for rail noise when compared to similar levels of aircraft and road traffic

noise. These findings challenge earlier studies by Miedema et al. [101,102] which suggest

air traffic causes more disturbance than other forms of traffic noise. This difference in

the results could be attributed to the multiple ways people experience railway induced

vibrations in the home which are not considered in the study (i.e. air-borne noise, vi-

bratory motion of the floors, and re-radiated noise both in the room and from household

objects). An investigation by Öhrström [111] suggests that the average level of annoyance

was greater for vibration than for noise in houses up to 200 meters from the railway

line.

Although airborne noise is largely negated when the trains run underground, vibra-

tion generated by the trains is propagated through the tunnel and soil to structures

in close proximity to the tunnel [156]. The problem frequency range is between 15Hz to

200Hz [48,156]; higher frequencies are generally attenuated rapidly with distance along the

transmission path through the soil [71]. Acceptable sinusoidal vibration levels for various

living and working areas are listed in BS 6472 [65] and depend on many factors such as

time of day and building usage; BS ISO 2631 [68] and BS EN ISO 8041 [66] provide ad-

ditional details on effects and measurement of human response to railway vibration.

BS ISO 14837 Part 1 [67] provides guidelines on the essential considerations associated

with developing prediction models and shows in outline the stages to be observed for

new or modified rail systems. Future parts of BS ISO 14837 are meant to quantify
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acceptable vibration levels from underground railways but are unavailable at this time.

Walker and Chan [156] find that the degree of annoyance of noise and vibration from

underground railways is related to the frequency spectrum, the level of the noise, and

the background noise level. The empirical data used in the study shows consistent noise

spectrums with broad peaks around 50Hz and/or 80Hz; it was found noise with an

80Hz broad peak is more annoying than with a 50Hz broad peak. A study by Duarte

and Filho [24] offers a possible explanation to the previous finding. Their paper shows

that people are particularly sensitive to low frequency vibrations between 20-40Hz and

50-100Hz as these correspond to the resonant frequencies of the human-head and chest-

wall/ocular-globe respectively. Fields [29] correlates the level of disturbance from railway

noise and vibration with distance from the track. High levels of dissatisfaction are

reported for people living or working within 25m of the railway line; levels of annoyance

rapidly decrease as the distance to the track increases to 150m, at which point there

is uniform low-level complaints. The study also highlights other factors which affect

perception of vibration, including time of day, duration of vibration, and whether the

railway is visible. Klaboe et al. [80,81,149] present an extensive study on the Norwegian

standard NS8176 for vibration in buildings from road and rail traffic. In the three-

part paper they examine the current vibration standard, introduce a single quantity

statistical measure to describe the vibration of a building, and present a methodology

to standardize socio-vibrational surveys to simplify comparison of data in the future.

Much research has been undertaken to understand the transmission of ground-borne

vibrations and to find mitigation methods. At the University of Cambridge, for ex-

ample, ground-borne vibrations emitted from road traffic, surface railways and under-

ground railways have been studied by Hunt [59], Ng [107] and Forrest [33], respectively.

Talbot [142] discusses the performance of base-isolated buildings and Hussein [61] focuses

on the effect of isolating the rails from the subway tunnel. Further information regard-

ing ground-borne vibration can be found in the reviews by Hung and Yang [58] or Hunt

and Hussein [60]. A review of vibration excitation mechanisms and methods to simulate
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ground-borne vibration can be found in the following sections.

2.2 Vibration Excitation Mechanisms

The mechanisms through which moving trains produce ground-borne vibrations were

extensively reviewed in a five-part paper over thirty years ago [37,121,122,126,153]. Three

main mechanisms for the production of vibration are identified for standard rolling

stock: quasi-static loading, parametric loading, and general wheel/rail roughness.

Low-frequency vibrations (0-20Hz) arise from the quasi-static load of the train mov-

ing along the track [131]; the loads at the wheel-rail interface create deflection bowls under

each bogie, as shown in Figure 2.1. As the train moves past an observation point, the

periodic passing of the deflection bowls produces harmonic excitation.

x

z

Figure 2.1: Deflection bowls created by quasi-static train load

Parametric excitation can result from a periodic changing of the effective stiffness

of the rails and associated supporting structure on which the wheels ride [94]. Some

track designs use regularly spaced sleepers on a stone ballast to support the rails. The

resultant ground stiffness is greater as the wheels pass over a sleeper producing a pe-

riodic excitation known as the sleeper-pass frequency. Experimental measurements by

Heckl et al. [55] confirm the importance of this excitation mechanism as results show

distinctive peaks in the acceleration spectra at the sleeper-pass frequency. Other ex-

citation mechanisms referred to as parametric excitation include isolated defects such

as a wheel flats (Figure 2.2(a)) or badly aligned rail joints (Figure 2.2(b)) [108]. Every

time a wheel passes over a rail discontinuity, or a wheel with a flat spot completes a
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revolution, an impact occurs at the wheel rail interface which excites high frequency

vibrations. Vér et al. [153] provide an early analytical model to simulate such defects and

the resulting levels of vibration. Parametric excitation mechanisms are becoming rela-

tively less important compared to other sources of excitation in underground railways

as increased use of continuously-welded track mounted on slabs rather than sleepers and

better wheel-maintenance has reduced the amplitude of input energy for these sources.

(a) Wheel flat (b) Uneven rail joint

Figure 2.2: Examples of wheel and rail discontinuities

General wheel and rail unevenness or roughness is considered to be the governing

excitation mechanism for railway induced vibration [146]. Limitations in manufacturing

processes result in rails and wheels which are not perfectly smooth or round. This cou-

pled with environmental factors can cause the rails to become pitted or corrugated. The

harmonic forces which are developed by this roughness have frequencies which are func-

tions of the rail roughness-wavelength, the wheel circumference and the train velocity.

Remington [121,122] developed an early theoretical model of rolling noise accounting for

the irregularities of the wheel and rail running surface resulting in relative vibrations

between the wheel and rail. Thompson [144] extended this model which subsequently

resulted in the development of TWINS (Track-Wheel Interaction Noise Software) [145].

A generally accepted method of modelling track roughness is to assume it is a stationary

random process characterized by its power spectral density (PSD) function [93]. The ran-

dom process roughness method is used by Forrest [33] and Hussein [61] in the Pipe-in-Pipe

model to determine the forces at the wheel/rail interface; further review of this method
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will be presented in subsequent chapters as it is used in the current study.

2.3 Simulating Ground Vibration

The research reviewed in Section 2.1 suggests the greatest source of annoyance caused by

underground railways is vibration and re-radiated noise in buildings around the under-

ground tunnels. However, before the vibrational energy enters the buildings it must first

propagate through the tunnel wall and the surrounding soil. Numerous models of vary-

ing complexity have been developed attempting to simulate wave propagation through

a solid. Generally models consider a disturbance in an infinite medium (fullspace) or in

a semi-infinite medium (halfspace). The following discussion reviews the common sim-

ulation methods including analytical, finite element and boundary element, and semi-

analytical.

2.3.1 Basics of Wave Propagation

The first significant contributions to the study of ground-borne vibration are attributed

to Lord Rayleigh in 1885 [120] and Lamb in 1904 [88]. This early work mathematically

predicts that a disturbance in an elastic halfspace can be expressed as the superposition

of three propagating waves types: dilation waves, equivoluminal waves, and surface

waves.

The first two of these are known as body waves and propagate in the bulk medium.

The dilation wave (pressure or P-wave) is a longitudinal wave where the particles in the

solid move in the same direction as the wavefront. The equivoluminal wave (shear or

S-wave) is a transverse wave where the particles move perpendicular to the wave front.

A shear wave can be further decomposed into its component in the horizontal plane

(SH-waves) and in the vertical plane (SV-waves). See Figure 2.3 for a depiction of these

wave types. It should be noted that variation in the bulk medium (i.e. layering) can

cause coupling between the P-waves and SV-waves; the SH-waves will remain uncoupled
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Figure 2.3: Depiction of P-wave (above) and SV-wave (below)

thus wave propagation problems are commonly separated into the P-SV-wave problem

and SH-wave problem which can be solved independently.

Surface or Rayleigh waves (R-wave) cause the particles to move elliptically with in-

plane longitudinal and transverse components as shown in Figure 2.4. R-waves only

propagate along the surface to a depth of approximately one wavelength.

Further work by Love and Stoneley resulted in the discovery of new wave types which

bear their names. Love waves propagate on the free surface of a halfspace with particle

Figure 2.4: Depiction of Rayleigh wave showing elliptic particle motion
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motion in the out-of-plane direction. Stoneley waves are similar to surface waves but

confined to the vicinity of the interface between layers with different material properties.

Further information regarding wave types can be found in Ewing [26]or Graff [47].

In ground vibration problems the soil is commonly modelled as an elastodynamic

material defined by Lamé constants µ and λ; µ is also referred to as the shear modulus G.

As outlined in Appendix A, Lamé constants are related to the elastic modulus E and

Poisson’s ratio ν as

µ =
E

2(1 + ν)
(2.1a)

λ =
Eν

(1 + ν)(1− 2ν)
. (2.1b)

The P-wave speed (cP ) and the S-wave speed (cS) are derived in terms of Lamé

constants and density ρ as

cP =

√
λ + 2µ

ρ
(2.2a)

cS =

√
µ

ρ
. (2.2b)

The Rayleigh wave speed, cR, cannot be expressed explicitly in these terms but has

been shown by Lamb [88] to travel slower than the shear wave.

As the waves propagate through the medium their amplitudes decrease both through

geometric decay and material damping. Geometric decay, or radiation damping, occurs

through the expansion of the wavefront which causes the wave energy to be spread over

an ever increasing area. Woods [160] details radiation damping for 3D propagating waves

due to a surface point load. Near the surface P-waves and S-waves decay inversely as

the square of the distance from the disturbance (
1

r2
) and at depth as the inverse of the

distance (
1

r
); Rayleigh waves decay inversely as the square root of the distance from the

disturbance (
1√
r
). This decay in wave energy is purely a function of geometry and not

the material properties of the medium (i.e. an expanding hemispherical wavefront for

body waves and an expanding circular wavefront for surface waves). This theory also
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holds for disturbances at depth with the caveat that the radius r for body wavefronts is

measured from the point of disturbance, while the radius of the the surface wavefront

is measured from the epicenter of the surface vibration.

Material damping is a function of the material and is related to the dissipation of

energy through mechanisms such as friction between soil particles. Two common models

for material damping include viscous damping and hysteretic damping: viscous damp-

ing is proportional to the relative velocity between particles in the system and is thus

rate dependant; hysteretic damping is proportional to the relative displacement of par-

ticles and is thus rate independent. Hunt [59] provides a thorough review of arguments

for and against each damping model. In the current study hysteretic damping is em-

ployed because material damping is generally assumed to be rate independent in the

low frequency range of soil dynamics problems [86]. Damping is included using the cor-

respondence principle [13,15,31] which states the frequency response function of a damped

system can be obtained from the elastic system by writing the elastic moduli as complex

quantities. The complex Lamé constants can be written as [47]

λ∗ + 2µ∗ = (λ + 2µ) (1 + 2iDP ) (2.3a)

µ∗ = µ (1 + 2iDS) (2.3b)

where DP and DS are the hysteretic damping ratios for P-waves and S-waves, respec-

tively. These complex constants can be used in Equation 2.2 to determine the complex

wave speeds.

2.3.2 Analytical Methods

Analytical solutions for the transfer function of a homogeneous elastic halfspace sub-

jected to point-loads and line-loads were first developed by Lamb [88]. The solutions

are in the form of integral equations and require convolution integration techniques to
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solve. For a surface point-load the Rayleigh wave propagates outward from the loading

point with a circular wave front while the P-wave and S-wave propagate outward with

a hemi-spherical wavefront. For a surface line-load the Rayleigh wave has a linear wave

front and the body waves have cylindrical wave fronts. Graff [47] provides a thorough

review of these solutions and methods which can be used to perform the convolution

integration.

Miller and Pursey [103] are often cited for publishing the partition of energy between

the different wave types in a halfspace subjected to a loaded circular disk: 67% Rayleigh

wave, 26% shear wave, 7% pressure wave. This suggests that the bulk of the vibrational

disturbance on the surface is due to the Rayleigh wave energy. However, Wolf [158] showed

that this is only true for low frequency excitation or small disk areas (approaching a

point-load). For higher frequencies or larger loading areas the energy imparted to the

Rayleigh wave is much less (approximately 10%), with the remainder going into the

P-wave and S-wave.

Kausel [73] has recently published a compendium of analytical solutions for dynamic

response functions resulting from transient sources acting within isotropic, elastic media.

The fullspace and halfspace solutions are given for two and three-dimensional problems

subject to point-loads, line-loads, torques and pressure-pulses. A significant contribution

to this area of research was published by Tadeu and Kausel [141] in which they develop the

fullspace Greens functions for a harmonic (steady-state) line load whose amplitude varies

sinusoidally in the third dimension, typically referred to as a two-and-a-half-dimensional

problem; Tadeu later extended this theory for 2.5D halfspace Green’s functions [140]. The

2.5D halfspace Green’s function has been of significant value to numerical-modelling of

railway induced vibrations using methods such as boundary-elements [38] or the Pipe-

in-Pipe model [62]; these modelling methods will be discussed further in the following

sections.

Limited research is still being done using purely analytical methods for layered me-

dia. Gautesen [39–41] studies wave scattering in elastic quarterspaces by separating the
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problem into symmetric and anti-symmetric regimes which have been Fourier trans-

formed. He has also considered elastic wedges whose angles are greater than 180 ◦ [39].

Budaev and Bogy [14] develope a solution to Rayleigh wave scattering by an infinite

wedge using Sommerfeld integrals in the complex plane. Its and Yanovskaya [69] use

an approach based on the Green’s function technique to investigate surface waves in a

halfspace composed of two different quarterspaces. In all cases, the equations are too

complex to obtain closed-form solutions thus approximate numerical methods are used

to solve the governing equations. Also, these techniques are developed for very specific

problems and are not flexible enough to be used for general ground vibration problems.

2.3.3 Numerical Methods

The complexity of the equations required to solve vibration problems involving layering,

foundations or irregular geometries make analytical methods intractable. Approximate

numerical methods such as the finite difference (FD) method, finite element (FE) method

or the boundary element (BE) method are more commonly used to solve these complex

problems.

2.3.3.1 Finite Difference Method

The motivation behind the development of the finite difference method in structural

vibrations was largely to overcome the difficulty of finding closed-form solutions to

the differential equations of complex continuum problems. Instead, the FD method

numerically solves the equations of motion for the continuous structure at specified

nodes, replacing the derivatives by finite-difference expressions of the functions. This

is different from the finite element method (see Section 2.3.3.2) where the continuous

structure is idealized as an assembly of discrete elements.

The finite-difference form of the differential equations governing displacements (or

stresses) is applied at each node of the meshed structure, relating the displacements (or
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stresses) at the given node and at nodes in its vicinity to the external applied loads. This

generally provides a sufficient number of simultaneous equations for the displacements

(or stresses) to be determined [44]. However, near the boundaries it is necessary to satisfy

this finite-difference form for both the equations of motion and the boundary conditions.

This can be difficult to achieve at arbitrary boundaries since the FD mesh will restrict

the form of differencing which can be carried out [9].

The finite difference method for modelling of viscoelastic solids is thoroughly de-

veloped in an academic report by Blanch et al. [12]. Although the FD method is losing

favour in academia, this method has recently been used to study ground vibration due

to high-speed trains [72] and bridge vibrations due to passing trains [162]. The FD method

also remains popular in some sectors of industry, for example the FINDWAVE [143] pack-

age has been used to predict ground vibration levels for the CrossRail line scheduled for

development in London, UK.

2.3.3.2 Finite Element Method

The finite element method was developed for solving models in differential form [9], a

form which allows for simple incorporation of boundary conditions. FE requires the

discretization of the entire geometry into small finite-sized elements whose governing

equations are known and relatively simple. The displacement solution to a given loading

condition for all of the elements is found simultaneously using matrix algebra. FE is well-

suited to simulating complex geometries which encompass a finite volume; unfortunately

it is impossible to accurately model a semi-infinite space using basic FE theory as the

size of the model must be finite by definition [9]. Early FE models of semi-infinite media

under static loads would use rigid, artificial boundaries “far enough” from the loading

location such that the boundaries would not affect the solution. For dynamic simulations

this is not possible; the artificial boundaries reflect waves causing erroneous results [19].

This prompted research into absorbing boundaries: boundary condition formulations

which simulate an infinite elastic layer (see Figure 2.5).
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Figure 2.5: The use of absorbing boundaries in FEA to simulate semi-infinite layers

Lysmer and Kuhlemeyer [97] were among the first to develop an absorbing bound-

ary, known as “the standard viscous boundary”. Rather than rigidly constraining the

artificial boundaries, a series of normal and tangential dashpots are coupled to the

boundaries of the 2D model. By carefully selecting the dashpot viscosity the boundaries

absorb the P-waves and S-waves, negating wave reflection or other artificial boundary

errors. White et al [157] present a different criteria for selecting the appropriate dashpot

values, known as “the unified viscous boundary”, which results in better approximations

for certain loading cases.

A second type of absorbing boundary developed by Lysmer et al. [95,96,98], based on

the theoretical work by Haskell [54] and Thomson [147], requires the problem to be trans-

formed into the frequency-wavenumber domain. Separation of variables is used to find

a transcendental solution to the wave equation for the semi-infinite layer of soil repre-

sented by the absorbing boundary. For layered media, equations are required for each

layer and must meet compatibility conditions for adjoining layers. Closed-form solu-

tions can be found for simple cases by contour integration, while numerical solutions

are needed for arbitrarily layered soils. Calculation of this type of absorbing bound-

ary, referred to as the stiffness matrix technique, is considered exact as it introducing

no further approximation to the model. Drake [23] uses FEM coupled with the stiffness

matrix technique to determine reflection and transmission factors for Rayleigh waves
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in non-horizontally layered media; this requires the full FEM discretization of the non-

horizontal section. The stiffness matrix approach has been extended for anisotropic

media [125], three-dimensional problems [128,130], and transient analyses [115]. An impor-

tant extension to the stiffness matrix technique, known as the thin-layer method, was

developed by Waas [155] and will be discussed in Section 2.3.4.1.

2.3.3.3 Boundary Element Method

The formulation of the boundary element method’s governing equations gives BE a dis-

tinct computational advantage over FE when considering infinite or semi-infinite prob-

lems. Standard BE uses the boundary integral formulation of the governing equations

of motion for a fullspace, which reduces the dimension of the problem by one [10]. In

other words, the solution to a plane-strain problem can be found by discretizing only

the edge, or boundary, of the solid. For the case of a tunnel buried in a halfspace, only

the exterior of the tunnel and the surface of the halfspace would need to be discretized;

FEM would require meshing a significant portion of the soil around the tunnel and then

imposing absorbing boundaries. Since no artificial boundaries are imposed using the

boundary element method, no fictitious wave reflections are generated by the model.

Boundary element methods are commonly used for problems concerning structure/soil

interactions including railway tunnels [138], piled foundations [91,159], and pile/structure

interactions [142]. The computational cost of using BEM for homogeneous, isotropic half-

space problems has been significantly reduced by the development of the 2.5D Green’s

functions for a halfspace [141]. Using the halfspace Green’s function in the BE formulation

results in a model which does not require the discretization of the free surface, only the

exterior of buried structure [6]. If the soil is inhomogeneous or anisotropic other methods

are better suited to accounting for these variations in soil parameters, for instance the

thin-layer method.
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Figure 2.6: Example of a coupled BE-FE model [50]; tunnel modelled using FE while response along
planes in the soil predicted using BE (reproduced with permission from the author)

2.3.3.4 Coupled BE-FE Models

Recently researchers have begun to use coupled BE-FE models to combine the positive

attributes from both simulation methods: the ease of modelling complex geometries

using FE and the ease of simulating infinite and semi-infinite media using BE. For

underground railways the tunnel and associated hardware are generally modelled using

finite elements to which a layer of boundary elements are coupled to the exterior of

the tunnel to simulate the surrounding media as shown in Figure 2.6. Andersen and

Jones [5] compare the use of 2D and 3D coupled BE-FE models and show that while

2D models require less computational effort they prove to be only quantitatively useful

when simulating structural changes; 3D models can provide better predictions of the

absolute vibration levels but require significantly more computational effort.

Continued development into coupled FE-BE models has reduced the computational

requirements further. For underground railways it can often be assumed the tunnel

and soil are homogeneous along the length of the track, allowing the problem to be

transformed into a sequence of 2D models which depend on the wavenumber in the track

direction. A 2D coupled FE-BE model is solved for a finite number of wavenumbers

and an inverse Fourier transform is performed to compute the three-dimensional spatial
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response. This form of simulation is generally referred to as two-and-a-half-dimensional

(2.5D) or wavenumber FE-BE modelling. Sheng et al. [132] present such a model for

simulating ground vibration from both surface and underground trains; it is predicted

that the 2.5D model requires two-hundred times less computing time than would a

similar 3D coupled BE-FE model to produce similar results.

Degrande et al. [16,20] use the homogeneity along the tunnel in a slightly different

manner. The periodicity of the tunnel and the soil is exploited using the Floquet trans-

form, limiting the discretization to a single bounded reference cell of the tunnel modelled

using the coupled BE-FE method. The authors state that this is a major advantage

compared to the standard 2.5D approach because the use of periodic cells rather than

2D slices allows any type of loading, including point forces, to be more easily simulated.

Gupta et al. have used this method in a number of published studies including the

prediction of vibrations due to underground railways in Beijing [51] and the investigation

of tunnel and soil parameters on ground vibration [52].

2.3.4 Semi-Analytical Method

While finite-element and boundary-element formulations have become more efficient and

advances in computer processing have reduced model run-times, it is still common for

coupled BE-FE models of underground railways to take tens of hours to compute. If a

number of model iterations are required during the design process, these long compu-

tational times can make such models economically infeasible. Semi-analytical methods

can greatly reduce the computational cost of a model by integrating analytical solutions

into the numerical algorithm. Two examples of semi-analytical methods which are used

extensively in the current work are the thin-layer method and the Pipe-in-Pipe method.
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2.3.4.1 Thin-Layer Method

The difficulty associated with solving the transcendental equations of the stiffness matrix

technique (see Section 2.3.3.2) resulted in the development of the thin-layer method

(TLM) by Waas [155]. By discretizing the semi-infinite soil in the vertical direction into a

finite number of thin-layers the displacement across each layer can be assumed to vary

linearly; this negates the need to use a contour integration over the entire depth of the

soil and simplifies the governing equations into a quadratic eigenvalue problem. For the

linearity assumption to be valid the thickness of each layer must be small compared to

the wavelength of the shear-wave in the layer. The analytical wave equation is used

in the horizontal direction which allows layers of any horizontal length (i.e. finite or

infinite) to accurately predict harmonic displacement without suffering from the element

aspect-ratio restrictions of finite element methods. The method can also be extended

to 2.5D space in a similar manner to that used for the BE-FE models described in

Section 2.3.3.4.

Kausel, in collaboration with others, has extended the TLM theory to include dis-

tributed loads [77], interior dynamic loads [75], static loads in a layered halfspace [78], hy-

perelements with two vertical boundaries [76], and conversion into the cylindrical coordi-

nate system [74]. Further work has also been performed by Andrade who has developed a

method to include dynamic loads in a layered halfspace [7] and Park who has transformed

the coordinate system to allow for inclined boundaries [116].

Further discussion on the thin-layer method can be found in Chapter 4, including

a review of the formulation and implementation for predicting ground vibration from

underground railways.

2.3.4.2 Pipe-in-Pipe Method

Forrest and Hunt [33–35] present a computationally efficient, three-dimensional semi-

analytical model for calculating soil vibration in a fullspace from underground railways,
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known as the Pipe-in-Pipe model (PiP). As the name implies, the PiP model represents

the tunnel and soil as concentric, coupled “pipes”. The tunnel pipe is modelled using

thin-shell theory while the soil pipe is modelled using elastic continuum theory. The

outer radius of the tunnel pipe is equal to the inner radius of the soil pipe, and the outer

radius of the soil pipe is infinite to simulate a fullspace.

The coupled governing equations of motion for the tunnel and the surrounding soil

are transformed into the frequency, wavenumber, and circumferential ring-mode domains

using Discrete Fourier Transforms (DFT). The equations can then be written in matrix

form and solve using standard matrix algebra.

The PiP model has been validated against a coupled BE-FE model and shown to

have good agreement over the frequency range of interest [50] but with a computational

cost which is orders of magnitude less than the BE-FE model. The combination of

model accuracy and computational efficiency makes PiP a powerful computational tool

for calculating vibration from underground railways and for assessing the performance

of vibration countermeasures.

Further discussion on the PiP method can be found in Chapter 3, where the formu-

lation is reviewed and extended to account for uncertainty of the bond at the tunnel-soil

interface.

2.4 Uncertainty in Modelling Assumptions

Review of current literature regarding simulation of vibration from underground railways

has revealed a number of different approaches currently in use and/or development. A

trait common to all of these simulation methods is the use of simplifying assumptions

during the development of the model. A simplifying assumption is defined herein as:

simplifying assumption : a means of reducing the complexity of a model

(e.g. geometry, material properties, boundary conditions, etc.) under the

assumption that this simplification will not significantly affect the results.
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A classic example of a simplifying assumption is simulating a railway track as a

beam on an elastic foundation. In reality the rail is coupled to individual sleepers at

discrete points using mechanical fasteners; the sleepers are supported by gravel ballast

which is supported by the earth. To model each connection and each piece of gravel

would be extremely time consuming and even then assumptions would need to be made

regarding the friction laws governing the interaction between all the elements. It is more

reasonable to estimate an overall stiffness and dampening coefficient for the supporting

media and assume the rail is continually supported. This allows an efficient model

to be developed which can quantitatively predict how changes to the major modelling

elements effect the overall response. However, simplifying the model in such a manner

inherently introduces uncertainty in the predictions for the situations being modelled.

One area where simplifying assumptions are commonly used when modelling vibra-

tions from underground railways regards the properties and stratification of the soil.

The dynamic characteristics of soil are notoriously difficult to measure over an area of

interest, more so if the variation with depth is also desired [59]. Schevenels et al. [127] re-

view some of the methods available for in situ soil measurements including the spectral

analysis of surface waves test (SASW) and the seismic cone penetration test (SCPT).

A combination of these measurements allows an estimation of the variation in dynamic

shear modulus and material damping with depth. However, the measurements are based

on local averages resulting in limited resolution of the soil characteristics. Cone pene-

tration tests can be performed for better resolution but these are only accurate over a

small area; coarse global averaging is necessary to extrapolate the findings over larger

areas.

It is therefore often assumed during the modelling process that the soil is both

homogenous and isotropic (i.e. a uniform halfspace) and is fully bonded to the exterior

of the tunnel; if sufficient evidence is available to warrant the extra complexity horizontal

layers of homogeneous and isotropic media may be also incorporated (see Figure 2.7 for

a schematic representation). These are generally reasonable assumptions due to the
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difficulty in obtaining sufficient data to allow accurate modelling of varying layer depths

or variation in material properties. Furthermore, using horizontal layering results in

a geometrically simple model which reduces the effort involved in modelling and the

computational requirements for a solution.

(a) (b)

Figure 2.7: Simplifying assumptions commonly used when modelling soil around an underground rail-
way tunnel: (a) homogeneous halfspace; (b) layered halfspace

Although assuming a simplified soil lithology which is fully bonded to the tunnel

is convenient, there is little evidence which quantitatively validates these assumptions.

Four possible sources of uncertainty associated with these assumptions which will be

investigated include the effect of layer inclination, layer subsidence over a tunnel, voids

at the tunnel-soil interface, and inhomogeneity of soil properties.

2.4.1 Inclined Layers

Natural development and movement of soils results in a stratified lithology. The de-

velopment of each layer can occur due to two mechanisms: parent material that has

not been involved in an erosion cycle (i.e. hard or soft bedrock) is weathered in situ

forming residual soils, or soils which have already formed through one or more cycles

of erosion are moved to a new location (i.e. by ice, wind, water or gravity) known as

transported soils [135]. This layered soil formation results in the distinct soil horizons

shown in Figure 2.8 and outlined below [4].

• H horizon: dominated by undecomposed or partially decomposed organic material

at the soil surface, saturated with water for prolonged periods
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Figure 2.8: Schematic of the major soil horizons (reproduced from the University of Vermont webpage
- www.uvm.edu)

• O horizon: dominated by decomposed organic material, not saturated with water

for prolonged periods; O layers may be at the surface or at any depth beneath the

surface if it has been buried by transported soil

• A horizon: mineral layer formed at the surface or below an O horizon, often formed

due to cultivation, pasturing or similar kinds of disturbance

• E horizon: mainly sand and silt due to a loss of silicate clay, iron, aluminium

• B horizon: made up of silicate clay, iron, aluminium, humus, carbonates, gypsum,

silica, or combinations thereof

• C horizon: sediments, saprolite and unconsolidated bedrock

• R horizon: hard bedrock underlying the soil

These horizons are often assumed to run parallel with the surface although this is

not always the case. Figure 2.9 shows examples of soil lithologies taken from geological

and oil/gas surveys. Notice the slight inclination of the layers with respect to adjoining

layers; it is not uncommon to have layer inclinations of five degrees. It is unclear how

the inclination of a soil layer affects the global vibration response of the soil. This issue

is investigated in Section 4.2 where the thin-layer method model is used to quantify
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(a)

(b) (c)

Figure 2.9: Examples soil stratification taken from (a) Texas Bureau of Economic Geology
(www.beg.utexas.edu), (b-c) oil and gas land surveys (www.republicenergy.com)

the variation in surface response between inclined and horizontally layered halfspaces

subjected to vibration from an underground railway.

2.4.2 Soil Subsidence

Ground movement associated with the construction of underground railway tunnels is

inevitable [113]. As the tunneling face progresses forward the lack of support for the

overburden causes the ground above the tunnel to subside, as depicted in Figure 2.10.

There are a number of methods which can be employed to help prevent subsidence

during construction of the tunnel: compensation grouting, freezing, dewatering, earth

pressure balance tunnel-boring machines, etc. [2] These methods are all intended to

strengthen the soil through which the tunnel is being bored so that the overburden

does not cause the open tunnel to deform before the tunnel lining can be installed.

Although compensation methods are improving, they cannot fully negate subsidence

during and after the tunneling process. O’Reilly and New [113] list a number of vol-
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Figure 2.10: Development of surface subsidence trough due to tunneling

ume loss estimations from underground railway sites in the UK ranging from 1.5% to

2.5% (5-8 mm) shortly after construction. A more recent study involving the construc-

tion of the Jubilee Line extension in London predicted green-field subsidence levels of

15-20 mm [85,99].

Studies using space radar interferometric techniques show evidence of subsidence

levels averaging 10-20 mm/year for underground railways in the UK, Korea, Chile and

Greece [79,82,114]. The yearly subsidence over the tunnels is attributed to water leakage

into the tunnels resulting in a loss of pore pressure in the surrounding soil. A long-term

study measuring subsidence in St. James’s Park over the Jubilee Line extension show

total subsidence (i.e. from construction and long-term settlement) of 60-70 mm after

two years [110]. It is conceivable that a subsidence trough of 80-100mm could develop

over an underground railway tunnel during its lifetime. It is unclear if accounting for

subsidence of the soil layers over the tunnel would significantly alter predicted vibration

levels compared to a simplified assumption of horizontal layers. The thin-layer method

model is used in Section 4.3 to quantify the change in surface vibration when accounting

for the geometric soil variation due to subsidence over underground railway tunnels.

A second source of uncertainty which may develop due to subsidence regards the
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interface between the tunnel exterior and the surrounding soil. The soil is generally

assumed to be in continuous contact with the tunnel (i.e. no voids or gaps at the

tunnel-soil interface). Under such large-scale subsidence it is likely that a void will form

over a section of the tunnel, disrupting the perfect bond at the interface. Voids may

also develop during construction of new buildings in close proximity to the underground

tunnels due to pile-driving, excavation, landscaping, etc. The extent of voidage is diffi-

cult to quantify but the existence of voids is not in doubt. Chapter 3 introduces a new

method which can quantify the change in surface vibration when accounting for voids

of various size over an underground railway tunnel subjected to a moving load.

2.4.3 Soil Inhomogeneity

The soil in ground vibration simulations is commonly assumed to be homogeneous

throughout each layer. In reality the soil properties can vary significantly over rela-

tively short distances (see Figure 2.11 showing the predicted shear modulus variation

over a 60m section).

Figure 2.11: Example showing inhomogeneous shear modulus distribution (reproduced from a geological
modelling company (www.rockware.com))

Three sources of variability can readily be identified [150]: natural inhomogeneity,

availability of information and measurement error. Naturally occurring inhomogeneity is

caused by factors such as mineral composition, stress history, moisture content, density,

etc. The general trends in soil properties (i.e. significant changes in average properties

associated with layering) tend to be accounted for in conventional soil models. It is local
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variations within those layers that is difficult to distinguish; it is quite impractical to

take sufficient soil samples to accurately map local variations in material properties over

the area of interest. Soil profiles must be inferred from a limited number of samples.

Finally, measurement and testing errors tend to dilute the value of the samples that

have been obtained. A practical method to adequately capture the inherent variation

in properties involves a probabilistic model employing random field theory.

The theory of random fields has developed over the last century in numerous areas of

study dating back to Bachelier’s study of economics [8] and Einstein’s theory of Brownian

motion [25]. An excellent review of random field theory can be found in the books of Van-

marcke [151] and Ghanem and Spanos [45]. Use of random field theory for soil variability

has been limited to the last forty years. An early method involved first-order per-

turbation of the governing eigenvalue problems [17,133] or finite-element formulations [53].

First-order perturbations were found to yield crude approximations to the solution thus

second-order perturbation were developed but were dismissed as too computationally

expensive for the extended benefits [105]. Research into stochastic methods of describing

properties as random processes provided more reasonable approximations of response

statistics [134] and scale of fluctuation [152]. The theory of Neumann expansions was also

explored for analytical and numerical simulations [161].

A method which has become well-established for numerically simulating soil vari-

ability is the stochastic finite element method (SFEM) [45]. The SFEM assumes the

spatial variation of material properties (i.e. elastic modulus, shear strength, density,

etc.) can be expressed via a covariance function (CF). The CF is a measure of the cor-

relation, or similiarity, of the value at two different points in the random field. SFEM

commonly uses a Karhunen-Loeve (KL) expansion to express the covariance function as

a linear combination of deterministic functions with Gaussian-random coefficients [137];

this allows the soil variability to be expressed over finite element mesh as the superposi-

tion of the average field and the KL-expanded random field governed by the covariance

function. The solution to the stochastic system of equations is generally solved using
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a Monte Carlo simulation, a Neumann expansion, or a projection of the response on

polynomial chaos [127]. This method has been used in 1-D and 2-D finite element models

to investigate seismic response in soils resting on bedrock [90,109,163] and for soil-structure

interactions [46].

Schevenels et al. [127] recently adopted the SFEM method to determine the Green’s

function for a vertically inhomogeneous soil with random dynamic shear modulus using

a hybrid thin-layer method and direct stiffness method; the variation in the horizontal

direction was deemed negligible. Published data regarding the spatial variability of soils

show that while vertical variability in the soil profile is dominant, horizontal variability is

also significant [56,118,119,136]. In Section 4.4 the thin-layer method is used to investigate

the effect of inhomogeneity in the soil’s elastic modulus on surface vibration due to

underground railway disturbances; soil variability in both the vertical and horizontal

directions is included.

2.5 Conclusions

Ground vibration from underground railways is a major source of disturbance for people

living and working near subways. Researchers have linked such disturbances to work

degradation, sleep disturbance and possible health risks affecting individuals 25m from

tunnels and have reported above average annoyance from inhabitants up to 200m from

the subways. This public disturbance has spurred the development of ISO standards

to quantify acceptable levels of vibration from underground railways and subsequently

the development of simulation models to predict ground vibration so as to meet the

vibration criteria during the design process.

A number of different modelling methods have been employed to predict ground

vibration from underground railways. Analytic Green’s functions for homogeneous

fullspaces, halfspaces and layers have been developed which allow closed-form solution

of geometrically simple problems but lack the flexibility to investigate more complex
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scenarios. Discrete numerical methods such as finite element and boundary element

analysis allow modelling of complex systems but tend to require long computational

times. Semi-analytic methods have shown promise as run times tend to be quicker than

discrete methods and provide more modelling flexibility than analytic methods while

maintaining the accuracy of purely analytic models. However, all such models are based

on simplifying assumptions.

Simplifying assumptions, such as assuming the soil is homogeneous, are made to

make modelling possible; often limited information of soil properties is available so as-

sumptions must be made from incomplete information. While such assumption make

the modelling process tractable there are inherent uncertainties associated with these

assumptions which are not well understood. The aim of this dissertation is to quantify

some of these uncertainties to give a better understanding of how simplifying assump-

tions limit prediction accuracy.



Chapter 3

Voids at the Tunnel-Soil Interface

A simplifying assumption which is frequently made is that the soil is in continuous con-

tact with the tunnel (ie. no voids or gaps at the tunnel-soil interface). Subsidence and

frost-heave have been shown to cause significant tunnel movement [3,83,123]; under such

large-scale motion it is likely that a void will form over a section of the tunnel disrupting

the perfect bond at the tunnel-soil interface, as depicted in Figure 3.1. Voids may also

develop during construction of new buildings in close proximity to the underground tun-

nels due to pile-driving, excavation, landscaping, etc. The extent of voidage is difficult,

if not impossible, to quantify but the existence of voids is not in doubt.

A review of the literature suggests there have been no studies predicting the effect

of a void at the tunnel-soil interface. The goal of the current investigation is to quantify

this effect and determine the level of uncertainty associated with neglecting to include

voids in numerical simulations of underground railways. Development of a fully analyti-

cal model including a finite sized void arbitrarily located around the tunnel was deemed

intractable thus a semi-analytical approach is adopted. The Pipe-in-Pipe (PiP) method

is used to determine the discrete transfer functions for both the tunnel and the sur-

rounding soil nodes. The transfer matrices are coupled using continuity and equilibrium

conditions. The void is simulated by uncoupling the appropriate tunnel and soil nodes,

inhibiting the transfer of forces between the two subsystems over a finite patch.

32
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Figure 3.1: Void at the tunnel-soil interface

3.1 Model Description

The void model is an extension of the original Pipe-in-Pipe model to allow finite sized

voids at the tunnel-soil interface. As introduced in Section 2.3.4.2, the basic PiP method

is a computationally efficient, three-dimensional semi-analytical model for calculating

soil vibration in a fullspace from underground railways [33–35,61]. A brief review of the

PiP method is provided below to introduce the reader; further details can be found in

Appendix E and in the referenced literature.

3.1.1 Overview of PiP Method

An idealized underground railway tunnel can be thought of as a thin-walled cylinder

(i.e. the tunnel) coupled to the inside surface of a thick-walled cylinder (i.e. the sur-

rounding soil), as shown in Figure 3.2. If the outer radius of the thick-walled cylinder is

assumed to be infinite (R2 in Figure 3.2b), this pipe-in-pipe arrangement provides the

analytical solution for a buried, circular tunnel in a fullspace.

Forrest [33] derives the governing equations of motion for an infinitely long, thin-walled

cylinder subjected to a radially-acting point-load as

Ũn = H̃tunnelP̃n (3.1)
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Figure 3.2: Schematic of pipe-in-pipe arrangement: inner pipe representing the tunnel modelled as a
thin-walled cylinder (left) and outer pipe representing the soil with outer radius R2 = ∞ (right)

where Ũn and P̃n are the cylindrical displacement and load vectors respectively, in the

{Z θ R}T directions; H̃tunnel is a 3× 3 matrix whose elements are given in Appendix E.

The capitalization of the variables indicates the frequency domain (ω), the tilde indi-

cates the wavenumber domain in the axial direction (ξ), while the subindex n refers to

the corresponding ring-mode as depicted in Figure 3.3. The first two of these Fourier

transforms (i.e. time ⇒ frequency; axial-direction ⇒ axial-wavenumber) are used to

convert the equations into a 2.5D frequency-domain problem which greatly simplifies

the equations of motion for the current investigation. The transformation from the θ-

and r-directions into the ring-mode domain further condenses the equations of motion

into the convenient form shown herein.

Similarly, the governing equations of motion for an infinitely long, thick-walled cylin-

der subjected to a radially-acting point-load is

Ũn = H̃soilP̃n (3.2)

where the elements of H̃soil are also given in Appendix E.

Coupling the two cylinders results in the development of reaction forces at the in-

terface; the coupling equations of motion are

Ũ
tunnel

n = H̃tunnelF̃n + H̃tunnelR̃
tunnel

n (3.3)
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Figure 3.3: Ring-modes n=0 to n=3: (top) in-plane flexural ring modes corresponding to radial displace-
ment ŨRn; (middle) in-plane extensional ring modes corresponding to circumferential displacement Ũθn;
(bottom) out-of-plane flexural ring modes corresponding to axial displacement ŨZn

and

Ũ
soil

n = H̃soilR̃
soil

n (3.4)

where F̃n is the load applied to the inside of the tunnel and R̃n is the resultant load

between the tunnel and the soil at the cylindrical interface. Continuity of displacements

and equilibrium of reaction forces at the interface state

Ũ
tunnel

n = Ũ
soil

n ≡ Ũn (3.5)

R̃
tunnel

n = −R̃
soil

n (3.6)

thus the coupled equations of motion for the system can be written as

Ũn =
(
I + H̃tunnelH̃

−1

soil

)−1

H̃tunnelF̃n. (3.7)

It is convenient to recognize that H̃tunnelF̃n is equivalent to the displacements of the
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unconstrained tunnel (i.e. before being coupled to the soil). Let this displacement be

referred to as the “original” displacement allowing the equation to be written as

Ũn =
(
I + H̃tunnelH̃

−1

soil

)−1

Ũ
orig

n . (3.8)

This form of the displacement equation is equivalent to that given by Forrest [33]; it is

presented in this altered form for use in extending the model to account for voids.

The actual displacements and loads are in general linear combinations of an infinite

number of ring-modes. For a radially-acting point-load, the displacements are symmetric

about the load with the axial and radial displacements even functions of θ and the

circumferential displacements an odd function of θ. The displacement and load vectors

can therefore be written as





ŨZ

Ũθ

ŨR





=





ŨZ0

0

ŨR0





+
∞∑

n=1





ŨZn cos nθ

Ũθn sin nθ

ŨRn cos nθ





(3.9)

F̃Zn = 0

F̃θn = 0

F̃Rn = { 1/2πa, n = 0

1/πa, n ≥ 1

(3.10)

where θ is the radial angle coordinate measured from the location of the point-load.

Equation 3.9 is also valid for an axially-acting point-load since ŨZ and ŨR are again

even functions of θ about the point-load and Ũθ is an odd function of θ.

Hussein [61] shows that for a circumferentially-acting point-load the conditions switch,

thus 



ŨZ

Ũθ

ŨR





=





0

Ũθ0

0





+
∞∑

n=1





ŨZn sin nθ

Ũθn cos nθ

ŨRn sin nθ





(3.11)
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Figure 3.4: Underground railway cut-away showing floating-slab track

and certain elements of the matrices H̃tunnel and H̃soil require a change in sign as de-

tailed in Appendix E. The magnitude of a point-load for the axial and circumferential

directions is equivalent to that given in Equation 3.10 for the radial direction.

3.1.2 Inclusion of Floating-Slab Track in PiP Model

A popular method of installing railway track in underground railways is to use a floating-

slab track (FST) system. Rather than employing traditional wooden sleepers and

crushed stone ballast, the rails are fastened to a concrete slab which sits on the base of

the tunnel invert. To reduce vibration transmission the rails are generally mounted on

resilient rubber railpads and the slab on rubber or steel-spring slab bearings as depicted

in Figure 3.4.

Forrest and Hussein have thoroughly investigated the modelling of floating-slab track

(both continuous and discontinuous) using the PiP method for non-moving and moving

loads [33–35,61,63,64]. A simple, continuous FST subjected to a quasi-static moving load is

included in the current investigation; the more complex systems could be included using

the methods derived in the referenced literature.

A schematic of the FST model is shown in Figure 3.5 where it has been simplified to

a 2D system; the two rails are assumed to receive identical vertical inputs thus they are

combined into a single beam. The rail and slab are modelled as Euler-Bernoulli beams

with mass per unit length m and bending stiffness EI. The railpads and slab bearings

are modelled as continuous layers of elastic support with stiffness per unit length k

and associated loss factor η; the resulting complex stiffness is given by k∗ = k(1 + iη).
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Table 3.1: Floating-slab track properties

Rail Beam Slab beam
mrail = 120.6 kg/m mslab = 3500 kg/m
EIrail = 12.9 MPa m4 EIslab = 1430 MPa m4

Railpad Slab Bearing
krail = 200 MN/m/m kslab = 5 MN/m/m
ηrail = 0.3 ηslab = 0.5

Figure 3.5: Floating-slab track on tunnel invert

The slab-bearing is assumed to only be in contact with the tunnel along the bottom

of the invert (i.e. equivalent to a line-load). The FST properties used herein are given

in Table 3.1 which approximate UIC60 rails on a standard continuous slab as used by

Hussein [64].

The transfer function of the FST assembly is derived as follows. The equation of

motion for a Euler-Bernoulli beam is [47,106]

m
∂2u

∂t2
+ EI

∂4u

∂x4
= f(x, t) (3.12)

where m is the mass per unit length, E is the elastic modulus, I is the second moment of

area, and f(x, t) is the distribute force per unit length acting on the beam. Assuming the

displacements are harmonic in time and space, this can be written in the wavenumber-

frequency domain as
(
EIξ4 −mω2

)
Ũ(ξ, ω) = F̃ (ξ, ω) (3.13)
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thus the transfer function for the beam is

H̃beam(ξ, ω) =
1

(EIξ4 −mω2)
(3.14)

where ω is the frequency and ξ is the wavenumber in the x-direction as defined in

Figure 3.5.

It is necessary to determine the transfer function for the FST assembly shown in

Figure 3.5 giving the displacements at the tunnel due to a load on the rail; this will be

used to facilitate loading in the coupled tunnel-soil model. The transfer function for the

rail-railpad-slab assembly can be derived by enforcing

• displacement continuity between the rail and railpad

• displacement continuity between the railpad and the slab

• force equilibrium across the railpad.

This results in the coupled equations of motion





Ũrail

Ũslab





=





H̃rr H̃rs

H̃sr H̃ss









F̃rail

F̃slab





(3.15)

where

H̃rr =
H̃rail(1 + k∗railH̃slab)

(1 + k∗railH̃slab + k∗railH̃rail)

H̃rs =
k∗railH̃railH̃slab

(1 + k∗railH̃slab + k∗railH̃rail)
= H̃sr

H̃ss =
H̃slab(1 + k∗railH̃rail)

(1 + k∗railH̃slab + k∗railH̃rail)
.

(3.16)
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This process can be repeated to couple the rail-railpad-slab assembly to the tunnel

through the slab-bearing by enforcing

• displacement continuity between the slab and slab-bearing

• displacement continuity between the slab-bearing and the tunnel

• force equilibrium across the slab-bearing.

This results in the FST transfer function matrix





Ũrail

Ũtunnel





=





H̃rr H̃rt

H̃tr H̃tt









F̃rail

F̃tunnel





(3.17)

where

H̃rr =
H̃tunnel(1 + k∗slabH̃ss)

(1 + k∗slabH̃ss + k∗slabH̃tunnel)

H̃rt =
k∗slabH̃rsH̃tunnel

(1 + k∗slabH̃ss + k∗slabH̃tunnel)
= H̃tr

H̃tt =
H̃ss(1 + k∗slabH̃tunnel)

(1 + k∗slabH̃ss + k∗slabH̃tunnel)

(3.18)

and H̃tunnel is the RR component of H̃tunnel as defined in Equation 3.1.

Recall Equation 3.8 which gives the coupled tunnel-soil interface displacements as a

function of the original free-tunnel displacements

Ũn =
(
I + H̃tunnelH̃

−1

soil

)−1

Ũ
orig

n .

Equation 3.17 can be used to determine Ũ
orig

n by setting F̃tunnel = 0 giving

Ũ
orig

n = H̃trF̃
rail
n . (3.19)
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If the load applied to the rail is assumed to be a point-load in the spatial-domain, the

load in the frequency, wavenumber and ring-mode domain is

F̃ rail
n = {

1/2πa, n = 0

1/πa, n ≥ 1
(3.20)

as defined in Equation 3.10.

It should be noted that H̃tunnel in Equation 3.8 is not adjusted to account for the

presence of the FST when solving for the coupled tunnel-soil interface displacements. It

was found the increased stiffness due to the FST was negligible compared to the concrete

tunnel thus was neglected for simplicity; this assumption is supported by Forrest [33] and

Gupta et al. [52].

The isolation properties of the FST assembly can be visualized by computing the

total force transmission curve as a function of frequency; force transmission is the ratio of

the force acting at the tunnel invert to the input force. The total force transmission can

be calculated exactly using a double mass-spring approximation [33] using the following

equation

FT

Finput

=
k∗railk

∗
slab

(mrailω2 − k∗rail)((mslabω2 − k∗slab)− k∗railmrailω2
(3.21)

The frequency response curve for the FST properties listed in Table 3.1 is shown in

Figure 3.6. The main peak at 6Hz is governed by the resonance of the slab on the slab

bearing while the broad peak around 200Hz is the resonance of the rails on the railpads.

These resonances mark the onset of travelling waves in the respective subassemblies.

As shown in the figure, the total force transmission drops below unity (i.e. 0dB) above

10Hz and decreases through the frequency range of interest 15-200Hz.

During the derivation of the coupled tunnel-soil displacement equation it is assumed

that the tunnel is in continuous contact with the soil, thus the PiP model in its standard

form does not allow for discrete sections of the tunnel to be uncoupled from the soil. To

investigate the effect of voids around the tunnel the method is extended by discretizing
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Figure 3.6: Total force transmission of floating-slab track

the tunnel-soil interface.

3.1.3 Discrete Tunnel-Soil Interface

To simulate voids using the PiP model the interface is discretized into a number of nodes

with their respective transfer functions determined using the continuous solution. Once

the global transfer function matrix for the interface is calculated, particular nodes can

be uncoupled to simulate the void at the tunnel-soil interface.

Consider an example case shown in Figure 3.7, where the circumference of the tunnel

is discretized into 8 nodes. A single unit point-load is applied in the positive radial

direction at node 1, causing displacements at all nodes (displacements only depicted at

nodes 1 and 3 for clarity). The nodal loading the R-direction can be written as

F̃ =

[
1 0 0 0 0 0 0 0

]T

. (3.22)

The Fourier transform of this force is

F̃n =

[
1 1 1 1 1 1 1 1

]T

(3.23)

where the subscript n indicates the ring-mode domain. In the current work the discrete
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Figure 3.7: Circumferential discretization of tunnel; example tunnel circumference discretized by 8
nodes with a point load applied radially at node 1, showing cylindrical coordinate directions

Fourier transform (DFT) is used to perform the transformations.

The displacements in the ring-mode domain can be calculated for each term in the

F̃n vector using Equation 3.1, resulting in

ŨZn =

[
ŨZ0 ŨZ1 ŨZ2 ŨZ3 ŨZ4 ŨZ5 ŨZ6 ŨZ7

]T

Ũθn =

[
Ũθ0 Ũθ1 Ũθ2 Ũθ3 Ũθ4 Ũθ5 Ũθ6 Ũθ7

]T

ŨRn =

[
ŨR0 ŨR1 ŨR2 ŨR3 ŨR4 ŨR5 ŨR6 ŨR7

]T

.

(3.24)

Since the circumference of the cylinder is discretized into a finite number of points

(Nring), the Nyquist criterion restricts the largest ring mode to Nring/2. Furthermore,

Equation 3.9 states that ŨZn and ŨRn are even functions and Ũθn is an odd function.

Therefore the ring-mode coefficients are symmetric and anti-symmetric respectively.

The ring-mode coefficients are written in standard inverse DFT (IDFT) input notation
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as follows

ŨZn =

[
ŨZ0 ŨZ1 ŨZ2 ŨZ3 ŨZ4 ŨZ3 ŨZ2 ŨZ1

]T

Ũθn =

[
0 −iŨθ1 −iŨθ2 −iŨθ3 0 iŨθ3 iŨθ2 iŨθ1

]T

ŨRn =

[
ŨR0 ŨR1 ŨR2 ŨR3 ŨR4 ŨR3 ŨR2 ŨR1

]T

.

(3.25)

Performing the IDFT results in a set of transfer function terms

H̃ZiR1

H̃θiR1

H̃RiR1

(3.26)

where each term represents the displacement (Z, θ, or R) of the ith node due to a radial

point-load at node 1. This process is repeated to determine the transfer functions at

every node due to loads acting in all three directions.

The transfer function terms can be arranged in matrix form as follows





ŨZ

Ũθ

ŨR





=




H̃ZiZj
H̃Ziθj

H̃ZiRj

H̃θiZj
H̃θiθj

H̃θiRj

H̃RiZj
H̃Riθj

H̃RiRj




ξ





F̃Z

F̃θ

F̃R





= H̃F̃ (3.27)

which describes, for a given wavenumber ξ, the displacements at all nodes due to an

arbitrary load applied with frequency ω. An IDFT is used to transform the set of

transfer functions into the spatial domain, Htunnel and Hsoil, thus the coupled equations

of motion for the tunnel-soil system can be written in the spatial domain as

U =
(
I + HtunnelH

−1
soil

)−1
Uorig. (3.28)

The wavenumber sampling and maximum values must be selected to ensure the
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discretization is sufficient to capture details at localized peaks as well as the far-field

disturbance of traveling waves. The results from a convergence study investigating the

effect of wavenumber properties on the response of a free-tunnel are shown in Figure 3.8.

The tunnel is subjected to a radially-acting unit point load at x=0 and the radial

displacement response in the spatial domain along the base of the tunnel is plotted to

determine convergence.

Figure 3.8(a) shows the response at 15Hz; at this low frequency the wavelengths

are relatively long thus fine discretization in the wavenumber domain is required to

capture the corresponding small wavenumbers. As the number of samples between

−2π 1
m

< ξ < 2π 1
m

is increased the solution tends towards the converged solution at

N=214 samples. At higher frequencies the wavelengths are relatively short thus the

maximum wavenumber must be increased to capture the localized peaks. Figure 3.8(b)

shows convergence of the solution at ξmax = 2π 1
m

.

These wavenumber parameters (N=214 and ξmax = 2π 1
m

) were found to be sufficient

to capture the response in the free-tunnel when the FST assembly is included and

subjected to a point load on the rail, as well as for the free-soil model subjected to

a point load. As such they are used throughout the remainder of the investigation.

Note that these parameters result in a total model length of -4096m < x < 4096m with

∆x = 0.5m according to the conversions

ξmax =
2π

2∆x
(3.29)

and

∆ξ =
2π

xmax

. (3.30)

This discretized spatial formulation of PiP allows nonuniform interaction between

the tunnel and surrounding soil making it possible to simulate variable stiffness between

the tunnel and soil, such as a void at the tunnel-soil interface.
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Figure 3.8: Wavenumber parameter convergence testing for free-tunnel model subjected to a radial
point load at x=0

3.1.4 Including a Void in the Discrete Model

To simulate a void at the tunnel-soil interface, individual matching nodes on the tunnel

and soil cylinders can be uncoupled. This allows the displacements of the two subsystems

to differ at the void location while preventing any transfer of force between the tunnel

and the soil. The degrees of freedom for both the tunnel and the soil are rearranged to

group the coupled and uncoupled nodes





Uc

Uu





=




Hcc Hcu

Huc Huu








Fc

Fu





(3.31)

where the subscripts c and u refer to the coupled and uncoupled degrees of freedom,

respectively. Rewriting the continuity equations (Equations 3.3 and 3.4) for the dis-

placement of the coupled nodes gives

Utunnelc = HtunnelccFc + HtunnelcuFu + HtunnelccRtunnelc + HtunnelcuRtunnelu (3.32)

Usoilc = HsoilccRsoilc + HsoilcuRsoilu (3.33)
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where displacement continuity and force equilibrium requires

Utunnelc = Usoilc (3.34a)

Rtunnelc = −Rsoilc (3.34b)

Rtunnelu = −Rsoilu . (3.34c)

Assuming that no internal forces will be applied to the uncoupled nodes (i.e. Fu = 0)

and recalling that no resultant interface forces develop at these uncoupled nodes (i.e.

Ru = 0), Equations 3.32 and 3.33 can be combined as

Uc =
(
I + HtunnelccH

−1
soilcc

)−1
HtunnelccFc. (3.35)

Noting that HtunnelccFc = Uorig
c Equation 3.35 can be written as

Uc =
(
I + HtunnelccH

−1
soilcc

)−1
Uorig

c (3.36)

which describes the displacement at the coupled degrees of freedom for the tunnel-soil

model as a function of the original free-tunnel displacements at the coupled nodes.

Equation 3.36 is in a useful form to perform parametric studies of void parameters.

Htunnel and Hsoil are the same for each case and need only be partitioned to include the

appropriate nodes. Uorig can be calculated relatively quickly and easily using the IDFT

of Equation 3.19; as Uorig is only a function of the FST and tunnel parameters it is

the same for all void cases. This allows for more efficient calculation when investigating

numerous void parameters.

The resultant interface loads can be back-calculated from Uc using

H−1
soilcc

Uc = Rc (3.37)
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Figure 3.9: Schematic of simple vehicle model

and Ru = 0. After rearranging the nodes back to the original order this resultant

interface load vector can be used to determine the soil response at any desired radius R

using

UR = HsoilRRinterface (3.38)

where HsoilR is derived in a similar way to the original soil transfer function as described

in Appendix E. This formulation is also efficient for parametric studies of void parame-

ters; HsoilR is the same for all void cases thus UR can be calculated quickly for any case

after the initial determination of the transfer function matrix.

This form of the solution can predict ground vibrations at any radius due to a

dynamic load applied to the rail on the FST assembly at a fixed location. It is now

useful to consider moving loads.

3.1.5 Response due to a Moving Load

Amongst many others, Hussein and Hunt [63] show that a predominant loading mecha-

nism on the tunnel invert is due to rail-roughness at the wheel-rail interface. For the

purposes of the current investigation this loading mechanism is simplified to a single,

moving point-load acting on the rail surface. The load is calculated using a single

degree-of-freedom model of a 500kg mass moving at constant speed along a rough rail

(Figure 3.9) as

F (x) = Ma(x) = −Mω2z(x). (3.39)
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The rail-roughness profile is randomly distributed thus the theory of random vibra-

tions [106] must be used to predict the resultant soil response. As the velocity of the

moving load is much less than the shear-wave speed of the surrounding soil a quasi-

stationary approximation of a non-stationary random vibration can be used [89]. This

implies that the Doppler effect of the moving load is negligible so the load at any given

point in time can be assumed a stationary random process (i.e. the mean, mean square

and standard deviation are all independent of time).

Frederich [36] provides an empirical formula for the single-sided rail-roughness spec-

trum based on track measurements. The average rail-roughness is calculated as follows

Sδ(ω) =
a

v
(
b +

ω

2πv

)3 (3.40)

where v is the load velocity (m/s), ω is the forcing frequency (rad/s), and a and b

are constants describing the rail unevenness (1.31× 10−2 mm2/m2 and 2.94× 10−2 /m,

respectively 1). Using Equation 3.39 and standard random vibration theory [106], the

force spectrum magnitude can be written as

Sf (ω) =
∣∣mω2

∣∣2 Sδ(ω). (3.41)

The discrete void model is used to determine the transfer function (Hij) describing

the displacement at an arbitrary point ri in the surrounding soil for a point load applied

to the rail at xj. The velocity spectrum magnitude at this arbitrary point is given by

Sv(ω) = |(iω)Hij|2 Sf (ω). (3.42)

This velocity spectrum can be used to provide a measure of the mean-square velocity

1An error was found after compilation of the results: the magnitude of the single-sided rail-roughness
was mistakenly multiplied by two resulting in a = 2.62 × 10−2 mm2/m2. According to Equation 3.43
this resulted in an increase of all absolute rms frequency band predictions by 20log10

√
2 ∼= 3 dB but

does not affect insertion gain results.
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Table 3.2: Third octave bands as defined by ISO R266

Reference name (Hz) Frequency band (Hz)

20 17.8 - 22.4
25 22.4 - 28.2

31.5 28.2-35.5
40 35.5 - 44.7
50 44.7 - 56.2
63 56.2 - 70.8
80 70.8 - 89.1
100 89.1 - 112
125 112 - 141
160 141 - 178
200 178 - 224

over a frequency band using the following property

E[v2]ω1→ω2 =

∫ ω2

ω1

Sv(ω)dω. (3.43)

The rms velocity over the frequency band is simply the square-root of Equation 3.43.

Note this derivation of the ω1 → ω2 frequency band rms velocity is equivalent to having

a perfect band filter which eliminates all input frequencies outside the band of interest.

Although this is an idealized value it is still a useful measure of the vibration levels at

different frequency bands. The vertical rms velocities are determined in third-octave

frequency bands according to Table 3.2.

The final step is to consider the slow variation of the rms particle velocity as the

load travels along the length of the tunnel. This is best shown through the example

detailed in Section 3.3. First it is sensible to validate the discrete model of a tunnel in

continuous contact with the soil against PiP.

3.2 Validation of discrete model against PiP

A schematic of the 3D tunnel-soil interface used in the semi-analytical model is shown in

Figure 3.10; Table 3.3 lists the set of sample material properties used in the simulation
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Figure 3.10: Geometric parameters for model and mesh

Table 3.3: Soil model properties

Tunnel Soil

Elastic modulus (GPa) 50(1 + 0.1i) 0.55(1 + 0.1i)
Density (kg / m3) 2500 2000
Poisson’s ratio 0.3 0.44
P-wave speed (m/s) 5200 950
S-wave speed (m/s) 2800 310

of a 0.25m thick concrete tunnel and surrounding soil. The vertical particle velocities

are calculated for a 30m × 30m observation plane 15m above the center of the tunnel

as depicted in Figure 3.11.

Recall from Section 3.1.3 that the free-tunnel and free-soil models were deemed to

converge in the wavenumber domain for N=214 and ξmax = 2π. This is equivalent to

a total model length of -4096m < x < 4096m with ∆x = 0.5m. If, for example, 32

nodes are used around the circumference of the interface with 3 degrees of freedom

each, this would result in a total of more than 1.5 million degrees of freedom; this is an

impractical number of DOF’s for a model which is intended for parametric studies with

short computational times. When the tunnel is coupled to the soil model the system

damping is greatly increased due to geometric decay and material damping in the soil.

The hypothesis is that much less of the model in the axial direction will be required as

the travelling waves will quickly decay.

To test this hypothesis a convergence test is performed to ensure that the spatial
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Figure 3.11: Observation plane centered over the tunnel at height 15m

parameters of the tunnel-soil interface are sufficient to adequately represent the contin-

uous bond at this interface. A harmonic load is applied to the rail at x = 0 at 15Hz

and 200Hz (i.e. the limits of the frequency range of interest) and the displacement

response is calculated along four horizontal lines 15 meters above the tunnel extend-

ing perpendicular to the tunnel axis as depicted in Figures 3.12 and 3.13. The effect

of circumferential nodal density (nodes/circumference or N/C) and the half length of

the model (xmax) are illustrated in the figures. Three representative sets of parameters

are shown in comparison to the continuous PiP solution. The results are deemed to

converge when refining the parameters results in less than a 1% relative difference at

any x-location from the previous case; convergence was found to occur using 32 nodes

per circumference with xmax = 40m. As shown in Figures 3.12 and 3.13 these model

parameters result in predictions which agree well with the continuous PiP solution at

the given locations and frequencies. The maximum difference between the two model

predictions is 0.1dB which occurs at y=15m and 15Hz (Figure 3.12(d)).

The vertical rms particle velocities over the observation plane are predicted by the

void-free discrete model using N/C = 32 and xmax = 40m. The results for the 25Hz,

50Hz, 100z and 160Hz third-octave frequency bands are shown in Figure 3.14 as a rep-

resentative sample of the results; results are plotted in dB(rms, ref 1 m/s) when the

moving load is at x=0. These results are compared to the PiP prediction in Figure 3.15
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(a) Origin (0,0) (b) Origin (5,0)

(c) Origin (10,0) (d) Origin (15,0)

Figure 3.12: Validation of discrete model against PiP at 15Hz; three test cases shown for varying node
density around the tunnel circumference (N/C) and axial length (xmax)
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(a) Origin (0,0) (b) Origin (5,0)

(c) Origin (10,0) (d) Origin (15,0)

Figure 3.13: Validation of discrete model against PiP at 200Hz; three test cases shown for varying node
density around the tunnel circumference (N/C) and axial length (xmax)



3. VOIDS AT THE TUNNEL-SOIL INTERFACE 55

where the difference between the two models are plotted in dB for the same four fre-

quency bands; a positive difference signifies the discrete model predicts larger values

than PiP.

The results from the two models show good agreement at all frequency bands. The

maximum difference is (+0.9,-0.7)dB occurring at the 25Hz frequency band shown in

Figure 3.15(a); differences at higher frequency bands are significantly lower (< 0.1dB).

The larger error at the low frequency band is attributed to the truncation of the longest

wavelengths by the reduced model length xmax = 40m, hence the areas of greatest error

occur at large x-values rather than at the center of the model. This relatively small

difference between two different numerical models suggest the discrete model is valid

for a continuously coupled tunnel-soil interface. The final section considers the same

tunnel-soil parameters but with the inclusion of a void.

3.3 Simulating voids using the discrete model

To quantify the effect of a void on vertical response compared to a continuously bonded

model a number of different void configurations are investigated; Table 3.4 lists the void

parameters. A schematic showing the tunnel, observation plane, moving load and void

placement is presented in Figure 3.16 with a schematic showing the void parameters in

Figure 3.17. For all cases the void is centered on the top of the tunnel at (x,y) = (0,0)

in the observation plane.

As an example of the response due to a moving load, the discrete model is used to

predict the vertical particle velocity response for the case of a 4m × 90.0◦ void (VA-3)

subjected to a moving point-load oscillating at 100Hz. The nine figures presented in

Figure 3.18 represent the response as the load position (LP) moves from left to right

through the tunnel (-12m → 12m in 3m intervals). When the load is relatively far

from the void (LP1 - LP2) the response is symmetric in both the x and y directions

and seemingly unaffected by the presence of the void. As the load approaches the void
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.14: Discrete model response for no void at 25Hz, 50Hz, 100Hz and 160Hz third-octave fre-
quency bands; response in rms velocity (dB, ref 1 m/s)
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.15: Difference between discrete model and PiP response for no void at 25Hz, 50Hz, 100Hz and
160Hz third-octave frequency bands; response in rms velocity (dB, ref 1 m/s)
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Figure 3.16: Schematic showing void at tunnel-soil interface and observation plane centered over the
tunnel at height 15m

Table 3.4: Void parameters - sensitivity to void length (VL) and void sector angle (VA)

Case Void Sector Void Length
Angle (◦) (m)

VL-1 67.5 2
VL-2 67.5 4
VL-3 67.5 6
VL-4 67.5 8

VA-1 45.0 4
VA-2 67.5 4
VA-3 90.0 4
VA-4 112.5 4

location the response around the void location begins to change, as seen in the loss of

x-direction symmetry developing at LP3. This void effect remains visible through LP7

until the load is again sufficiently far away such that the void has little effect on the

predicted particle velocity.

To better illustrate the effect of the void the insertion gain is calculated for the same

case as shown in Figure 3.19. Insertion gain is defined as the difference of the results

for the void model (in dB) and the continuously coupled discrete model (in dB) at the

same observation points and is reported in dB(rms, ref 1 m/s); a positive insertion

gain signifies an increase in rms particle velocity due to the presence of a void at the

tunnel-soil interface. The benefit of using the insertion gain method is seen at LP1
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Figure 3.17: Close-up schematic of the void showing the void parameters

where a void-effect is visible even when the moving load is relatively far from the void

location (compare to LP1 in Figure 3.18 where there is little evidence of disturbance due

to the void). There is a distinctive “wake-effect” which causes small areas of velocity

reduction by up to approximately 2.3dB, as well as a wave energy localization behind

the tunnel causing an increase of approximately 3.1dB. The effect of the void increases

as the moving load approaches the void location. The average insertion gain over the

observation plane reaches a maximum when the load is directly under the void (LP5)

with areas of (-3.4,+4.2)dB in the near-field of the void.

This case study suggests the void has a significant effect when the load is directly

under the void as well as a moderate effect when the load is relatively far from the void.

As the average IG value reaches a maximum when the load is directly under the void,

results for the void sensitivity studies will be presented for this load location only. It

should be noted that the wake-effect is present in all cases when the load is reasonably

far from the void location. The results for the two sensitivity studies are presented in

the following subsections: void length sensitivity and void sector angle sensitivity.

3.3.1 Results for Void Length Sensitivity Study

The effect of void length on vertical rms velocity response at different third-octave

frequency bands is investigated for a 67.5◦ sector angle using four void lengths: 2, 4, 6

and 8m (see Table 3.4). The observation plane responses are presented in Figures 3.20

to 3.23.
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Figure 3.18: Particle velocity response in dB(rms, ref 1 m/s) for case VA-3 at h =10m as load moves
along tunnel invert
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Figure 3.19: Insertion gain response in dB(rms, ref 1 m/s) for case VA-3 at h =15m as load moves along
the tunnel invert; the highest levels of insertion gain occur at load point 5, when the load is directly
under the void location
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.20: Insertion gain response in dB(rms, ref 1 m/s) for case VL-1 (2m × 67.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.21: Insertion gain response in dB(rms, ref 1 m/s) for case VL-2 (4m × 67.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.22: Insertion gain response in dB(rms, ref 1 m/s) for case VL-3 (6m × 67.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.23: Insertion gain response in dB(rms, ref 1 m/s) for case VL-4 (8m × 67.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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Table 3.5: Peak vertical insertion gain (IG) for void length sensitivity study at 25Hz, 50Hz, 100Hz and
160Hz frequency bands measured in dB(rms, ref 1 m/s)

Case 25Hz 50Hz 100Hz 160Hz

VL-1 (-0.0,+0.1) (-0.3,+0.5) (-1.3,+1.5) (-0.9,+3.3)
VL-2 (-0.0,+0.2) (-1.7,+2.0) (-0.9,+2.7) (-3.4,+8.5)
VL-3 (-0.0,+0.4) (-2.2,+2.6) (-1.4,+3.4) (-5.2,+8.3)
VL-4 (-0.0,+0.4) (-1.5,+2.8) (-3.4,+3.9) (-5.6,+8.1)

A trend common in all frequency bands is the IG magnitude increases as the length

of the void is increased. For example, the peak IG values at the 100Hz frequency band

increase from (-1.3,+1.5)dB for case VL-1 to (-3.4,+3.9)dB for case VL-4. Table 3.5 lists

the peak insertion gains for the four cases at the frequency bands listed. Furthermore,

the density of increased IG values increases with void length; only small areas of insertion

gain with magnitude greater than 1dB are visible in the 50Hz frequency band for case

VL-1 while the bulk of the observation plane has IG magnitudes greater than 1dB for

case VL-4 with substantial areas of 2dB or more.

This variation in response with void length is attributed to how the vibration energy

is transformed into pressure and shear-waves when a void is present at the tunnel-soil

interface. Since there is no force transmission at the void site, motion of the tunnel at

this location will not directly result in wave propagation. Figure 3.24 shows the vertical

response of the tunnel for a void-free case at 25Hz and 160Hz. The average wavelength

at 25Hz is approximately 13m while at 160Hz it is approximately 5m. For case VL-1

the void is only 2m long which is relatively small compared to the 25Hz wavelength

thus it has little effect on the response at the observation plane (Figure 3.20(a)); the

bulk of the wavelength bridges the void. At 160Hz the void length is more substantial

relative to the wavelength thus is has a greater effect (Figure 3.20(d)); the void accounts

for almost half a wavelength thus a significant amount of energy is not transmitted to

the soil above the tunnel resulting in peak IG values of (-0.9,+3.3)dB. The lack of force

transmission at the void results in higher interface forces elsewhere around the tunnel

thus energy localization in the wavefronts occurs relative to the void-free case. This
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Figure 3.24: Vertical response of tunnel at 25Hz and 160Hz

explains why the void causes IG losses at some locations (no force transmission across

the void) and IG increases at others (energy localization to other areas of the tunnel-soil

interface). However, as the void length is relatively small compared to the wavelengths

the effect is mainly constrained to the near-field response (i.e. the area over the void).

For case VL-4 the void length is 8m; this is a substantial amount of the low frequency

wavelength thus the insertion gain is more significant than in the VL-1 case. However,

the IG is still less than 1dB which is relatively small and within the error range of

the model (see Section 3.2). The 8m void is large compared to the 160Hz wavelength

thus a large amount of vibrational energy is not transmitted through the top of the

tunnel-soil interface compared to the void-free case. The result is peak insertion gains

of (-5.6,+8.1)dB. This is a significant change compared to the void-free case. Also

the effect of the void extends further into the far-field of the observation plane as a

significant amount of vibrational energy has to be redistributed around the tunnel-soil

interface due to the length of the void.

3.3.2 Results for Void Sector Angle Sensitivity Study

The effect of void sector angle on vertical rms velocity response at different third-octave

frequency bands is investigated for a 4m void length using four void sector angles: 45◦,
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Table 3.6: Peak vertical insertion gain (IG) for void sector angle sensitivity study at 25Hz, 50Hz, 100Hz
and 160Hz frequency bands measured in dB(rms, ref 1 m/s)

Case 25Hz 50Hz 100Hz 160Hz

VA-1 (-0.0,+0.1) (-0.6,+0.9) (-0.7,+2.2) (-1.9,+7.3)
VA-2 (-0.0,+0.2) (-1.7,+2.0) (-0.9,+2.7) (-3.4,+8.5)
VA-3 (-0.0,+0.5) (-2.8,+2.4) (-1.0,+3.1) (-3.2,+9.8)
VA-4 (-0.1,+0.9) (-3.4,+2.6) (-1.0,+3.4) (-2.0,+10.9)

67.5◦, 90◦ and 112.5◦ (see Table 3.4). The observation plane responses are presented in

Figures 3.25 to 3.28.

Again a common trend in all frequency bands is the increase in IG magnitude as

the sector angle of the void is increased. For example, the peak IG values at the 100Hz

frequency band increase from (-0.7,+2.2)dB for case VA-1 to (-1.0,+3.4)dB for case

VA-4. Table 3.6 lists the peak insertion gains for the four cases at the given frequency

bands. However, unlike the void length study, the density of insertion gain over the

observation plane does not largely depend void sector angle, especially in the higher

frequency bands. The 160Hz frequency band response tends to grow in magnitude as

the void angle is increased (Figures 3.25(d) to 3.28(d)) while the distribution remains

relatively constant.

This response is again attributed to the disruption of force transmission between the

tunnel and the soil at the void location, but in the case of the void sector angle the

response around the circumference of the tunnel is deemed to be the governing factor.

Figure 3.29 shows the radial response of the tunnel at x=0 for a void-free case at 25Hz

and 160Hz. The average circumferential wavelength at 25Hz is approximately 360◦ while

at 160Hz it is approximately 50◦.

For case VA-1 the void sector angle is 45◦ which is relatively small compared to

the wavelength at 25Hz. In a similar fashion to the VL-1 case, the wavelength bridges

the void which essentially negates its presence. At 160Hz the void angle is basically

the same as the circumferential wavelength thus a large portion of the vibration energy

is not transmitted through the top of the tunnel-soil interface resulting in significant
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.25: Insertion gain response in dB(rms, ref 1 m/s) for case VA-1 (4m × 45◦) at four represen-
tative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.26: Insertion gain response in dB(rms, ref 1 m/s) for case VA-2 (4m × 67.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.27: Insertion gain response in dB(rms, ref 1 m/s) for case VA-3 (4m × 90◦) at four represen-
tative third-octave frequency bands; moving load at x=0
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(a) 25Hz frequency band (b) 50Hz frequency band

(c) 100Hz frequency band (d) 160Hz frequency band

Figure 3.28: Insertion gain response in dB(rms, ref 1 m/s) for case VA-4 (4m × 112.5◦) at four repre-
sentative third-octave frequency bands; moving load at x=0
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Figure 3.29: Radial response of tunnel at x=0 for 25Hz and 160Hz

insertion gains with peak values of (-1.9,+7.3)dB.

By case VA-4 the void sector angle is 112.5◦ which is a significant void for all fre-

quency bands. As in the void length study, the void has little effect on observation

plane response for the 25Hz frequency band (< 1dB) even at this large void angle; the

insertion gain at higher frequency bands is significant, reaching a peak of (-2.0,+10.9)dB

for the 160Hz frequency band.

3.4 Conclusions

A semi-analytical model is developed to investigate the effect of voids around an under-

ground railway tunnel on ground vibration. The method derives the discrete transfer

functions for the tunnel and soil from the Pipe-in-Pipe continuous solution. The void is

simulated by uncoupling the appropriate nodes to prevent the transfer of force between

the tunnel and the soil. A number of void geometries are investigated to determine how

sensitive the vertical response of the soil is to changes in void size. The results from

this investigation show that relatively small voids (4m × 90◦) can significantly affect the

rms velocity predictions at higher frequencies (peak insertion gain: (-3.4,+8.5)dB for

160Hz frequency band) while they have less effect at lower frequencies (peak insertion

gain: (-1.7,+2.0)dB for 50Hz frequency band). The sensitivity to void length and void
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sector angle was also investigated and results suggest that rms velocity predictions are

sensitive to both parameters. The findings from this study suggest that the uncertainty

associated with assuming a perfect bond at the tunnel-soil interface in an area with

known voidage can reasonably reach ±5dB for frequencies between 100-200Hz and thus

should be considered in the design process.



Chapter 4

The Homogeneous Soil Assumption

Arguably the most important component to any ground vibration simulation is the defi-

nition of the soil domain. Both the material properties assigned to the soil (i.e. stiffness,

damping, homogeneous vs. inhomogeneous, etc.) and the defined geometry (i.e. fullspace

vs. halfspace, layering, inclusions, voids, etc.) have a significant effect on the final pred-

ication of the model. However, it is common in the literature reviewed to find the

soil is often greatly simplified as a homogeneous halfspace or a horizontally layered

halfspace. This chapter attempts to quantify the amount of uncertainty that may be

introduced into a simulation when such simplifying assumptions are employed for the

three cases discussed in Chapter 2: inclined soil layering (Section 2.4.1), subsiding soil

layers (Section 2.4.2), and soil inhomogeneity (Section 2.4.3). To investigate these cases

a semi-analytical model employing the thin-layer method (TLM) is developed which is

shown to be both accurate and computationally efficient.

4.1 The Thin-Layer Method

The thin-layer method (TLM) is a semi-analytical approach to solving ground vibration

problems in a halfspace. The semi-infinite soil is discretized in the vertical direction

into a finite number of thin-layers where the displacement across each layer is assumed

75



4. THE HOMOGENEOUS SOIL ASSUMPTION 76

to vary linearly. The analytical wave equation is used in the horizontal direction which

allows layers of any horizontal length (i.e. finite or infinite) to accurately predict har-

monic displacement without suffering from the element aspect-ratio restrictions of the

finite element method. The TLM model is comprised of three element types which are

described in the following sections: semi-infinite elements, halfspace elements and hy-

perelements. For verification a TLM model of a surface load on a halfspace and tunnel

loading in a halfspace are validated against analytical and boundary element methods.

The thin-layer method is derived herein for a plane-strain problem. This approach

is selected because the model will be used to determine relative differences between

different soil assumptions; Andersen and Jones have shown plane-strain models to be

acceptable for this type of comparison [5]. The TLM model could be extended to 2.5D

in a manner similar to those discussed in Section 2.3.3.4 but was deemed unnecessary

for the current investigation.

4.1.1 Semi-infinite region open to the right

The Navier equation governing motion for homogeneous, isotropic, linear elastic bodies,

is given by Graff [47] as

µ∇2u + (λ + µ)∇∇ · u + ρb = ρü (4.1)

where u is the displacement vector in the x, y, and z-directions, µ and λ are Lame’s con-

stants of the solid, ρ is the density of the solid, and b is the body load vector. Consider

the layered soil system depicted in Figure 4.1. The layer interfaces represent discontinu-

ities in material properties in the vertical direction or artificial discretization necessary

to meet the formulation requirements outlined below. Using the Cartesian coordinate

system depicted in the figure and assuming plane-strain conditions and harmonic motion

with no body loads, Equation 4.1 can be written for each layer as
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Figure 4.1: Typical layered region (plane-strain)

Gj

(
∂2ux

∂x2
+

∂2ux

∂z2

)
+ (λj + Gj)

(
∂2ux

∂x2
+

∂2uz

∂x∂z

)
+ ρjω

2ux = 0 (4.2a)

Gj

(
∂2uz

∂x2
+

∂2uz

∂z2

)
+ (λj + Gj)

(
∂2ux

∂x∂z
+

∂2uz

∂z2

)
+ ρjω

2uz = 0. (4.2b)

Equations 4.2a and 4.2b are coupled, governing motion in the x-z plane. Only in-plane

loading conditions will be considered thus the solution will be independent of y. The

plane-strain condition εzz = 0 and rigid constraint at the base in Figure 4.1 prevents

any motion in the y-direction.

The dynamic displacement of any point in the x-z plane is assumed harmonic and

described as

ux = qx(x, z)eiωt (4.3a)

uz = qz(x, z)eiωt. (4.3b)
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Assuming separation of variables

qx(x, z) = u(z)g(x) (4.4a)

qz(x, z) = w(z)g(x) (4.4b)

leads to the coupled ordinary differential equations

(
k2(λj + 2Gj)− ω2ρj

)
u−Gj

d2u

dz2
+ ik(λj + Gj)

dw

dz
= 0 (4.5a)

(
k2Gj − ω2ρj

)
w − (λj + 2Gj)

d2w

dz2
+ ik(λj + Gj)

du

dz
= 0 (4.5b)

for each of the n layers, j = 1, 2, . . . , n and the differential equation

d2g

dx2
+ k2g = 0. (4.6)

A solution to Equation 4.6 is

g(x) = e−ikx (4.7)

thus the displacements in the layered region can be expressed as

ux = u(z)e(iwt−ikx) (4.8a)

uz = w(z)e(iwt−ikx). (4.8b)

The mode shapes u(z) and w(z) are determined by Equations 4.5 and by satisfying the

continuity of stress and strain at the layer interfaces, zero stress at the free surface and

zero displacement at the base. This problem consists of 2n simultaneous equations with

coefficients containing the eigenvalue k2 in the argument of the transcendental functions.

Solving these equations analytically for even a simple halfspace is quite difficult; layered

regions generally require numerical searching methods to find a solution.



4. THE HOMOGENEOUS SOIL ASSUMPTION 79

Waas [155] suggested treating the layered region as a continuum in the horizontal

direction but to discretize in the vertical direction by assuming that u(z) and w(z) in

Equations 4.8 vary linearly within each layer. Using a virtual work method Equation 4.5

may be written in matrix notation as

(
Ak2 + iBk + C

)
v = 0 (4.9a)

where

C = G− ω2M. (4.9b)

The vector v contains the displacements vj in the x-direction (j = 1, 3, . . . , 2n − 1)

and z-direction (j = 2, 4, . . . , 2n) for the n layers. The 2n × 2n matrices A, B, G

and M consist of the contributions from the n individual layers and are assembled

using standard FE stiffness matrix addition as depicted in Figure 4.2 (the frequency

ω is a given parameter). The submatrices used to construct Equation 4.9 are given in

Equations 4.10.
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Aj =
hj

6




2(2Gj + λj) 0 (2Gj + λj) 0

0 2Gj 0 Gj

(2Gj + λj) 0 2(2Gj + λj) 0

0 Gj 0 2Gj




(4.10a)

Bj =
1

2




0 (Gj − λj) 0 (Gj + λj)

−(Gj − λj) 0 (Gj + λj) 0

0 −(Gj + λj) 0 −(Gj − λj)

−(Gj + λj) 0 (Gj − λj) 0




(4.10b)

Gj =
1

hj




Gj 0 −Gj 0

0 (2Gj + λj) 0 −(2Gj + λj)

−Gj 0 Gj 0

0 −(2Gj + λj) 0 (2Gj + λj)




(4.10c)

Mj =
ρjhj

6




2 0 1 0

0 2 0 1

1 0 2 0

0 1 0 2




(4.10d)

For any given frequency, Equation 4.9a has a non-trivial solution v if and only if

∣∣Ak2 + iBk + C
∣∣ = 0. (4.11)

This results in a quadratic-eigenvalue problem in k, where k defines the possible wave
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Figure 4.2: Matrix addition scheme

numbers for the layered region and can have eigenvalues which are

• complex: a wave travelling in the x-direction with decaying or increasing amplitude

depending on the sign of the imaginary part

• purely real: a wave travelling in the x-direction with constant magnitude

• purely complex: a stationary wave varying exponentially in the x-direction

• null (i.e. k=0): one-dimensional standing wave.

Simulations in this study always contain soil damping which will attenuate the waves

thus purely real and null eigenvalues will not occur. In general, the solution will consists

of 4n eigenvalues: 2n solutions with positive imaginary parts representing waves travel-

ling in the negative x-direction with decaying magnitude, and 2n solutions with negative

imaginary parts representing waves travelling in the positive x-direction with decaying

magnitude. For the example depicted in Figure 4.1 only waves travelling away from

the vertical boundary at x=0 are necessary (i.e. the waves travel into the semi-infinite



4. THE HOMOGENEOUS SOIL ASSUMPTION 82

medium without reflection). As such only the eigenvalues with negative imaginary parts

are retained for the solution to this 2n degree-of-freedom problem.

The displacements in the layered region can be written as a modal summation of

selected wave numbers ks as follows

u =
2n∑

s=1

αsvse
(iwt−iksx) (4.12)

where αs are the mode shape participation factors which can be determined using the

system boundary conditions and vs are the associated mode shapes. Comparing Equa-

tion 4.12 to 4.8, the displacements of the nodal points at the boundary x = 0 can be

written

uR(z) =
2n∑

s=1

αsvs = Vα. (4.13)

The matrix V is the 2n× 2n modal matrix containing the mode shapes (columnwise),

while uR(z) and α are column vectors of size 2n. The superscript R in uR signifies the

solution is for a semi-infinite layer open to the right.

Using the stress and strain compatibility conditions at x = 0 for all layers, the total

force acting at each node can be written as [155]

PR(z) = (iAVK + DV) α (4.14)

in which PR(z) is a 2n column vector containing the nodal forces, K is a diagonal matrix

containing the wave numbers ks, s = 1, 2, . . . , 2n, and D is a 2n×2n matrix constructed

as before using the submatrix

Dj =
1

2




0 λj 0 −λj

Gj 0 −Gj 0

0 λj 0 −λj

Gj 0 −Gj 0




. (4.15)
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Substitution of Equation 4.13 into 4.14 gives

PR = RuR (4.16)

where

R = iAVKV−1 + D. (4.17)

The 2n×2n matrix R is the modal dynamic stiffness matrix of the semi-infinite layered

region (open to the right) for the nodes located along the boundary x = 0.

The displacement at each layer interface for any value of x can be found by combining

Equations 4.12 and 4.13

u(x, z) = VEV−1uReiωt (4.18a)

where

E = diag
[
e−iksx

]
s = 1, 2, . . . , 2n. (4.18b)

A major assumption used in deriving the thin-layer method is the parameter linear-

ity in the vertical direction of each element (see Equation 4.9). For this assumption to

be valid the height of each element must be small compared to the shear-wavelength

of the solid. The effect of element thickness on predicted vibration is investigated in

Section 4.1.6 during the TLM model validation to determine an appropriate discretiza-

tion.

4.1.2 Semi-infinite region open to the left

The method for determining the dynamic stiffness matrix for a layered region open to

the left L is analogous to that of the right region. Assuming the layer properties are

equivalent, the only difference between the two regions is their positions with respect

to the coordinate system shown in Figure 4.1. Thus the dynamic stiffness matrix of a
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semi-infinite region open to the left L may be computed from Equation 4.17 by changing

the sign on all the coefficients relating horizontal forces to vertical displacements or vice-

versa, or simply

L = TRT (4.19)

where

T =




−1 0

1

. . .

−1

0 1




. (4.20)

The dynamic stiffness matrix for the left region can also be derived by consider-

ing leftward propagating waves. The structure of the quadratic eigenvalue problem

Equation 4.11 is such that if k is an eigenvalue with corresponding eigenvector v, where

vT = (v1, v2, v3, v4, . . . , v2n−1, v2n) (4.21)

then −k is also an eigenvalue with corresponding eigenvector

ṽT = (−v1, v2,−v3, v4, . . . ,−v2n−1, v2n) . (4.22)

which is obtained from v by changing the sign of the horizontal components of the

modeshape (i.e. ṽ = Tv) [155]. This new set of eigenvalues and eigenvectors are in fact

the other 2n solutions to the quadratic eigenvalue problem (Equation 4.11) describing

waves travelling in the negative x-direction which were discarded in Section 4.1.1. For

the remainder of this work all parameters marked with a tilde (∼) will be associated

with waves travelling in the negative x-direction.

The dynamic stiffness matrix for the left region constructed using these new eigen-
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vectors is

L = iAṼKṼ−1 −D (4.23)

and the displacement at any value of x is found using

u(x, z) = ṼẼṼ−1uLeiωt (4.24a)

where

Ẽ = diag
[
e−ik̃sx

]
s = 1, 2, . . . , 2n.. (4.24b)

Note that up to this point the eigenvectors V and Ṽ have not been normalized.

This is acceptable since all derivations using the eigenvectors (i.e. deriving R, L, u,

etc.) require premultiplication of the eigenvector matrix and postmultiplication by its

inverse which negates any scaling factor. If desired the eigenvectors can be normalized

using the standard eigenvector orthogonality condition [155].

4.1.3 Thin-Layer Method Extension for Layered Media on a

Halfspace

The TLM derivation outlined above uses a fixed base boundary condition simulating

rigid bedrock. Although this is a useful formulation, some ground vibration problems

require the ability to investigate the response of layered media resting on a halfspace.

To use the thin-layer method with a halfspace an absorbing boundary on the base of

the vertically-finite TLM domain is necessary such that a vertically-infinite domain can

be simulated, as depicted in Figure 4.3.

The exact impedance matrix relating the tractions and displacements on the surface

of a homogeneous halfspace (i.e. the “perfect” absorbing boundary) is derived by Kausel
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Figure 4.3: Layered region R on a homogeneous halfspace (plane-strain)

and Roësset [77] as

K = 2kG


 1− s2

2(1− rs)




r −1

−1 s







0 −1

−1 0





 (4.25a)

r =

√
1− ω2

k2c2
p

(4.25b)

s =

√
1− ω2

k2c2
s

(4.25c)

where k is the horizontal wave number, ω is the frequency, and cs and cp are the wave

velocities of the shear and pressure waves respectively; this formulation is derived using

the “stiffness matrix approach”. The impedance matrix in its current form does not

lend itself to implementation into the thin-layer method approach as it would result in

a transcendental equation in k.

Kausel later demonstrated [57] that the elastic wave equation for a halfspace in plane

strain can be approximated by expanding Equation 4.25a using a Taylor series about
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k = 0 and retaining the first three terms

K = iωρcp




γ 0

0 1


 +

G(1− 2γ)k

γ




0 −1

−1 0


 +

iGcsk
2

2ωγ3




γ3 − 2γ 0

0 i− 2γ


 (4.26)

where γ is the ratio of shear to pressure wave speed
cs

cp

. Andrade [7] extended this idea to

be used with the thin-layer method resulting in the derivation of the halfspace element.

Consider the layered region resting on a homogeneous halfspace depicted in Figure 4.3.

The layered region is discretized in the vertical direction into thin layers; the halfspace

is not discretized. Displacements are again assumed to vary linearly across each thin

layer resulting in the quadratic eigenvalue problem

(
Ak2 + iBk + C

)
v = 0 (4.27a)

where

C = G− ω2M (4.27b)

which is the same as before (see Equation 4.9). The matrices A, B and C are formed

using the same submatrices defined in Equations 4.10 with one exception: rather than

neglecting the last two rows and columns of the nth layer the entire [X]n submatrix is

used and the halfspace submatrix is added to the final two degrees-of-freedom as depicted

in Figure 4.4. The size of each matrix is thus increased by two degrees-of-freedom

compared to the rigid bedrock case ((2n + 2)× (2n + 2)) to account for the horizontal

and vertical displacements of the halfspace surface. The halfspace submatrices are given

below
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Figure 4.4: Matrix addition scheme including halfspace submatrix

Ahs =
iGcs

2ωγ3




(γ − 2)γ2 0

0 (1− 2γ)


 (4.28a)

Bhs =
G(1− 2γ)

γ




0 −1

1 0


 (4.28b)

Chs = iωρ




cs 0

0 cp


 (4.28c)

Dhs =
G(1− 2γ)

γ




0 1

−1 0


 . (4.28d)

Using the stress and strain compatibility conditions at x = 0 for all layers as before,
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the dynamic stiffness matrix for the semi-infinite layered region on a halfspace (open to

the right) can be written as

R = iAVKV−1 + D (4.29)

where R is now (2n + 2) × (2n + 2). The derivation for the dynamic stiffness matrix

of the left region L in Section 4.1.2 also remains valid when used with the extended

halfspace matrices.

As in the semi-infinite derivation, a major assumption is used in the derivation of the

halfspace element. The Taylor expansion about k = 0 (see Equation 4.26) assumes that

the incoming wave fronts are parallel to the surface of the halfspace. For this assumption

to be valid the halfspace elements must be reasonably far from external sources such

that the curvature of the wavefronts is relatively large. The effect of halfspace element

placement on predicted vibration is investigated in Section 4.1.6 during the TLM model

validation to determine an appropriate model depth.

4.1.4 Thin-Layer Method Extension for Hyperelements

The TLM semi-infinite elements and halfspace elements provide a computationally ef-

ficient means of simulating a horizontally layered halfspace. A major limitation is how

external loading can be applied to the system. As show in Figure 4.5, the TLM halfspace

only has nodes along the vertical seam between the semi-infinite regions to which exter-

nal loads can be applied. This does not allow accurate coupling of structures such as an

underground railway tunnel where the external surface of the tunnel must be coupled to

the surrounding soil. Furthermore, it would not be possible to easily consider soil inho-

mogeneity such as inclined layers, subsiding soil layers and random soil properties using

semi-infinite elements. A finite length TLM element is necessary for such examples.

Kausel and Roësset [76] derived the formulation for a TLM hyperelement (i.e. an

element of finite length) by accounting for waves traveling in both directions through

the layer due to nodal loading at both edges of the element. Consider the finite section of



4. THE HOMOGENEOUS SOIL ASSUMPTION 90

Figure 4.5: Example of an underground tunnel in a thin-layer model meshed with semi-infinite elements;
the nodes along the semi-infinite seam do not match up with the exterior nodes of the tunnel

Figure 4.6: Layered finite region on rigid bedrock (plane-strain)

horizontally layered stratum resting on rigid bedrock as shown in Figure 4.6. Harmonic

loads PL and PR are applied along the boundaries BL and BR at frequency ω. As with

the standard thin-layer method, the thickness of each thin layer is defined by hj. The

intersection of the layer boundaries with the vertical boundaries defines two sets of n

nodes where each node has x and z degrees of freedom (uL and uR).

The derivation of the quadratic eigenvalue problem used for the semi-infinite elements

still holds (Equations 4.1 to 4.11); recall the governing equation of motion for the layered
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region
(
Ak2 + iBk + C

)
v = 0. (4.30)

As before, the solution to this eigenvalue problem consists of 4n eigenvalues: 2n solutions

ks with negative imaginary parts and associated eigenvectors vs corresponding to waves

propagating in the positive x-direction and 2n solutions k̃s with positive imaginary

parts and associated eigenvectors ṽs corresponding to waves propagating in the negative

x-direction (s = 1, 2, . . . , 2n).

Recall that in matrix form the eigenvalues and eigenvectors describing waves trav-

elling in the positive x-directions are termed K and V, respectively; K is a 2n × 2n

diagonal matrix comprised of ks values and V is a 2n×2n matrix containing the eigenvec-

tors columnwise. The eigenvalues and eigenvectors for waves travelling in the negative

x-directions are termed K̃ and Ṽ, where

K̃ = −K (4.31a)

and

Ṽ = TV. (4.31b)

To determine the nodal displacements at the vertical boundaries, the contributions

from both sets of boundary loads must be superimposed. Consider the nodal displace-

ments on the left boundary of Figure 4.6. Equation 4.12 describes the contribution due

to the left boundary loads PL whilst a combination of Equations 4.12 and 4.18 describe

the contribution due to the right boundary loads PR

uL = VαL + ṼẼLαR (4.32a)

where

ẼL = diag
[
e−ik̃s(−L)

]
(4.32b)
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in which L is the distance between the lateral boundaries BL and BR, and αL and αR

are the modal participation factors corresponding to waves travelling in the positive and

negative x-directions, respectively. Note that Ṽ is used for the PR contribution since

the waves must travel in the negative x-direction to reach the BL boundary. Similarly,

the nodal displacements on the right boundary are

uR = VELαL + ṼαR (4.33a)

where

EL = diag
[
e−iksL

]
(4.33b)

Note that k̃s = −ks, thus EL = ẼL. Combining Equations 4.32 and 4.33 results in the

coupled equations 



uL

uR





=




V ṼEL

VEL Ṽ








αL

αR





. (4.34)

The stress and strain compatibility conditions at the two vertical boundaries are

imposed as before (see Equation 4.14), resulting in the governing equation





PL

PR





=




AVK + DV −(AṼK−DṼ)EL

−(AVK + DV)EL AṼK−DṼ








αL

αR





. (4.35)

After some algebra it is possible to show that combining Equations 4.34 and 4.35 results

in [76] 



PL

PR





= Shyper





uL

uR





(4.36a)

where

Shyper =




R1 R2

R̃2 R̃1


 (4.36b)
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and

R1 = (R + L)
(
I− J̃J

)−1

− L (4.36c)

R2 = − (R1 + L) J̃ (4.36d)

R̃1 = TR1T (4.36e)

R̃2 = TR2T (4.36f)

J = VELV
−1 (4.36g)

J̃ = TJT (4.36h)

I = the identity matrix. (4.36i)

Note these equations all hold true when the halfspace elements are added in the sub-

matrices as described in Section 4.1.3.

The displacement at an arbitrary point x within the hyperelement can be found

using the contributions from the nodal displacements acquired above. Designate the

distance between the boundaries at which the displacements are desired by ζ = x− xL

and furthermore

Eζ = diag
[
e−iksζ

]
(4.37a)

EL−ζ = diag
[
e−iks(L−ζ)

]
. (4.37b)

The displacement at ζ is then a superposition of the contributions from both boundaries

uζ = VEζα
L + ṼEL−ζα

R. (4.38)

Combining Equations 4.38 with 4.34 and 4.35 results in [76]

uζ =

[
Jζ J̃L−ζ

]



I −J̃

−J I







(
I− J̃J

)−1

0

0
(
I− JJ̃

)−1







uL

uR


 (4.39a)
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Figure 4.7: Schematic of a basic TLM model simulating a homogeneous halfspace

where

Jζ = VEζV
−1 (4.39b)

JL−ζ = VEL−ζV
−1 (4.39c)

J̃L−ζ = TJL−ζT. (4.39d)

4.1.5 Constructing a model using the thin-layer method

The four previous sections detail the derivation of the dynamic stiffness matrices for

semi-infinite elements, halfspace elements and hyperelements. Constructing a model

using these elements is a simple case of standard FE addition. Consider the basic model

of a halfspace shown in Figure 4.7 built up of two semi-infinite regions, a half-space

region and ten columns of hyperelements. The resulting total system dynamic stiffness

matrix is block-tridiagonal as shown in Figure 4.8, where each submatrix Sm
hyper is the

stiffness matrix for the mth column of hyperelements including the halfspace element;

the outer most quadrants also include the stiffness of the semi-infinite element regions.

The total system of coupled equations is thus

P = Stotalu (4.40)

where P is a vector describing the externally applied nodal loads and u is a vector
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Figure 4.8: Matrix addition scheme for thin-layer elements

describing the nodal displacements. This is a standard system of equations and can

be solved using matrix inversion, although this is computationally expensive. A more

efficient approach is to use a Thomas algorithm [18] which utilizes the block-tridiagonal

nature of the stiffness matrix to perform a simplified Gaussian elimination; a description

of the Thomas algorithm is provided in Appendix B. The benefit of the algorithm is

that it only requires the inversion of a few of the quadrants of the submatrices, which

are orders of magnitude smaller than the total stiffness matrix, making the solution

significantly less computationally expensive.

4.1.6 TLM Model Validation for a Surface Load

Before the TLM model is used to investigate soil uncertainty it is necessary to validate

the modelling approach; the test case is a horizontally layered halfspace subjected to

a surface line load as depicted in Figure 4.9. The layer has thickness h and material

properties defined by elastic modulus E1, Poisson’s ratio ν1, density ρ1, dilation damp-

ing coefficient DP1 and shear damping coefficient DS1 ; the halfspace has properties E2,
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Figure 4.9: Validation case of harmonic unit load on surface with displacement observation point at
the layer interface and x = 10m

Table 4.1: TLM validation model parameters

Layer Halfspace

E1 = 550 MPa E2 = [0.25,1,4] × E1

ν1 = 0.44 ν2 = ν1

ρ1 = 2000 kg/m3 ρ2 = ρ1

DP1 = 0.05 DP2 = DP1

DS1 = 0.05 DS2 = DS1

ν2, ρ2, DP2 , DS2 . Table 4.1 gives the material properties used in the validation case.

The displacements are observed at the interface layer 10m horizontally from the ap-

plied load. The predicted ground vibration at the observation point is compared using

the TLM method, the analytical solution for a horizontally layered halfspace, and a

boundary-element (BE) model between 15-200Hz (using 5Hz frequency steps). The fol-

lowing subsections provide specifics regarding the three models used in the validation

comparison.

4.1.6.1 Analytical Solution to a Layered Halfspace

The analytical frequency response functions (FRF’s) for a line-load on the surface of a

horizontally layered, plane strain halfspace is derived by coupling the Green’s functions

for a homogeneous halfspace [140] and a homogeneous layer [139]; details of this derivation
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can be found in Appendix C. The final equation of motion for the validation case is

uB =
(
I + HBBG−1

BB

)−1
HBAP (4.41)

where uB (kn, ω) is the displacement vector at the layer interface in the wavenumber (kn)

and frequency (ω) domains, while P is the forcing vector applied at the surface. The

entries to the individual transfer function matrices (i.e. HBA,HBB,GBB) are rather

convoluted so for brevity they will not be reproduced here; see Appendix C.3 for details.

An inverse direct Fourier transform (iDFT) is used to determine the spatial response

at the layer interface in the x-direction using 4096 samples between ±4π resulting in

a spatial resolution of 0.25m between x = ±512m (x = 0 is directly below the surface

load). Convergence testing was done to ensure this resolution was sufficient to capture

the sharp gradients in the near-field response at the highest test frequency (200Hz) while

also extending out far enough that the response had decayed to zero before truncation

at the lowest test frequency (15Hz).

4.1.6.2 Boundary Element Model for a Layered Halfspace

As mentioned in Chapter 2, boundary element (BE) modelling is an accepted method

of simulating ground vibration problems in semi-infinite domains. The BE model used

herein is derived using the method outlined in Appendix D.

A schematic of the validation case BE model is given in Figure 4.10. As shown, only

the soil surface and layer interface are discretized using an element length of 0.2m. This

element size was selected such that the eight elements per shear-wavelength require-

ment [20] was maintained at the highest test frequency (200Hz). Except for the node at

which the unit lineload is applied, a zero-traction boundary condition is applied to the

soil surface (i.e. free-surface condition). Force equilibrium and displacement continuity

is enforced between the two regions at the layer interface.

The boundary element model is included in the validation test not to verify the
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Figure 4.10: BE model of validation case: harmonic unit load on surface with displacement observation
point at the layer interface and x = 10m

Figure 4.11: TLM model of validation case: harmonic unit load on surface with displacement observa-
tion point at the layer interface and x = 10m

TLM model but to validate the BE model itself against the analytical solution. The BE

model predictions will later be used as a benchmark for the TLM model predictions in

Section 4.2 for inclined layers.

4.1.6.3 TLM Model for a Layered Halfspace

The TLM model used for the validation test is shown in Figure 4.11. Ten columns of

10m long hyperelements are enclosed by semi-infinite regions on either side and halfspace

elements at the base.

As mentioned in Sections 4.1.1 and 4.1.3, two important assumptions were made

in deriving the thin-layer method: the height of the thin-layer elements must be small

compared to the shear-wavelength and the halfspace elements must be reasonably far
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from external loading such that the radius of the wavefronts will be large. Therefore,

the vertical discretization ∆h and total hyperelement depth hT are varied to determine

suitable values at which the TLM model has converged to the analytical solution. At

each test frequency, the vertical discretization is updated such that

∆h =
γs

∆γ

(4.42)

where γs is the shear-wavelength at the current frequency and ∆γ is varied between 4

and 20. Also, the total depth is updated such that

hT = γshγ (4.43)

where hγ is varied between 1 and 10.

4.1.6.4 Model Comparison Results

The ground displacements at the observation point (x = 10, z = 5) are displayed in

Figure 4.12 as frequency response functions (FRF’s) between 15-200Hz for a vertical

surface load. The results from the three models include FRF’s in the x-direction (Hxz)

and z-direction (Hzz) for the three layer cases where E1 = βEE2 and βE = [4, 1, 0.25].

Three representative curves from the TLM parametric study are included to illustrate

how the variables ∆γ and hγ affect the predicted response.

In all cases the boundary element model produces acceptable results; the deviation

from the analytical solution is never more than 0.6dB (ref 1m/N). The results from

the TLM parametric study show how important it is to adhere to the requirements of

the method assumptions. When a reasonably shallow and coarse vertical discretization

are used (∆γ = 6, hγ = 1) the results differ significantly from the analytical solution,

especially when the layer stiffness is equal to or less than the halfspace stiffness (see

Figures 4.12(c) to 4.12(f)). As the total depth and discretization is increased the results
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(a) Hxz (βE = 4)
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(b) Hzz (βE = 4)
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(c) Hxz (βE = 1)
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(d) Hzz (βE = 1)
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(e) Hxz (βE = 0.25)
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(f) Hzz (βE = 0.25)

Figure 4.12: Frequency Response Functions (FRF) at the observation point; response in x-direction
(Hxz) and z-direction (Hzz) due to vertical surface load
(solid - analytical solution; circle - BE solution; dotted - [∆γ = 6, hγ = 1]; dashed - [∆γ = 11, hγ = 3];
dash-dotted - [∆γ = 16, hγ = 5])
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converge towards the analytical solution. The case of ∆γ = 11, hγ = 3 produce results

similar to the analytical solution but still have areas of discrepancy (i.e. between 150-

200Hz in Figures 4.12(a) and 4.12(c)).

The parametric study of the TLM model was deemed to converge when increasing

the discretization coefficient ∆γ or total depth coefficient hγ resulted in a relative dif-

ference of less than 1% for Hzz over the frequency range. The convergent parameters

are ∆γ = 16, hγ = 5. As depicted in Figure 4.12, the TLM results using these param-

eters are consistent with the analytical results; the maximum deviation is 1.6dB. This

deviation is predominantly due to a 10Hz frequency shift in Figure 4.12(f) at higher fre-

quencies; if this shift is neglected the maximum deviation between the models is 0.8dB.

The frequency shift is attributed to the truncation assumption used in the halfspace

element; if the total depth of the model is further increased the frequency shift slowly

diminishes but results in a significant increase in computational requirements.

The computational times for the BE model and TLM model using ∆γ = 16, hγ = 5

are given in Table 4.2 for βE = 1. The TLM method is significantly quicker than

the BE model while producing results with comparable error relative to the analytical

solution. The compromise between this level of error and maintaining quick run times is

deemed acceptable for the TLM model. These parameters are used for all TLM models

throughout the rest of the investigation. It should be noted that run times for the TLM

model differ depending on the layer properties while the BE model run-times do not.

For example, the total time for the TLM βE = 0.25 case is 463 seconds due to the

increased discretization necessary to capture the shorter wavelengths in the upper layer;

however, this is still approximately 7 times quicker than the BE model.

The response along the length of the layer interface is also investigated to determine

if the models are consistent with the analytical solution along the boundary rather than

just a single point. To facilitate illustration of the results, the vibrational response is

depicted as rms velocity for the 25Hz, 50Hz, 100Hz and 160Hz third-octave frequency

bands (see Table 3.2 in Section 3.1.5 for a list of the frequency bands). The frequency
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Table 4.2: Surface load validation case run times for BE and TLM models using βE = 1

Boundary Element Thin-Layer
Model Method

Average time per 83.1 sec 4.6 sec
frequency step

Minimum time for a 81.6 sec 3.0 sec
frequency step

Maximum time for a 85.3 sec 5.6 sec
frequency step

Total time 3158 sec 175 sec

band rms velocity is calculated for a white-noise input (i.e. unit harmonic vertical load

at all frequencies between 15-200Hz) using the method of random vibrations outlined

in Section 3.1.5. For white-noise input this simplifies to

vrms(x) = 2

∫ ω2

ω1

|(iω)Hij|2 dω. (4.44)

where vrms(x) is the ω1 → ω2 frequency band rms velocity at a given surface location

x, and Hij is the transfer function describing displacement at location xi due to a load

at location xj.

The rms velocities along the layer interface are displayed in Figures 4.13 and 4.14,

respectively. The presented results from the three models include velocities in the

x-direction (horizontal) and z-direction (vertical) for βE = [4, 1, 0.25]. The rms ve-

locity results show good agreement between the three models. The maximum rms

velocity difference between the analytical response and the BE model is: 3.4dB in the

horizontal direction for the 25Hz frequency band; 1.1dB in the vertical direction for the

25Hz frequency band. The peak error occurs at distances greater than 40m from the

load site and diminishes at higher frequency bands. Recall the surface discretization

only extends to 50m either side of the load in the BEM model; past this point the BE

formulation assumes the medium is a fullspace. This discontinuity can cause reflection

of surface waves which account for the discrepancy compared to the analytical solution.

Between 0-42m, the peak rms velocity error is less than 0.5dB. Overall the BE model is
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deemed to adequately reproduce the velocity profile along the interface layer compared

to the analytical solution.

The maximum rms velocity difference between the analytical response and the TLM

model is: 4.2dB in the horizontal direction for the 160Hz frequency band; 5.3dB in the

vertical direction for the 160Hz frequency band. Again, the maximum error occurs at

relatively large x-distances; however, unlike the BE model this discrepancy occurs at

higher band frequencies. There are no artificial boundaries to cause reflections in the

TLM model thus it is not a result of truncating low frequency wavelength. This error

is attributed to the imperfect halfspace elements. The halfspace element formulation

assumes the incoming wavefield has planar wavefronts parallel to the surface of the

halfspace (see Section 4.1.3). Thus if the incident angle of the incoming wavefield is

relatively far from perpendicular there will be a reflection of some energy as shown in

Figure 4.15. Increasing the total depth of the model would decrease this effect since the

wavefront radius would be larger (i.e. decreased incident angle) and less energy would

reach the elements for reflection due to damping and geometric decay. However, the

small amount of error produced using hγ = 5 is again deemed an acceptable compromise

between accuracy and computational requirements.

In conclusion, the thin-layer method is used to simulate a horizontally layered halfs-

pace subjected to a vertical surface lineload and found to accurately predict the displace-

ment response and rms velocity at the layer interface over a frequency range of 15-200Hz.

Optimal parameters of 16 elements per minimum shear-wavelength (∆γ = 16) and a to-

tal model depth of 5 wavelengths before halfspace elements (hγ = 5) are derived from

a parametric analysis. Implementing the TLM model with these parameters produces

similar results to the analytic solution for run times of approximately 5 seconds per

frequency step. The boundary element model is also shown to accurately predict the

response of the layered halfspace, although computational times are significantly greater

than the TLM model. In the next section tunnel loading will be introduced to the three

models to complete the validation process.
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(a) 25Hz frequency band
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(b) 50Hz frequency band

−50 0 50
−190

−180

−170

−160

−150

−140

−130

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 0 50
−190

−180

−170

−160

−150

−140

−130

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 0 50
−190

−180

−170

−160

−150

−140

−130

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.13: Horizontal rms velocity along layer interface located at a depth of 5m at four frequency
bands (left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical surface load at x = 0
(solid - analytical solution; circle - BE solution; dashed - TLM solution)
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(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.14: Vertical rms velocity along layer interface located at a depth of 5m at four frequency bands
(left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical surface load at x = 0
(solid - analytical solution; circle - BE solution; dashed - TLM solution)
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Figure 4.15: Depiction of wave energy reflection by halfspace elements due to relatively large incident
angle

4.1.7 TLM Model Validation for Tunnel Loading

The thin-layer method has been shown to accurately predict displacements in a layered

halfspace when subjected to a surface load. Simulating rail-loading from a tunnel buried

in the halfspace presents new challenges: force transmission from rails to tunnel must

be calculated, the stiffness of the tunnel must be included, non-uniform loading around

the tunnel must be captured, etc. Rather than incorporating a numerical model of the

tunnel and associated rail hardware into the TLM model, an equivalent internal source

method is used which simulates the presence of the tunnel through discrete lineloads in

the halfspace.

4.1.7.1 The Equivalent Internal Source Method

The equivalent internal source method (EIS) negates the need to include an actual

tunnel in the model by instead simulating the presence of a tunnel in a fullspace using

a number of discrete lineloads. The lineloads have specific magnitude and directions so

as to produce equivalent displacement and stress fields as would an actual tunnel with

an internal train load (see Figure 4.16). The benefit of this method is no inclusion is

required in the halfspace which reduces modelling complexity.
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(a) (b)

Figure 4.16: Schematic of the PiP arrangement (left) and equivalent internal source arrangement (right)
to simulate a tunnel buried in a fullspace under plane-strain loading.

The derivation of the EIS method in plane-strain is detailed in Appendix G using the

Pipe-in-Pipe (PiP) method detailed in Chapter 3 and Appendix F. First the standard

PiP prediction is performed to calculate the displacement and stress fields at the tunnel-

soil interface. Next a Core-in-Pipe (CiP) model (i.e. solid cylinder coupled inside a

cylinder of infinite radius) is constructed to simulate the fullspace without a tunnel; the

core radius must be smaller than the tunnel radius (i.e. rEIS < r1). By forcing the

solution of the CiP model to equal the PiP model at r1 it is possible to back-calculate

the necessary loading at rEIS as

FEIS =
(
[T∞]rEIS

− [T0]rEIS
[U0]

−1
rEIS

[U∞]rEIS

)
[U∞]−1

r1
[Un]PiP (4.45)

where FEIS is the loading at rEIS in the ring-mode-wavenumber-frequency domain, UPiP
n

is the displacement at r1 calculated using PiP, and T0, U0, T∞ and U∞ are matrices

describing the inner and outer cylinders, respectively (see Appendix G). The magnitude

and direction of the discrete lineloads required to reproduce the tunnel loading in the

spatial domain can be calculated using a standard IDFT.

The plane-strain equivalent (i.e. ξ = 0) of the float-slab-track (FST) arrangement

used in Chapter 3 is employed to determine the force transmission to the tunnel invert

due to a unit line load applied to the rail surface. The plane-strain rail and slab pa-
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Table 4.3: Floating-slab track properties

Rail Beam Slab beam
mrail = 120.6 kg/m mslab = 3500 kg/m

Railpad Slab Bearing
krail = 200 MN/m/m kslab = 5 MN/m/m
ηrail = 0.3 ηslab = 0.5

Figure 4.17: Modified TLM model incorporating a set of nodes for equivalent internal source (EIS)
loading

rameters are listed again in Table 4.3 with the force transmission function given below

where the complex stiffness is given by k∗ = k(1 + iη) (see Section 3.1.2 for more details

on the derivation).

FT

Finput

=
k∗railk

∗
slab

(mrailω2 − k∗rail)((mslabω2 − k∗slab)− k∗railmrailω2
(4.46)

Tunnel loading is incorporated into the thin-layer model using the equivalent internal

source method by refining the hyperelement mesh to ensure nodes at the EIS radius as

shown in Figure 4.17.

Although the EIS method is derived in a fullspace, it is assumed that the equivalent

internal sources can be used in a halfspace without introducing significant error. This
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Figure 4.18: Validation case for tunnel loading

assumption requires the EIS loading to be reasonably far from layer boundaries or free-

surfaces so that wave energy reflected back toward the tunnel by the boundaries is small

compared to the source (i.e. approximating a fullspace) [61]. In the current investigation

a wave-path separation of at least 3 tunnel diameters is maintained between the tunnel

and a layer boundary; the wave-path is defined as the distance an outgoing wave would

travel before returning to the tunnel. The 20m wave-path is approximately the size of

the longest expected shear-wavelength (22m at 15Hz); at this low frequency there will be

little material damping over that distance but geometric decay will significantly reduce

the wave-energy of the reflected wave compared to the original. At higher frequencies

material damping will play a more significant role in reducing reflected wave energy

returning to the tunnel. Due to these mechanisms the assumption is deemed acceptable.

4.1.7.2 Validation Model for Tunnel Loading

The tunnel-loading validation case is shown schematically in Figure 4.18 for the same

material properties used in the previous validation case (see Table 4.1). The equivalent

internal source method is used to simulate a tunnel with the properties listed in Table 4.4

subjected to a vertical, harmonic, unit lineload acting on the rail of the FST assembly.

A total of 32 discrete lineloads are used at a radius rEIS = 3m centered at x = 0m,

z = 15m.
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Table 4.4: Tunnel properties for validation case

Parameter Value

Outer radius 3.25 m
Inner radius 3.00 m
Elastic modulus 50 GPa
Poisson’s ratio 0.3
Density 2500 kg/m3

Dilational damping (DP ) 0.05
Shear damping (DS) 0.05

The BE and TLM model predictions at the surface of the layered halfspace are

compared to the analytical solution using rms velocities at the 25Hz, 50Hz, 100Hz and

160Hz frequency bands. The analytical solution is derived by superimposing the surface

displacements developed by each of the EIS lineloads; the transfer function for the

displacement at the surface due to a buried line load is derived in Appendix C as

uA = HAB (HBB + GBB)−1 GBOP (4.47)

where uA is the surface displacement in the wavenumber-frequency domain, P is the

loading vector, and Hij and Gij are transfer function for the layer and halfspace respec-

tively.

The boundary element model uses the same element properties and lengths as defined

in the previous validation case. For this case a ring of 32 EIS loads with rEIS = 3m at a

depth of 15m is included to simulate the tunnel loading. Convergence testing showed an

unacceptable level of deviation from the analytical solution when a total model width of

100m is used; the reflection of wave energy at the artificial surface boundaries discussed

in Section 4.1.6.4 is more pronounced in the tunnel loading case. The total width of the

model is increased to 200m for the remaining investigations so that the bulk of the wave

energy will have decayed before reaching the boundary of the BE surface.

The TLM model also uses the same properties and element sizes as in the previous

validation case; however further hyperelement mesh refinement is necessary to ensure
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Table 4.5: Tunnel load validation case run times for BE and TLM models using βE = 1

Boundary Element Thin-Layer
Model Method

Average time per 438 sec 56 sec
frequency step

Minimum time for a 406 sec 11 sec
frequency step

Maximum time for a 541 sec 132 sec
frequency step

Total time 16643 sec 2150 sec

a node at each of the 32 EIS locations. The total depth of the model before halfspace

elements is determined using hγ = 5 below the lowest EIS lineload:

hT = z0tunnel
+ rEIS + γshγ. (4.48)

4.1.7.3 Results of the Tunnel-Loading Validation Case

The surface frequency band rms velocities predicted by the three models are presented

in Figures 4.19 and 4.20. The presented results include velocities in the x-direction

(horizontal) and z-direction (vertical) for βE = [4, 1, 0.25].

As shown in the figures, both the BE and TLM models predict surface rms velocities

which are similar to the analytical solution; the maximum difference between the the

TLM and analytic models is 0.8dB in the horizontal direction for the 100Hz frequency

band and 0.6dB in the vertical direction for the 160Hz frequency band. For the BE to

analytic model comparison the maximum error is 1.2dB in horizontal direction for the

160Hz frequency band and 1.0dB in the vertical direction for the 100Hz frequency band.

Changes in layer properties do not appear to have a correlated effect on the prediction

accuracy of the models; the results match well for all βE values. The increase in total

width of the BE model to 200m appears to have rectified the artificial wave reflection

and the consequent deviation from the analytical solution as was seen in the surface

load case.



4. THE HOMOGENEOUS SOIL ASSUMPTION 112

−50 0 50
−190

−185

−180

−175

−170

−165

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 0 50
−190

−185

−180

−175

−170

−165

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 0 50
−190

−185

−180

−175

−170

−165

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.19: Horizontal rms velocity along surface with 5m layer at four frequency bands
(left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical line load applied to the rail
in a 6.5m OD tunnel with centroid at (0,15)
(solid - analytical solution; circle - BE solution; dashed - TLM solution)
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(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.20: Vertical rms velocity along surface with 5m layer at four frequency bands
(left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical line load applied to the rail
in a 6.5m OD tunnel with centroid at (0,15)
(solid - analytical solution; circle - BE solution; dashed - TLM solution)
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The computational times for the BE and TLM models are listed in Table 4.5. Com-

paring these times to those of the surface load case (see Table 4.2) it is obvious the

TLM model takes longer when predicting vibration due to tunnel loading; however the

TLM model is still significantly faster than the BE method on average. The increased

computational time in the TLM model is attributed to two factors: the need to model

more of the soil and an increase in the number of hyperelement columns necessary to

mesh the EIS ring. In the surface load case the total depth before the halfspace ele-

ments is defined in Equation 4.43 as hT = γshγ whereas for tunnel loading the depth

must be increased (Equation 4.48: hT = z0tunnel
+ rEIS + γshγ) to ensure there is at

least hγ wavelengths of soil modelled below every load. Consider the 200Hz frequency

step for βE = 1 where γs = 1.55m. According to Equation 4.42 the necessary element

heights are 0.1m. This equates to a total model depth of 7.75m for the surface load case

requiring 78 elements per column of hyperelements/semi-infinite elements, and 25.75m

for the tunnel loading case requiring 258 elements per column. Furthermore, in order to

mesh the EIS ring 16 more columns of hyperelements are required to create nodes for

the 32 equally spaced lineloads around the circumference. The combination of these two

factors increase the number of elements in the model from approximately 900 to 7200.

This order of magnitude increase in elements explains the order of magnitude increase

in computational time.

It should also be noted that the computation time using the BE method was found

to decrease linearly with frequency; this is attributed to improved matrix conditioning

in the BE formulation at higher frequencies allowing for faster matrix inversions. Con-

versely the TLM computation time increases quadratically as the frequency increases.

This is due to the constant amount of soil that must be modelled (i.e. z0tunnel + rEIS)

with elements which decrease in height as the frequency increases. Therefore the average

computation time per frequency step will decrease for the TLM model if the upper limit

of the frequency range is reduced, whereas it will increase for the BE method.

In conclusion, the thin-layer method is used to simulate a horizontally layered half-
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Figure 4.21: The effect of layer wavespeed on rms velocity along surface of a halfspace with a 5m thick
horizontal layer; response magnitude due to vertical line load applied to the rail in a 6.5m OD tunnel
with centroid at (0, 15)
(solid - βE = 1; dashed - βE = 4; dash-dotted - βE = 0.25)

space with a buried tunnel subjected to a vertical lineload acting on the FST rail. The

model accurately predicts the frequency band rms velocities at the surface of the half-

space when compared to the analytical solution. The TLM parameters of 16 elements

per minimum shear-wavelength and a total model depth of 5 wavelengths below the

deepest lineload proved acceptable for the simulation. The boundary element model is

also shown to accurately predict the response of the layered halfspace once the total

model width was increased to 200m, although computational time is again significantly

greater than the TLM model.

4.1.7.4 The Effect of Layer Wavespeed

The results presented in Figures 4.19 and 4.20 show an interesting effect on surface

vibration as the layer wavespeed is varied by changing the elastic modulus. Increasing

the wavespeed (i.e. increasing the elastic modulus) causes a decrease in surface rms over

the 100m interval above the tunnel. For ease of comparison the magnitude of the rms

response for the three βE cases are calculated for the 15-200Hz frequency range and are

plotted in Figure 4.21.

To aid in the visualization of the mechanisms behind this effect it is most convenient

to consider the response to the white-noise harmonic input in the time-domain (i.e. a



4. THE HOMOGENEOUS SOIL ASSUMPTION 116

unit impulsive lineload). Considering the response to an impulse results in the develop-

ment of a single set of pressure, shear and Rayleigh waves which propagate through the

domain making reflection and refraction of the waves easier to visualize and interpret.

The response in the frequency-domain exhibits similar reflection/refraction mechanisms

as the time-domain solution; however the frequency-domain response is more difficult to

interpret visually as there are many wavefronts interacting with the model boundaries

which confuses the interpretation.

The time response is calculated by taking the inverse Fourier transform (iDFT) of

the frequency domain response for white noise between 0-500Hz using 1Hz sampling;

frequencies above 500Hz are neglected as the frequency response function amplitudes

are negligible compared to the 100-200Hz region. Figure 4.22 shows the displacement

magnitude of the soil surrounding the tunnel for the three βE cases at a number of

time instants between 7.4ms and 74ms. These figures show that the interaction of

both the pressure and shear wavefronts at the surface cause significantly more surface

displacement for the βE = 0.25 case than for the βE = 4 case.

Shortly after the impulse (i.e. 7.4ms) the responses from the three cases are identical;

this is expected as the wavefronts have not reached the interface between the halfspace

and layer. At 12.6ms the pressure wavefronts have entered the layer. The law of re-

fraction, or Snell’s law, states that the ratios of the angles of incidence and refraction

for waves passing through a boundary between two different media are equivalent to

the ratio of the media wavespeeds [47]. The predicted response of a cylindrical wavefront

moving into a medium with a faster wavespeed would be an increase in wavelength and

decrease in radius of curvature (Figure 4.23(a); βE = 4), while the wavelength would

decrease and radius of curvature increase for a wavefront passing into a medium with

slower wavespeed (Figure 4.23(b); βE = 0.25). This response is visible in the TLM

predictions shown in Figure 4.23(c) and Figure 4.23(d) as the P-wave crosses the layer

interface at time t = 12.6ms. Recall from Chapter 2 that pressure and shear waves

decay inversely with the radius of curvature in a bulk medium, thus the energy loss
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(a) t = 7.4ms

(b) t = 12.6ms

(c) t = 22.2ms

(d) t = 29.6ms

(e) t = 44.4ms

(f) t = 59.2ms

(g) t = 74.0ms

Figure 4.22: Displacement response in the layered validation case halfspace: βE = 4 on the left;
βE = 1 in the center; βE = 0.25 on the right. Black indicates no soil motion while white indicates
relatively large displacements; dashed line shows location of layer interface, ring shows location of
tunnel
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(a) Theoretical; βE = 4 (b) Theoretical; βE = 0.25

(c) Numerical at t=12.6ms; βE = 4 (d) Numerical at t=12.6ms; βE = 0.25

Figure 4.23: The effect of layer wavespeed on the radius of curvature of incoming wavefronts:
top - theoretical predictions from Snell’s law of refraction including five direction normals to visu-
alize the refraction angle; bottom - TLM predictions at t=12.6ms where radius decreases for βE = 4
case and increases for βE = 0.25 case as expected

as a wavefront propagates from the layer interface to the surface is proportional to(
1

r1

− 1

(r1 + 5)

)
where r1 is the radius of curvature at the interface and the layer is

5m thick. The radius of curvature of the wavefront in the βE = 4 case is smaller than

in the βE = 0.25 case thus the energy loss must be greater for βE = 4 according to

the equation above. This increase in geometric decay for a layer with higher wavespeed

partially explains the decrease of rms velocity for the βE = 4 case.

Continuing on in Figure 4.22, after 22.2ms the pressure wave has just begun to

reflect off the surface for the βE = 0.25 case, while in the other two cases the pressure

wavefront has already passed back over the layer interface into the halfspace. At 29.6ms

the superposition of the reflected pressure wave with the incoming wave energy is visible

in the βE = 0.25 case as the large area of light grey near the surface; the reflected

wavefront has already exited the layer in the βE = 4 thus there is little superposition

of energy. The shear wavefront has entered the layer at 59.2ms; the figures show how

the wave energy is concentrated over a smaller area in the βE = 0.25 case due to the
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decrease in wavespeed while the wavefront is spread out in the βE = 4 case. Finally,

at 74ms the concentration of shear wave energy is seen in the βE = 0.25 case as large

displacements (light grey), while the energy has quickly propagated away in the βE = 4

case resulting in much smaller displacements. This superposition of the concentrated

wavefront reflecting off the surface in the βE = 0.25 case is the other contributing factor

attributed to the increase in rms velocity as the layer stiffness decreases.

For these model parameters, the results suggest that neglecting to include a single

layer when modelling wave propagation through a solid medium can result in surface

rms velocity inaccuracies of ±5dB. This should be taken into account when stating the

prediction accuracy of a model simulating “real” soils using a homogeneous halfspace.

4.2 The Effect of Inclined Soil Layers

Soil layering is a natural process resulting from soil development and movement. Soil

models often assume that layers run parallel to the surface for simplicity; uniform layers

are geometrically simple to include in a numerical model, they can be described analyti-

cally or meshed with simple elements, and often model developers do not have sufficient

empirical data to create a realistic soil lithology. However, as discussed in Chapter 2

soil layering is commonly inclined at angles of up to 5◦. It is unclear how the inclination

of a soil layer affects the vibration response at the surface due to disturbances from

underground railways. The TLM model is employed to quantify the level of uncertainty

associated with neglecting to include layer inclination in ground vibration models.

4.2.1 Inclined Layer Model

A single layer inclined on a halfspace is used to investigate the effect of layer inclination

on surface vibration, as depicted in Figure 4.24(a). As the hyperelement geometry is

rectangular it is not possible to simulate the exact interface between the layer and the

halfspace; instead the inclined interface is approximated in step-wise fashion as shown
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(a) (b)

Figure 4.24: TLM representation of an inclined layer on a halfspace using step-wise increments in
hyperelement material properties

in Figure 4.24(b). The inclined boundary is meshed using 10m wide hyperelement

steps which results in step heights of less than 1m for angles ≤ 5◦. This is deemed

an acceptable approximation relative to the sizes of the layer and halfspace model in

general. To verify this assumption the TLM model for a layer inclined at 3◦ will be

compared to a BE model with a smooth interface between the layer and the halfspace.

It should be noted that some work has been reported on creating semi-infinite ele-

ments with non-vertical side-boundaries [116]. These “zigzag” elements use a coordinate

transform which describes the elements in a non-orthogonal system resulting in addi-

tional terms in the elemental submatrices. The use of these elements was considered

for the current investigation but they were found to be numerically unstable at small

inclination angles (i.e. less than 20◦). As the investigation is concerned with inclina-

tion angle less than 5◦ the zigzag elements were deemed unacceptable for use in this

simulation.

The parameters for the inclined layer model are shown schematically in Figure 4.25

with material properties listed in Table 4.6. Tunnel loading is simulated using the

equivalent internal source method for the 6.5m OD concrete tunnel with floating-slab

track subjected to a unit harmonic lineload at the rail as used in the validation case (see

Section 3.1.2 for FST properties); the EIS ring is 3m in radius with a centroid at x=0,

z=15m.

The TLM model is constructed in the same manner as the tunnel-loading validation

case. The main difference is the material properties are varied so as to create the inclined
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Figure 4.25: Inclined layer model showing model parameters

Table 4.6: Inclined layer model properties

Tunnel Halfspace Layer

E (GPa) 50 0.55 [0.25,4] × 0.55
ρ (kg/m3) 2500 2000 2000
ν 0.3 0.44 0.44
DP 0.05 0.05 0.05
DS 0.05 0.05 0.05

layer in a step-wise fashion. The model has element heights which are varied to ensure

at least 16 elements per smallest shear wavelength in either region (i.e. ∆γ = 16) and

has five shear wavelengths of material included below the deepest EIS load (i.e. hγ = 5).

Inclination angles of θ = [1◦, 3◦, 5◦] are simulated using the TLM method.

The boundary element model retains the parameters from the tunnel-loading val-

idation case (i.e. 200m total width, 0.2m element length, 32 elements around the

rEIS = 3m ring). The interface between the layer and the halfspace is linear from

−100m ≤ x ≤ 100m. Only the results from the θ = 3◦ inclination angle case are re-

ported in comparison with the TLM predictions.

4.2.2 Effect of Inclined Layer on Surface Vibration

The predicted surface rms velocity for the TLM and BE models simulating a layer

inclined at 3◦ are presented in Figures 4.26 and 4.27 for the 25Hz, 50Hz, 100Hz and 160Hz

frequency bands. The presented results include velocities in the x-direction (horizontal)

and z-direction (vertical) for βE = [4, 0.25].

As shown in the figures the results for the two models show good agreement over the
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(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.26: Horizontal rms velocity along surface of a halfspace with a layer 5m deep at x = 0 inclined
at 3◦ (left - βE = 4; right βE = 0.25); response due to vertical line load applied to the rail in a 6.5m
OD tunnel with centroid at (0, 15)
(solid - BE solution; dashed - TLM solution)
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(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.27: Vertical rms velocity along surface of a halfspace with a layer 5m deep at x = 0 inclined
at 3◦ (left - βE = 4; right βE = 0.25); response due to vertical line load applied to the rail in a 6.5m
OD tunnel with centroid at (0, 15)
(solid - BE solution; dashed - TLM solution)



4. THE HOMOGENEOUS SOIL ASSUMPTION 124

Table 4.7: Relative error between TLM and BE model predictions for 3◦ inclination angle in dB rms

βE = 4 βE = 0.25
Frequency Band vx vz vx vz

25Hz 1.9 1.4 0.8 1.7
50Hz 0.9 1.3 1.3 2.1
100Hz 2.1 1.0 1.9 2.0
160Hz 5.7 4.1 3.1 2.6

100m span when θ = 3◦ at all frequency bands; the maximum rms differences are listed

in Table 4.7 for both the stiffer layer (βE = 4) and softer layer (βE = 0.25). A distinct

characteristic of the TLM model response accounts for the main source of discrepancy

between the TLM and BE predictions: periodic fluctuations around the BE prediction.

To explain this discrepancy one must first consider how the inclined layer affects wave

propagation.

The ground vibration time-response for the inclined layer case is presented in Fig-

ure 4.28; the time-response is again calculated using an iDFT for frequencies between

0-500Hz. The response is similar to the horizontally layered cases but examination of the

plots show the response is no-longer symmetric in the x-direction. The predicted vertical

rms velocities (Figure 4.27) for the βE = 4 case show larger amplitudes for x > 0, while

displacement amplitudes for the βE = 0.25 case are larger over x < 0; this response is

most notable at lower frequencies. Consider how the law of refraction would affect the

pressure-wave. The pressure wave is symmetric about the x-axis with the bulk of the

wave energy centered over the tunnel as shown previously in the horizontally layered

time-response plots; this is due to the vertical loading condition applied to the tunnel

which results in tunnel motion predominantly in the vertical direction (i.e. compression

at the top and bottom of the tunnel, shear on the sides). The law of refraction predicts

that as the center of the wave passes through the interface layer it will be refracted

to the right for stiffer layers (Figure 4.29(a); βE = 4) and to the left for softer layers

(Figure 4.29(b); βE = 0.25). This response is visible in Figures 4.29(c) and 4.29(d) as

predicted by the TLM model. This refraction is responsible for the relative increase in
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surface velocities over x > 0 for the βE = 4 case and over x < 0 for the βE = 0.25 case.

The periodically fluctuating discrepancy between the BE and TLM results is at-

tributed to the multiple refracting surfaces of the step-wise interface of the TLM model.

The fluctuations visible in Figure 4.27(d) have a period of approximately 10m which cor-

responds to the width of the hyperelement columns. The step-wise boundary segments

the incoming wave-field into numerous wavefronts at various angles. The superposition

of these refracted wavefronts with themselves and the reflected waves off the surface

cause periodic localizations of energy compared to the predicted response through the

smooth boundary of the BE model. However, the mean response matches well with the

BE model prediction.

In conclusion, the TLM model simulating an inclined layer interface using the step-

wise approximation is deemed sufficiently accurate in predicting the surface rms velocity

compared to the BE model. Errors between the models are attributed to the step-

wise discretization of the interface causing localization of wave energy. The peak error

between the TLM and BE models is generally below 2dB for low and mid-frequency

bands; error at higher frequency bands is shown to peak at approximately 5dB however

the trend of the results still matches well with the BE solution. In the next section

the TLM model is used to investigate the sensitivity of surface vibration to inclination

angle.

4.2.3 Sensitivity to Inclination Angle

To aid in comparison of the predicted surface vibrations at varying layer inclination

angles, the results are presented as the dB difference between the inclined and horizontal

layer results. For lack of a better term, this difference will be referred to as insertion

gain (IG). A positive IG signifies an increase in surface vibration due to layer inclination

compared to a horizontal layer of equivalent material, whereas a negative IG signifies a

decrease in vibration. The predicted surface rms velocity insertion gains calculated for
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(a) t = 7.4ms

(b) t = 12.6ms

(c) t = 22.2ms

(d) t = 29.6ms

(e) t = 44.4ms

(f) t = 59.2ms

(g) t = 74.0ms

Figure 4.28: Displacement response in the 3◦ inclined layered case: βE = 4 on the left;
βE = 0.25 on the right. Black indicates no soil motion while white indicates relatively large displace-
ments; dashed line shows location of layer interface, ring shows location of tunnel.
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(a) Theoretical; βE = 4 (b) Theoretical; βE = 0.25

(c) Numerical at t=11.1ms; βE = 4 (d) Numerical at t=14.1ms; βE = 0.25

Figure 4.29: The effect of layer wavespeed on the radius of curvature of incoming wavefronts through
an inclined layer: top - theoretical predictions from Snell’s law of refraction including five direction
normals to visualize the refraction angle; bottom - TLM predictions where wavefront refracts to the
right for βE = 4 case at t=11.1ms and refracts to the left for βE = 0.25 case at t=14.1ms

the 15-200Hz frequency range are presented in Figure 4.30. The presented results include

velocities in the x-direction (horizontal) and z-direction (vertical) for βE = [4, 0.25] at

inclination angles of 1◦, 3◦, and 5◦. The rms velocity for the 15-200Hz range is displayed

instead of various frequency band rms plots to simplify the visualization of the results

in a concise argument.

The central spike in IG for all the vx cases may be deceiving so must be explained.

Recall from Figure 4.26 that the vx response for a horizontal layer is zero at x = 0m; the

response is symmetric across the x-axis which is a result of the x-symmetric material

properties of the soil and the vertical load applied to the base of the tunnel. For the

inclined layer cases the soil properties are no longer x-symmetric thus the vx response at

x = 0m is no longer zero. The location of minimum velocity is actually shifted slightly

left or right depending on the soil properties. When the dB insertion gain is calculated

this shift in the minimum results in what appears to be a large difference between the

two models. In reality the relative difference in magnitude is very small compared to the



4. THE HOMOGENEOUS SOIL ASSUMPTION 128

−50 0 50
−10

−5

0

5

10

Surface Distance (m)

rm
s 

V
el

oc
ity

 IG
 (

dB
, r

ef
 1

 m
/s

)

(a) vx (βE = 4)
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(b) vz (βE = 4)
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(c) vx (βE = 0.25)
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(d) vz (βE = 0.25)

Figure 4.30: rms velocity along surface of a halfspace with a layer 5m deep at x = 0 inclined at various
angles; response in x-direction (vx) and z-direction (vz) due to vertical line load applied to the rail in
a 6.5m OD tunnel with centroid at (0, 15)
(solid - 1◦ inclination; dashed - 3◦ inclination; dash-dotted - 5◦ inclination)
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response at x > 10m thus the spike at x = 0m is not of great concern when considering

how the surface vibration differs with layer inclination angle.

The deflection of wave energy due to the refraction of the inclined layer interface,

as described in Section 4.2.2, is apparent in Figures 4.30(b) and 4.30(d). There is a

distinct upward slope to the vz rms velocity IG for the βE = 4 case resulting from the

refraction of wave energy to the right, whereas there is a downward slope to the IG for

the βE = 0.25 case. For the 1◦ case this results in only approximately ±1dB rms but

for a 5◦ inclination angle the insertion gain reaches 6dB rms for vertical the βE = 4 and

7dB rms for βE = 0.25.

The refraction-effect is less noticeable in the vx plots, where the maximum insertion

gain is 2 dB rms for the βE = 4 case with a 5◦ inclination angle. This is because

the horizontal surface movement is dominated by Rayleigh waves. Rayleigh waves are

formed from the interaction of P-waves and S-waves with the surface thus are also

affected by the refraction effect of the inclined layer interace; however the deflection of

energy by the inclined layer essentially just moves the epicenter of the Rayleigh waves

left or right. Since wave energy decays much slower in Rayleigh waves than in bulk

waves (
1√
r

vs
1

r2
) the relative difference in the Rayleigh waves across the surface for

different inclination angles is significantly less than P- or S-waves. This is true for the

βE = 0.25 case as well, except there two additional effects which cause a decrease in IG

at x < −30m and a sharp change in gradient at x > 40m for the 5◦ inclination case

seen in Figure 4.30(c).

The negative IG over x < −30m in the βE = 0.25 case is attributed to the refraction

of shear-waves by the layer interface in the negative x-direction. As mentioned previ-

ously, the vertical load applied to the base of the tunnel invert results in x-symmetric

wave formation which is predominantly P-waves over and under the tunnel and S-waves

at the sides of the tunnel as visible in Figure 4.22. The bulk of the P-wave energy

strikes the surface with an incident angle almost perpendicular to the surface, thus is

mostly responsible for vertical surface motion. The bulk of the S-wave energy reaches
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(a) Numerical at t=74.0ms; βE = 4 (b) Numerical at t=88.8ms; βE = 0.25

Figure 4.31: Depiction of Rayleigh wave energy loss for inclined layer in time-domain

the surface at |x| > 25m at a steep incident angle (see Figures 4.22(f) and 4.22(g)) thus

is responsible for a significant component of the horizontal response over those areas.

The inclined layer for the βE = 0.25 case causes the S-waves to refract to the left in

a similar manner to the P-wave description in Section 4.2.2. This causes the bulk of

the S-wave energy which would reach the surface at x < −30m to be shifted further in

the negative x-direction (see Figure 4.31(b)) resulting in the relative decrease seen in

Figure 4.30(c), most noticeably for the 5◦ inclination case.

The sharp change in gradient at x > 40m for the 5◦ inclination case seen in

Figure 4.30(c) is attributed to a disruption of the Rayleigh wave. For the βE = 0.25

case the Rayleigh wave energy is localized over a small area due to the relatively small

Rayleigh wavelength. For an inclination of 5◦, the layer thickness for the TLM model is

only 1.5m for 40m< x <50m and 0.6 for x >50m. This is shallow enough to interfere

with the base of the Rayleigh wave as it passes through this zone; some wave energy

is passed into the halfspace and propagated away from the surface. This results in the

decrease in vx rms velocity for x >40m in the 5◦ inclination βE = 0.25 case. This is not

as evident in the βE = 4 case because the energy associated with the Rayleigh wave in

this case is spread over a larger area (see Figure 4.28(f)). A loss of some wave energy at

the base of the Rayleigh wavefront has a less significt effect on the surface than in the

βE = 0.25 case.

In conclusion the thin layer method is used to simulate wave propagation through

an inclined soil layer to determine the effect on surface vibration. The inclined layer
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is modelled using step-wise variation in the hyperelement properties. The rms velocity

response predicted using the TLM model are compared to BE results for a layer inclined

at 3◦ and found to match well at a number of frequency bands. The sensitivity of surface

vibrations to inclination angle is also investigated and the results suggest that small

inclination angles of 5◦ or less can cause significant variation in rms response. This

variation is attributed to the refraction on wave energy by the inclined layer.

4.3 Subsiding Soil Layers

As discussed in Section 2.4.2, ground movement associated with the construction of

underground railway tunnels is inevitable [113]. Progression of the tunnelling face reduces

support for the overburden resulting in subsidence above the tunnel as depicted in

Figure 4.32. Even using modern tunnelling techniques to support the overburden, recent

studies show tunnelling-related subsidence at levels of 15-20 mm [85,99]. The overburden

often continues to subside as water leakage into the tunnel results in a loss of pore

pressure in the surrounding soil. A long-term study measuring subsidence in St. James’s

Park over the Jubilee Line extension show total subsidence of 60-70 mm after two

years [110] (i.e. from construction and long-term settlement). It is conceivable that

a 100mm deep subsidence trough could develop over an underground railway tunnel

during its lifetime.

The concern is this subsidence could have a lensing effect above the tunnel focusing

the wave-energy over a relatively small area. Consider the example case displayed in Fig-

ure 4.33. If the layer has a wavespeed slower than that of the halfspace (i.e. βE = 0.25),

the law of refraction predicts the wave-field presented in Figure 4.34. Note how the

wavefront normals converge towards an area directly above the tunnel; this may result

in a substantial increase in surface particle velocity. If the layer were stiffer than the

halfspace (i.e. βE = 4) the wave energy would be refracted away from the area above

the tunnel and could potentially create a vibration shadow area on the surface. The
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(a) Three-dimensional representation of
subsidence trough due to tunnelling

(b) Plane-strain representation of subsidence trough

Figure 4.32: Subsidence trough

Figure 4.33: Schematic of subsiding soil layer model
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Figure 4.34: Theoretical wave focusing of subsiding layer βE = 0.25

TLM model is used to simulate a subsiding layer above an underground railway tunnel

to quantify the effect on surface vibration.

4.3.1 TLM Model of Subsiding Layer

The plane-strain example case considered herein is shown in Figure 4.33. The model

consists of a subsiding layer with a 5m nominal depth atop a halfspace. The geometry

of the subsidence trough can be described by a Gaussian error function [113,117] given by

f(x) = Sv,maxe


−(x− xo)

2

2(ix)2




(4.49a)

where

ix = 0.5(z0 − z) (4.49b)

and x and z describe the location of interest for the subsidence estimation, x0 and z0 are

the location of the centreline of the tunnel, Sv,max is the depth of the trough at height z

and x = 0, and ix is the distance from the centre of the trough to the point of inflections

(see Figure 4.32(b)).

A number of trough depths Sv,max listed below are investigated based on the reported

subsidence levels for modern UK underground tunnels. The soil layer elastic modulus
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Table 4.8: Model properties for subsidence model

Tunnel Halfspace Layer

E (GPa) 50 0.55 [0.25, 4] × 0.55
ρ (kg/m3) 2500 2000 2000
ν 0.3 0.44 0.44
DP 0.05 0.05 0.05
DS 0.05 0.05 0.05

coefficient βE is also varied to determine the effect on surface vibration.

Sv,max = [0, 30, 60, 100]mm βE = [4, 0.25]

The subsidence trough is simulated using step-wise variations of the hyperelement prop-

erties in a similar manner to the inclined soil layer. Due to the small scale of the

subsidence trough, the width of the hyperelements are reduced to 5m to better repre-

sent the changing slope of the trough. The height of the hyperelements are reduced over

the subsidence region to ensure a maximum step-height of 1/5 of Sv,max. The surface

of the soil is assumed horizontal to simulate a freshly landscaped building site above a

pre-existing tunnel.

The equivalent internal source model is again used to simulate loading from a

6.5m OD, 6.0m ID concrete tunnel subjected to a unit harmonic lineload acting on the

rail of the floating slab track assembly; the EIS ring is 3m in radius with a centroid

at x=0, z=15m. The model has element heights which are varied to ensure at least

16 elements per smallest shear wavelength in either region (i.e. ∆γ = 16) and has five

shear wavelengths of material included below the deepest EIS load (i.e. hγ = 5). The

properties associated with the model are listed in Table 4.8. A schematic of the TLM

model with Sv,max=100mm is shown in Figure 4.35; the dashed line represents the curve

defined by Equation 4.49a.
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Figure 4.35: Close-up of subsidence section of TLM model

4.3.2 Surface Response of Subsiding Layer Model

The predicted surface rms velocities for the subsiding layer TLM model are presented in

Figures 4.36 and 4.37 for the 25Hz, 50Hz, 100Hz and 160Hz frequency bands. The pre-

sented results include velocities in the x-direction (horizontal) and z-direction (vertical)

for βE = [4, 0.25].

The surface particle velocities predicted by the TLM model are relatively insensitive

to varying levels of layer subsidence for the range investigated. The rms response curves

for the four cases Sv,max = [0, 30, 60, 100]mm practically lie atop one another. The

vertical rms response is magnified for the β = 4 and β = 0.25 cases in Figures 4.37(c)

and 4.37(d), respectively. At this magnification it is possible to distinguish a separation

in the results, although the total spread is only approximately 0.2dB for the β = 4 case

and 0.5dB for the β = 0.25 case.

As predicted earlier in this section, the refraction of wave energy varies the surface

response above the tunnel (see Figure 4.34). The βE = 4 results in Figure 4.37 show

a decrease in vertical response as the level of subsidence increases in the stiffer layer,

creating a vibration shadow area above the tunnel. The results for βE = 0.25 in Fig-

ure 4.37 show a wave energy focusing effect in the softer layer above the tunnel as the

response increases with the level of subsidence. The response above the tunnel in the

horizontal direction does not appear to be significantly affected by the variation in subsi-

dence levels. As discussed in Section 4.2.3, the horizontal surface response is dominated



4. THE HOMOGENEOUS SOIL ASSUMPTION 136

(a) 25Hz frequency band

(b) 50Hz frequency band

(c) 100Hz frequency band

(d) 160Hz frequency band

Figure 4.36: Horizontal rms velocity along surface with a subsiding layer at four frequency bands
(left - βE = 4; right βE = 0.25); response in x-direction (vx) due to vertical line load applied to the rail
in a 6.5m OD tunnel with centroid at (0, 15)
(solid - Sv,max = 0mm; dotted - Sv,max = 30mm; dash-dotted - Sv,max = 60mm;
dashed = Sv,max = 100mm)
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(a) 25Hz frequency band

(b) 50Hz frequency band

(c) 100Hz frequency band

(d) 160Hz frequency band

Figure 4.37: Vertical rms velocity along surface with a subsiding layer at four frequency bands
(left - βE = 4; right βE = 0.25); response in z-direction (vz) due to vertical line load applied to the
rail in a 6.5m OD tunnel with centroid at (0, 15)
(solid - Sv,max = 0mm; dotted - Sv,max = 30mm; dash-dotted - Sv,max = 60mm;
dashed = Sv,max = 100mm)
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by Rayleigh and S-waves which are relatively weak above the tunnel compared to the

P-wave; these waves reach significant levels on the surface further away from the tunnel

once the bulk of the S-wave energy interacts with the surface. As the subsidence trough

only varies the model geometry over a small area above the tunnel the propagation of

the S-wave is not significantly affected by changes to Sv,max, thus horizontal surface

vibration is similar for all cases under investigation.

In conclusion the TLM model is used to investigate the effect of layer subsidence

over an underground railway. The subsidence bowl is modelled using step-wise vari-

ation in the hyperelements to simulate a maximum deflection of 100mm in the layer.

The hypothesized lensing effect of a subsiding softer layer is visible in the predicted

response but the magnitude of variation from a horizontal layer is relatively small at

approximately 0.5dB.

4.4 Inhomogeneous Soils

Assuming homogeneous soil layering is the standard approach for simulating global

trends in soil properties (e.g. a shift from a sandy layer to a layer of clay). Localized

soil variability throughout the layer can also produce significant variation in material

properties, though this variability is rarely included in ground vibration simulations.

It is impractical to take sufficient soil samples to accurately map local variations in

material properties over the area of interest thus soil profiles must be inferred from a

limited number of samples. For simplicity the properties of each layer are normally

assumed homogeneous with average value.

The purpose of this section is to quantify the effect on surface vibration when ac-

counting for localized inhomogeneity in layered soil models. A probabilistic model em-

ploying random field theory coupled with the thin-layer method model is used to capture

the inherent variation in soil properties. Variation in both the vertical and horizontal

directions are included.
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Figure 4.38: Parameters of homogeneous randomly varying soil profile

4.4.1 Modelling Local Variation in Soil Properties

In a conventional soil model the layer properties are idealized by a set of average val-

ues; the fluctuation about these values are neglected. This implies that the layers are

homogeneous. In a probabilistic soil profile at least one soil property is assumed to vary

about the mean and is treated as a random function. While a number of soil properties

will vary locally throughout the layer, only the effect of varying the elastic modulus will

be investigated herein.

Figure 4.38 displays how three parameters are required for a one-dimensional stochas-

tic description of variability E(x):

• Ē - the average value over the area of interest

• Ẽ - the standard deviation of the function; a measure of the degree to which actual

values of E deviate from the mean Ē

• δE - the scale of fluctuation; the distance within which the soil property E(x)

shows relatively strong correlation from point to point (i.e. two points that lie

within δE are likely to be both above or below the average)

The dimensionless coefficient of variation (CoV) may also be reported instead of the

standard deviation where CoV= Ẽ/Ē.

The spatial variation E(x) can be decomposed into its mean value Ē(x) and a fluc-
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tuating component ∆E(x) which accounts for the variation over the x-direction.

E(x) = Ē(x) + ∆E(x) (4.50)

An accepted means of quantifying variability in soil is to assume the property of interest

is a homogeneous random function [45,151]. The function ∆E(x) is considered statistically

homogeneous if the mean and variance between two points x1 and x2 remain unchanged

when these points are translated (but not rotated) in the parameter space (i.e. the

statistics depend only on the relative, not absolute, locations of the points). For this

case the random variation is described by the covariance function C(x, ξ) which is a

measure of the correlation, or similarity, of the value at two different points x and

ξ in the one-dimensional random function. By definition the covariance function is

bounded, symmetric and positive definite [137], thus it can be spectrally decomposed into

its eigenfunctions as

C(x, ξ) =
∞∑

n=0

λnφn(x)φn(ξ) (4.51)

where λn and φn are the eigenvalues and eigenfunctions of the covariance kernel, respec-

tively. Eigenfunctions are similar to eignenvectors only they are continuous rather than

discrete and are the solutions to the integral equation

∫

L

C(x, ξ)φn(x)dξ = λnφn(x). (4.52)

According to Loeve [92] the eigenfunctions form a complete set and can be used to expand

the covariance function in a Fourier-type series using orthogonal decomposition; this is

known as the Karhunen-Loeve (KL) Expansion [45]. The result of this expansion is the

random process E(x) can be written as

E(x) = Ē(x) + ∆E(x) = Ē(x) + Ẽ(x)
∞∑

n=0

bn

√
λnφn(x). (4.53)
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If E(x) is assumed to be a Gaussian process, the series can be shown to converge [92]

and the coefficient vector b is a set of uncorrelated Gaussian random variables with zero

mean and mean-square equal to unity.

The exponential covariance kernel, extensively used in geophysics modelling [137],

is used herein to simulate the random soil properties. The covariance kernel in the

x-direction is defined as

C(x, ξ) = e−c|x−ξ| (4.54)

where x and ξ are the value at two different points in the one-dimensional random

function, and c is related to the scale of fluctuation [150] as c =
2

δE

. The eigenfunctions

are determined using Equation 4.52 over the interval [−a, +a] as

φn(x) =
cos(ωnx)√

a +
sin(2ωna)

2ωn

(4.55a)

for n odd and

φ∗n(x) =
sin(ω∗nx)√

a− sin(2ω∗na)

2ωn

(4.55b)

for n even.

The corresponding eigenvalues are

λn =
2c

ω2
n + c2

(4.56a)

and

λ∗n =
2c

ω∗2n + c2
(4.56b)

where ωn and ω∗n are the solutions to the transcendental equations

c− ω tan(ωa) = 0 (4.57a)
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and

ω∗ + c tan(ω∗a) = 0. (4.57b)

As cited in Section 2.4.3, published data regarding the spatial variability of soils

show that both vertical and horizontal soil variability is significant [56,118,119,136], thus a

two-dimensional stochastic description of variability E(x, z) is required. The scale of

fluctuation in the vertical direction is generally smaller than the horizontal, which implies

the random field is not statistically isotropic; a statistically isotropic field is one where

the mean and variance between two points (x1, z1) and (x2, z2) remain unchanged when

these points are either translated or rotated in the parameter space [45,151]. Vanmarcke

states that in modelling spatial random variation in geology it is appropriate to assume

a separable correlation for the horizontal and vertical variation [151] (i.e. the 2-D variance

function can be expressed as the product of two 1-D variance functions). This results in

C(x, ξ, z, χ) = C(x, ξ) · C(z, χ) (4.58a)

thus

E(x, z) = Ē(x, z) + ∆E(x, z)

= Ē(x, z) + Ẽ(x, z)
∞∑

n=0

∞∑
m=0

bnm

√
λnγmφn(x)ϕm(z) (4.58b)

where λn and γm are the eigenvalues and φn(x) and ϕm(z) are the eigenfunctions of

the horizontal and vertical covariance kernels C(x, ξ) and C(z, χ), respectively. The

exponential covariance kernel detailed in Equations 4.54 to 4.57 is used for both the

vertical and horizontal functions. Again, E(x, z) is assumed to be a Gaussian process

thus the coefficient array b is a set of uncorrelated Gaussian random variables with

zero mean and mean-square equal to unity. Note that the average elastic modulus and
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standard deviation there of are assumed constant over the modelling area thus

Ē(x, z) = Ē (4.59)

Ẽ(x, z) = Ẽ. (4.60)

It is impractical to compute an infinite number of KL-expansion modes n and m,

thus the expansion must be truncated. For low frequency ranges (i.e. 15Hz-200Hz)

only a relatively small number of KL-expansion modes are necessary to adequately

represent the covariance function [45]. Schevenels et al. [127] show that for a triple-layered

halfspace increasing the mode-count from 15 to 100 has negligible affect on the results

for frequencies up to 200Hz. Ten KL-expansion modes will be used in each of the

directions of expansion for the model herein; inclusion of higher modes was found to

have no significant affect on the solutions for the model described in the next section.

When using the KL-expansion in a discrete system such as stochastic-FE or TLM

models, Vanmarcke states that it is necessary to consider the spatial average and stan-

dard deviation over the element. This is required because each element is given a single

value for the variable field; the larger the element the more fluctuations of E tend to

be cancelled by spatial averaging. The standard deviation used in Equation 4.58 should

include a scaling factor if the dimensions of the element are larger than the scale of fluc-

tuation [150]. As outlined in the following sections, all elements used in the current TLM

model have dimensions which are less than the scales of fluctuation, thus the scaling

factor is unnecessary.

4.4.2 Numerical Model of Stochastic Soil Variation

The stochastic soil variation model is shown in Figure 4.39 with average properties given

in Table 4.9. The equivalent internal source model is again used to simulate loading

from a 6.5m OD, 6.0m ID concrete tunnel subjected to a unit harmonic lineload at the

rail of the FST assembly; the EIS ring is 3m in radius with a centroid at x=0, z=15m.
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Table 4.9: Average soil properties for variability model

Tunnel Halfspace Layer

E (GPa) 50 0.55 [0.25,1,4] × 0.55
ρ (kg/m3) 2500 2000 2000
ν 0.3 0.44 0.44
DP 0.05 0.05 0.05
DS 0.05 0.05 0.05

Figure 4.39: Soil Variation TLM model

The model has element heights which are varied to ensure at least 16 elements per

smallest shear wavelength in either region (i.e. ∆γ = 16) and has five shear wavelengths

of material included below the deepest EIS load (i.e. hγ = 5).

The local variation in elastic modulus is governed by the KL-expansion method as

described in Section 4.4.1. Determining the scale of fluctuation and standard deviation

of the elastic modulus of the soil is difficult; there is limited knowledge of the vari-

ability of this soil property. The few references which list values for elastic modulus

variability give a wide range of coefficient of variability (CoV) and scale of fluctua-

tion (δ) values [56,70,127]: CoV = 15-50%; δx = 1.5m-50m; δz = 1m-10m. Jaksa et al. [70]

suggest that the scale of fluctuation for undrained shear strength is similar to that of

elastic modulus. Extensive literature reviews by Phoon et al. [118] and Huber et al. [56]

provide the following ranges for scales of fluctuation for undrained shear strength of

clays: δx = 20m-60m; δz = 0.8m-6.1m. These values agree well with those listed for

elastic modulus variability, thus average values from these ranges are used for the cur-
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Figure 4.40: Three realizations of soil elastic modulus as determined using a KL-expansion with
Ẽ = 0.30Ē, δx = 40m, δz = 2.5m

rent investigation

Ẽ = 0.30Ē δx = 40m δz = 2.5m.

Three realizations of the elastic modulus variability as determined by the KL-expansion

are shown in Figure 4.40. The realization show how there is greater variability in the

z-direction than the x-direction due to the respective scales of fluctuation. The coeffi-

cient of variability Ẽ = 0.30Ē results in the elastic modulus ranging from 450-650MPa.

A total of 50 realizations are used in the investigation.

It has been assumed that the equivalent internal source method is still valid for a

medium with varying elastic modulus. This is assumed because the variation is smooth

and the scale of fluctuation in the vertical direction is the same order of magnitude as

the diameter of the EIS ring. The actual displacement and stress field at the tunnel-soil
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interface in the stochastic soil would differ slightly from that predicted by the EIS; ne-

glecting this difference is deemed an acceptable compromise for maintaining the benefits

of the EIS method.

4.4.3 Surface Response of Stochastic Soil Model

The predicted surface rms velocities for the stochastic soil TLM model are presented in

Figures 4.41 and 4.42 for the 25Hz, 50Hz, 100Hz and 160Hz frequency bands. The pre-

sented results include velocities in the x-direction (horizontal) and z-direction (vertical)

for βE = [4, 1, 0.25]. The results for the 50 realizations of soil variability are plotted as

a 95% confidence region (grey region) with the mean predicted response plotted as a

solid line. The confidence region describes the interval over which 95% of the responses

from the 50 realizations can be found.

As shown in the figures, the effect of soil inhomogeneity depends on excitation fre-

quency for all βE values; Table 4.10 lists average and peak values for the 95% confidence

interval in both horizontal and vertical response. The interval is relatively small around

the mean rms velocity for the 25Hz frequency band (average values < 1.5dB) but in-

crease to significant deviation from the mean at higher band frequencies (average values

of approximately 5dB with peaks close to 10dB). The relatively small confidence region

at low frequencies is attributed to the relatively long wavelengths compared to the scale

of fluctuation in the soil. At 15Hz the average shear wavelength is approximately 22m

which is an order of magnitude greater than the scale of fluctuation in the vertical di-

rection δz = 2.5m. These large wavelengths essentially “average out” the localized soil

variation. At higher frequencies the wavelengths are of the same order of magnitude

as the scale of fluctuation; at 130Hz the shear wavelength for average soil properties is

approximately 2.5m. At these wavelengths the local variation in elastic modulus cause

significant refraction of wave energy in the manner described in Sections 4.1.7.4 and

4.2.2. The random variation in soil properties causes the diversion of wave energy by
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(a) 25Hz frequency band
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(b) 50Hz frequency band
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(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.41: Horizontal rms velocity along surface of a halfspace with a inhomogeneous soil properties
(left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical line load applied to the rail
in a 6.5m OD tunnel with centroid at (0, 15)
(solid - mean response; grey area - 95% confidence interval
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(a) 25Hz frequency band
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(b) 50Hz frequency band

−50 −40 −30 −20 −10 0 10 20 30 40 50
−220

−215

−210

−205

−200

−195

−190

−185

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−220

−215

−210

−205

−200

−195

−190

−185

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

−50 −40 −30 −20 −10 0 10 20 30 40 50
−220

−215

−210

−205

−200

−195

−190

−185

Surface Distance (m)

rm
s 

V
el

oc
ity

 (
dB

, r
ef

 1
 m

/s
)

(c) 100Hz frequency band
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(d) 160Hz frequency band

Figure 4.42: Vertical rms velocity along surface of a halfspace with a inhomogeneous soil properties
(left - βE = 4; center - βE = 1; right - βE = 0.25); response due to vertical line load applied to the rail
in a 6.5m OD tunnel with centroid at (0, 15)
(solid - mean response; grey area - 95% confidence interval
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Table 4.10: Average and peak values for 95% confidence region in dB rms

βE = 4 βE = 1 βE = 0.25
Frequency Band vx vz vx vz vx vz

25Hz 1.5, 2.3 1.2, 2.3 1.5, 4.0 1.3, 2.4 1.1, 2.6 1.0, 1.5
50Hz 1.4, 3.2 1.7, 3.7 1.6, 3.1 1.6, 3.6 1.5, 2.8 1.7, 3.7
100Hz 2.0, 3.1 1.7, 3.0 2.6, 3.6 1.8, 3.4 2.1, 3.8 2.1, 3.5
160Hz 4.1, 6.2 4.9, 7.8 5.1, 7.3 5.0, 7.8 6.2, 9.4 4.0, 6.7

localized refraction resulting in relatively large variations in surface response.

Note that while the confidence regions are symmetric about x = 0 this does not imply

the surface response for any given realization of the soil will also be symmetric. In gen-

eral each realization has non-symmetric surface response due to the non-symmetric soil

properties as defined by the stochastic KL-expansion of the covariance function. The

confidence intervals are symmetric due to the relatively large number of realizations

used to populate the interval implying the confidence interval has converged (i.e. in-

cluding further realizations would not significant alter the confidence region only further

populate the current region).

This non-symmetric behaviour can also be seen by plotting the response in the time

domain. The wave propagation from three realizations are shown in Figure 4.43: a

homogeneous halfspace on the left and two inhomogeneous halfspaces in the center and

on the right. As before, the homogenous halfspace has symmetric wave propagation

across x = 0. The inhomogeneous halfspaces cause energy to be refracted and diverted

relative to the homogenous case causing energy localization. For instance, at t=12.6ms

both inhomogeneous realizations show pressure waves which have been diverted slightly

to the right; at 74.0ms the two realizations have localized displacement on either side of

center.

An interesting note is that both realizations shown appear to have softer regions

above the tunnel, relative to the mean elastic modulus. This can be seen by the reduced

wave speed where the pressure wave has just reached the surface at 22.2ms in the inho-

mogeneous cases while it has already reflected in the homogenous case. Also, the shear
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wave is just starting to interact with the surface at 74.0ms while in the homogeneous

case the Rayleigh waves have already developed (i.e. the two areas of light grey at

approximately x = ±10m).

In conclusion, the thin layer method model is used to investigate the effect of soil

inhomogeneity on surface vibration. The elastic modulus of the soil is modelled stochas-

tically using a KL-expansion to smoothly vary the properties in both the vertical and

horizontal directions. Fifty realizations of the inhomogeneous soil are used to predict

the 95% confidence region around the mean response for βE = [4, 1, 0.25]. The results

suggest that variation in the surface response is dependant on the band frequency. At

lower frequencies the effect of local variation in elastic modulus has a small effect of ap-

proximately 1.5dB on average, while at higher frequency bands the effect is significant

with a 5dB average and peak values up to 10dB.

4.5 Conclusions

The thin-layer method is introduced as an efficient semi-analytical means of simulating

ground vibration due to underground railways. The elements use the analytical wave

equation to describe vibration in the horizontal direction while assuming displacements

in the vertical direction can be described using a linear shape-function. This allows

elements of any length to be used (finite or infinite) without suffering from aspect-

ratio requirements common in other discrete methods such as finite element analysis.

Optimal parameters of 16 elements per minimum shear-wavelength and a total model

depth of five wavelengths before halfspace elements are determined from a parametric

analysis. The model accurately predicts the frequency band rms velocities at the surface

of a halfspace due to excitation from an underground railway over a frequency range of

15-200Hz when compared to both an analytical and boundary element solution. The

equivalent internal source method is used to simulate loading from the underground

railway using 32 discrete line-loads.
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(a) t = 7.4ms

(b) t = 12.6ms

(c) t = 22.2ms

(d) t = 29.6ms

(e) t = 44.4ms

(f) t = 59.2ms

(g) t = 74.0ms

Figure 4.43: Displacement response in halfspace with inhomogeneous elastic modulus: homogenous
halfspace on the left; first realization of Ẽ = 0.30Ē in the center; second realization of Ẽ = 0.30Ē
on the right. Black indicates no soil motion while white indicates relatively large displacements; ring
shows location of tunnel
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The TLM model is used to simulate an inclined layer interface using a step-wise

approximation and is deemed sufficiently accurate in predicting the surface rms velocity

compared to the BE model. Errors between the models are attributed to the step-

wise discretization of the interface causing localization of wave energy. The peak error

between the TLM and BE models is generally below 2dB for low and mid-frequency

bands and the trend of the results match well with the BE solution. The sensitivity of

surface vibrations to inclination angle is also investigated and the results suggest that

small inclination angles of 5◦ or less can cause significant variation in rms response of

approximately 5dB. This variation is attributed to the refraction on wave energy by the

inclined layer.

The model is also used to investigate the effect of layer subsidence over an un-

derground railway. The subsidence bowl is modelled using step-wise variation in the

hyperelements to simulate a maximum deflection of 100mm in the layer. The hypothe-

sized lensing effect of a subsiding soft layer is visible in the predicted response but the

variation from a horizontal layer is relatively small at approximately 0.5dB.

Finally, the thin-layer method is used to investigate the effect of soil inhomogeneity

on surface vibration. The elastic modulus of the soil is modelled stochastically using

a KL-expansion to smoothly vary the properties in both the vertical and horizontal

directions. Results suggest that local soil inhomogeneity can result in 95% confidence

intervals with 5dB averages and peak values up to 10dB.



Chapter 5

Conclusions and Further Work

This chapter summaries the conclusions drawn from the work described in the previous

chapters and suggests areas where further work may be achieved.

5.1 Conclusions

Noise and vibration from underground railways is a documented disturbance to individ-

uals living or working near subways. Researchers have linked such disturbances to work

degradation, sleep disturbance and possible health risks affecting individuals 25m from

tunnels and have reported above average annoyance from inhabitants up to 200m from

the subways. This public disturbance has spurred the development of ISO standards

to quantify acceptable levels of vibration from underground railways and subsequently

the development of simulation models to predict ground vibration so as to meet the

vibration criteria during the design process.

Much work has been done developing these numerical models to understand and

simulate the dynamic interactions between the train, track, tunnel and soil. However, all

such numerical models rely on simplifying assumptions to make the problems trackable:

soil is assumed homogenous, tunnels are assumed long and straight, the soil is assumed to

be in perfect contact with the tunnel, etc. The aim of this dissertation is to quantify some

153
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of these uncertainties to give a better understanding of how simplifying assumptions

limit prediction accuracy.

The first section investigates the effect of voids at the tunnel-soil interface on ground

vibration due to underground railways. The Pipe-in-Pipe model is extended to allow

finite-sized voids at the interface by deriving the discrete transfer functions for the

tunnel and soil from the continuous solution; voids are simulated by uncoupling the ap-

propriate nodes at the interface to prevent force transfer between the two subsystems.

The formulation presented is efficient as the tunnel and soil transfer function matrices

are only calculated once and reused for any void geometry. The results suggest that

relatively small voids can significantly affect the rms velocity predictions at higher fre-

quencies (>5dB at 100-200Hz) and moderately effect predictions at lower frequencies

(∼2dB at 15-100Hz). The results are also found to be sensitive to void length and void

sector angle.

The second section investigates issues associated with assuming the soil is homoge-

neous: the effect of inclined soil layers; the effect of a subsiding soil layer; the effect of

soil inhomogeneity. The thin-layer method approach is utilized as its semi-analytical for-

mulation allows for accurate predictions with relatively short run times. The inclusion

of an inclined layer at 5◦ or less is shown to affect the surface rms velocity predictions

by up to 5dB; the extent and location of this variation is found to be dependent on

layer properties and inclination angle. The geometric effect of a subsiding soil layer is

found to have less significant effect on surface vibration (∼0.5dB). Finally, accounting

for localized inhomogeneity of a halfspace is found to result in significant variation in

surface results compared to the homogeneous assumption; at higher frequencies the 95%

confidence intervals are predicted to average 5dB with peak values of around 10dB.

The findings from this study suggest that employing simplifying assumptions for the

cases investigated can reasonably result in uncertainty bands of ±5dB. Considering all

the simplifying assumptions used in numerical models of ground vibration from under-

ground railways it would not be unreasonable to conclude that the prediction accuracy
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for such a model may be limited to ±10dB.

5.2 Recommendations for Further Work

The thin-layer method presented in this dissertation is derived as a 2D plane-strain

model. While it was deemed unnecessary to use a 2.5D or 3D model for the studies it

would be interesting to compare the plane-strain results with those from a 2.5D model

to verify this assumption. Through recent discussion with Kausel, the author has learnt

that Kausel and one of his students have recently finished a derivation of the thin-layer

method in 2.5D and plan to publish the results in the next year. The formulation

is reported to be efficient and should allow calculation of 2.5D predictions in similar

run-times to the 2D formulation.

The TLM model has the potential to be more efficient if a means of simulating the

underground railway tunnel could be found with does not require dense meshing of the

hyperelements so as to have a node at 32 locations around the tunnel circumference.

There is potential that substructuring techniques [9] may be employed to create a super-

hyperelement which contains all the equivalent internal sources. The external nodes of

said super-hyperelement (i.e. the master degrees of freedom) could be coupled to the

standard TLM model, while the internal nodes (i.e. the dense mesh required for the EIS

ring) are condensed and only used if the predicted motion within the super-hyperelement

is required.

Both the TLM and discrete-void model could be used to perform a more compre-

hensive study of the effect of simplifying assumptions by considering different material

properties of the soil, tunnel, floating-slab-track, etc. It may be beneficial to non-

dimensionalize the results with respect to governing properties (i.e. wave-speed of the

soil). A more complete set of geometrical properties could also be considered including

different layer depths, tunnel sizes, tunnel depths, etc.

The models presented also have the potential to be used to investigate further sim-
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plifying assumptions. For example, the TLM model could be used to study the effect

of water-table height on surface vibration due to underground railways. This could be

done simply by varying the material properties at the appropriate depth to simulate a

saturated soil (i.e. Poisson’s ratio = 0.5; density and stiffness adjusted to saturated val-

ues). The discrete-void model could be used to investigate the effect of cavities occuring

below the tunnel. The bulk of the wave-energy exits through the base of the tunnel

invert [61] thus a cavity under the tunnel may also have a significant effect on ground

vibration.



Appendix A

Useful Relations and Material

Damping

The material properties of a solid may be defined using a number of different variables

(i.e. Lamé constants, elastic modulus, etc.). Below is a list of conversions of some

common properties into a standard set of variables

λ =
Eν

(1 + ν)(1− 2ν)
(A.1a)

µ =
E

2(1 + ν)
(A.1b)

G = µ (A.1c)

where λ and µ are Lamé constants, G is the shear modulus, E is the elastic modulus, ν

is Poisson’s ratio, and ρ is density.

Wave velocities are defined as

c1 =

(
λ + 2µ

ρ

)1/2

P-wave velocity (A.2a)

c2 =

(
µ

ρ

)1/2

S-wave velocity. (A.2b)
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In soil dynamics, material damping is usually assumed to be rate independent in

the low frequency range of interest for this research. Under this assumption material

damping of a soil can be simulated using the correspondence principle [124] which states

that a viscoelastic material can be modelled in the frequency domain as an equivalent

elastic material with modified elastic constants (i.e. complex material properities). A

convenient means of applying damping is

λ∗ + 2µ∗ = (λ + 2µ)(1 + 2iDP ) (A.3a)

µ∗ = µ(1 + 2iDS) (A.3b)

where Dp and Ds represent the material damping ratio for the pressure waves and the

shear waves, respectively.



Appendix B

Thomas Algorithm

The Thomas Algorithm, also known as the tridiagonal matrix algorithm, is a simplified

form of Gaussian elimination that can be used to solve both scalar-tridiagonal and block-

tridiagonal systems of equations [18]. A block-tridiagonal system for n submatrices may

be written as 


b1 c1 0

a2 b2 c2

a3 b3
. . .

. . . . . . cn−1

0 an bn








u1

u2

u3

...

un





=





f1

f2

f3
...

fn





. (B.1)

where each submatrix ai, bi, ci is m×m, and each displacement vector ui and forcing

vector fi has m elements for i = 1, 2, . . . , n.

The first step in the solution requires a forward sweep to define new coefficients cz
i

and fz
i as

cz
i =





b−1
1 c1 ; i = 1

(
bi − aic

z
i−1

)−1
ci ; i = 2, 3, . . . , (n− 1)

(B.2)

and

dz
i =





b−1
1 d1 ; i = 1

(
bi − aic

z
i−1

)−1 (
di − aid

z
i−1

)
; i = 2, 3, . . . , n

(B.3)

159



B. THOMAS ALGORITHM 160

followed by a back substitution

un = dz
i

ui = dz
i − cz

i ui+1 ; i = (n− 1), (n− 2), . . . , 1.
(B.4)



Appendix C

Green’s Functions for a Layered

Halfspace in Plane Strain

C.1 Homogeneous Halfspace

The plane strain halfspace frequency response functions (FRF’s) detailed here are de-

rived from the Green’s functions for a two-and-a-half dimensional elastodynamic half-

space given by Tadeu [140]. The plane strain condition is a particular case of the general

functions where the wavenumber in the y-direction ky is set to zero (i.e. a line load). It

should be noted that the coordinate system has been changed from that used by Tadeu

in order to match the coordinate system defined in Figure C.1.

The FRF’s are given in wavenumber-frequency domain (kn, ω) for ease of computa-

Figure C.1: Analytical halfspace where displacements are observed at a depth z due to a harmonic
line-load at a depth z0
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tion; kn is the wavenumber from the x-direction. As detailed in Figure 4.7, the load is

applied at (x0,z0) and displacements are observed at (x,z).

C.1.1 Load acting in the x-direction

For a line-load applied in the x-direction, the FRF’s for displacement in the x-direction

(Hhalf
xx ) and in the z-direction (Hhalf

zx ) are as follows

Hhalf
xx (z, z0, kn, ω) =

1

2ρω2

[−ik2
n

νn

(Eb + Ax
nEb0)− iγn (Ec + Cx

nEc0)

]
(C.1)

Hhalf
zx (z, z0, kn, ω) =

ikn

2ρω2
[(±Eb + Ax

nEb0)− (±Ec + Cx
nEc0)] for z ≷ z0 (C.2)

where




−2k2
n 0 k2

n − γ2
n

−2 1 1

−k2
s

νn

+ 2
k2

n

νn

0 2γn








Ax
n

Bx
n

Cx
n





=





−2k2
nEb1 + (2k2

n − k2
s) Ec1

−2Eb1 + 2Ec1(
k2

s

νn

− 2
k2

n

νn

)
Eb1 − 2γnEc1





(C.3)

and

Eb =e−iνn|z−z0| Eb0 = e−iνnz Eb1 = e−iνnz0 (C.4a)

Ec =e−iγn|z−z0| Ec0 = e−iγnz Ec1 = e−iγnz0 (C.4b)

νn =
√

k2
p − k2

n γn =
√

k2
s − k2

n kp =
ω

Cp

ks =
ω

Cs

. (C.5)

The pressure wave-speed Cp and shear wave-speed Cs are calculated from the halfspace

material properties as defined earlier.
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C.1.2 Load acting in the z-direction

For a line-load applied in the z-direction, the FRF’s for displacement in the x-direction

(Hhalf
xz ) and in the z-direction (Hhalf

zz ) are as follows

Hhalf
xz (z, z0, kn, ω) =

ikn

2ρω2
[(±Eb + Az

nEb0)− (±Ec + Bz
nEc0)] for z ≷ z0 (C.6)

Hhalf
zz (z, z0, kn, ω) =

1

2ρω2

[
−iνn (Eb + Az

nEb0)− ik2
n

γn

(Ec + Bz
nEc0)

]
(C.7)

where




−2νn
−k2

n

γn

+ γn 0

−2νn
−k2

n

γn

γn

(−k2
s + 2k2

n) −2k2
n 0








Az
n

Bz
n

Cz
n





=





2νnEb1 +

(
k2

n

γn

− γn

)
Ec1

2νnEb1 +

(
k2

n

γn

− γn

)
Ec1

(−k2
s + 2k2

n) Eb1 − 2k2
nEc1





(C.8)

with the other variables are defined in Section C.1.1.

C.2 Homogeneous Layer

The frequency response functions (FRF’s) for a free homogeneous layer of thickness h

are also derived by Tadeu [139]. The plane strain condition is detailed below by setting the

wavenumber in the y-direction ky to zero. It should be noted again that the coordinate

system has been changed from that used by Tadeu in order to match the coordinate

system defined in Figure C.2.
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Figure C.2: Analytical solid layer where displacements are observed at a depth z due to a harmonic
line-load at a depth z0

C.2.1 Load acting in the x-direction

For a line-load applied in the x-direction, the FRF’s for displacement in the x-direction

(H layer
xx ) and in the z-direction (H layer

zx ) are as follows

H layer
xx (z, z0, kn, ω) =

1

2ρω2

[−ik2
n

νn

(
Eb + Ax

nEb0 + Dx
nEh

b0

)− iγn

(
Ec + Cx

nEc0 + F x
n Eh

c0

)]

(C.9)

H layer
zx (z, z0, kn, ω) =

ikn

2ρω2

[(±Eb + Ax
nEb0 −Dx

nE
h
b0

)− (±Ec + Cx
nEc0 − F x

n Eh
c0

)]
for z ≷ z0

(C.10)

where

[
r
]


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Ax
n

Bx
n

Cx
n

Dx
n

Ex
n

F x
n





=
[
s
]

(C.11)
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and

r11 = −2k2
n r12 = 0 r13 = k2

n − γ2
n

r14 = −r11E
h
b r15 = 0 r16 = −r13E

h
c

r21 = −2 r22 = 1 r23 = 1

r24 = −r21E
h
b r25 = −r22E

h
c r26 = −r23E

h
c

r31 =
−ks2

νn

+
2k2

n

νn

r32 = 0 r33 = 2γn

r34 = r31E
h
b r35 = 0 r36 = r33E

h
c

r41 = r11E
h
b r42 = 0 r43 = r13E

h
c

r44 = −r11 r45 = 0 r46 = −r13

r51 = r21E
h
b r52 = r22E

h
c r53 = r23E

h
c

r54 = −r21 r55 = −r22 r56 = −r23

r61 = r31E
h
b r62 = 0 r63 = r33E

h
c

r64 = r31 r65 = 0 r66 = r33

(C.12a)

s1 = −2k2
nEb1 + (−k2

s + 2k2
n) Ec1

s2 = −2Eb1 + 2Ec1

s3 =

(
k2

s

νn

− 2k2
n

νn

)
Eb1 − 2γnEc1

s4 = 2k2
nE

h
b1 − (−k2

s + 2k2
n) Eh

c1

s5 = 2Eh
b1 − 2Eh

c1

s6 =

(
k2

s

νn

− 2k2
n

νn

)
Eh

b1 − 2γnEh
c1

(C.12b)
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Eh
b =e−iνnh Eh

b0 = e−iνn|z−h| Eh
b1 = e−iνn|h−z0| (C.13a)

Eh
c =e−iγnh Eh

c0 = e−iγn|z−h| Eh
c1 = e−iγn|h−z0| (C.13b)

C.2.2 Load acting in the z-direction

For a line-load applied in the z-direction, the FRF’s for displacement in the x-direction

(H layer
xz ) and in the z-direction (H layer

zz ) are as follows

H layer
xz (z, z0, kn, ω) =

ikn

2ρω2

[(±Eb + Az
nEb0 −Dz

nE
h
b0

)− (±Ec + Bz
nEc0 − Ez

nE
h
c0

)]
for z ≷ z0

(C.14)

H layer
zz (z, z0, kn, ω) =

1

2ρω2

[
−iνn

(
Eb + Az

nEb0 + Dz
nEh

b0

)− ik2
n

γn

(
Ec + Bz

nEc0 + Ez
nE

h
c0

)]

(C.15)

where
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]

(C.16)
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and
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γn

r23 = γn

r24 = r21E
h
b r25 = r22E

h
c r26 = r23E

h
c

r31 = −ks2 + 2kn2 r32 = −2kn2 r33 = 0

r34 = −r31E
h
b r35 = −r32E

h
c r36 = 0

r41 = r11E
h
b r42 = r12E

h
c r43 = 0

r44 = r11 r45 = r12 r46 = 0

r51 = r21E
h
b r52 = r22E

h
c r53 = r23E

h
c

r54 = r21 r55 = r22 r56 = r23

r61 = r31E
h
b r62 = r32E

h
c r63 = 0

r64 = −r31 r65 = −r32 r66 = 0

(C.17a)

s1 = 2νnEb1 +

(
k2

n

γn

− γn

)
Ec1

s2 = 2νnEb1 +

(
k2

n

γn

− γn

)
Ec1

s3 = (−k2
s + 2k2

n) Eb1 − 2k2
nEc1

s4 = 2νnE
h
b1 +

(
k2

n

γn

− γn

)
Eh

c1

s5 = 2νnE
h
b1 +

(
k2

n

γn

− γn

)
Eh

c1

s6 = (k2
s − 2k2

n) Eh
b1 + 2k2

nEh
c1

(C.17b)
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Figure C.3: Analytical layered halfspace where displacements are observed at layer interface (B) due
to a harmonic line-load P applied at the surface (A)

C.3 Layered Halfspace - Surface Load, Observation

at Layer Interface

The analytical Green’s function for a horizontally layered halfspace can be derived from

the Green’s functions detailed above. Consider the TLM verification example depicted

in Figure C.3. A harmonic line-load is applied on the surface and the displacement at

the layer interface is observed.

If the systems are separated as depicted in Figure C.4, the equations of motions for

a given wavenumber kn and frequency ω can be written as follows





uA

uB1





=




HAA HAB

HBA HBB








P

FB1





(C.18a)

uB2 = GBBFB2 (C.18b)

where Hij are the layer’s 2 × 2 transfer functions for the displacement at i due to a

load applied at j; GBB is the 2× 2 transfer function for a driving-point response on the

surface of the halfspace (i.e. surface B).
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Figure C.4: Layered halfspace subjected to a surface load separated into its subsystems showing internal
displacements and internal loads

Displacement compatibility and force equilibrium require

uB1 = uB2 = uB (C.19a)

FB1 = −FB2 (C.19b)

Subbing these requirements into Equation C.18 results in the coupled equations for the

displacement at the layer interface due to a load applied at the surface of the horizontally

layered halfspace

uB =
(
I + HBBG−1

BB

)−1
HBAP. (C.20)

C.4 Layered Halfspace - Buried Load, Observation

at Surface

To validate the TLM model for tunnel loading, the analytical transfer function for the

response at the surface of a layered halfspace due to a buried load is required. When the

systems are separated as depicted in Figure C.5, the equations of motions for a given
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Figure C.5: Layered halfspace subjected to a buried load separated into its subsystems showing internal
displacements and internal loads

wavenumber kn and frequency ω can be written as follows





uA

uB1





=




HAA HAB

HBA HBB








FA

FB1





(C.21a)





uB2

uO





=




GBB GBO

GOB GOO








FB1

P





(C.21b)

where Hij are the 2×2 transfer functions for the displacement at i due to a load applied

at j; Gij are the halfspace’s 2 × 2 transfer functions for a displacement at i due to a

load applied at j.

Displacement compatibility and force equilibrium require

uB1 = uB2 = uB (C.22a)

FA = 0 (C.22b)

FB1 = −FB2 (C.22c)
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Subbing these requirements into Equation C.21 results in the coupled equations for the

displacement at the surface of a layered halfspace due to a load applied at depth in the

lower-halfspace

uA = HAB (HBB + GBB)−1 GBOP. (C.23)





Appendix D

Boundary Element Method in Plane

Strain Dynamics

The boundary element method (BEM) in dynamics is a numerical technique based on

integral equation formulations of the equations of motion for an elastic continuum using

basic field variables (i.e. displacements, tractions, etc.) [22]. The characteristic benefit

to the BEM is that only the boundary needs to be discretized opposed to full-domain

techniques such as finite element methods (FEM) or finite difference methods (FDM)

which require discretization of the entire domain. Numerous books have been written

on the subject of BEM in dynamics including Dominguez [22], Becker [10] and Manolis et

al. [100]. This appendix is meant only to introduce the method to the reader; please refer

to the reference material for full details.

173
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D.1 Fundamental Solution and the Boundary Inte-

gral Formulation

The general field equation for the elastodynamics fullspace in plane strain subjected to

a unit lineload can be written as [22]

c2
1∇∇u− c2

2∇×∇× u− ∂2u

∂t2
= −δ(r) (D.1)

where c1 is the P-wave velocity, c2 is the S-wave velocity, and λ and µ are Lamé constants

as defined in Appendix A. The remaining properties are the material density ρ, the

Dirac delta function δ, the distance between the load point and observation point r, and

the displacement vector u. The above equations hold when damping is included using

complex material properties, as outlined in Appendix A.

Equation D.1 can be solved by assuming the loading and resultant displacement are

harmonic and decomposing u into its irrotational and equivolumial parts as follows

u∗lk =
1

4πρc2
2

[
ψδlk − χ

∂r

∂l

∂r

∂k

]
(D.2a)

p∗lk =
1

4π

[(
dψ

dr
− χ

r

)(
δlk

∂r

∂n
+

∂r

∂k

∂n

∂l

)

−2χ

r

(
∂n

∂k

∂r

∂l
− 2

∂r

∂l

∂r

∂k

∂r

∂n

)
− 2

∂χ

∂r

∂r

∂l

∂r

∂k

∂r

∂n

+

(
c2
1

c2
2

− 2

)(
∂ψ

∂r
− ∂χ

∂r
− 2χ

r

)
∂r

∂l

∂n

∂k

]

(D.2b)

where u∗lk is the displacement in the k-direction due to a unit load applied in the l-

direction, p∗lk is the traction component in the k-direction on a surface whose unit

external normal is n due to a unit load applied in the l-direction, δlk is the Kronecker

delta function, and r is the distance from the point of interest to the load point (see
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Figure D.1: Depiction of the resultant displacement vector u∗ and traction vector p∗ due to a unit
lineload δ(r) acting at a distance r in a fullspace

Figure D.1). The displacement and traction parameters are starred because these are

the solutions for a unit load in a fullspace and are therefore commonly referred to as

the Green’s functions of the formulation.

Now let Ω represent an elastic region within the plane strain fullspace with a bound-

ary defined by Γ. If body forces are ignored (valid assumption since vibrations are small

amplitude about an equilibrium position), the integral representation of the displace-

ment response u at an internal point i is [22]

ui
l +

∫

Γ

p∗lkukdΓ =

∫

Γ

u∗lkpkdΓ (D.3)

where uk and pk are the displacement and traction vectors on the boundary of Ω in

the k-direction, and u∗lk and p∗lk are the fundamental solutions for displacements and

tractions in a fullspace along a path defined by Γ.

Since Equation D.3 is valid for every point in Ω, including those on Γ, this expression

can be applied to every point on the boundary to produce a system of equations which,

once solved, gives the boundary values. However, when point i is taken to the boundary

the integrals develop a singularity. Dominguez [22] shows that a Cauchy Principal Value

integral can be applied which transforms Equation D.3 to

ci
lku

i
k +

∫

Γ

p∗lkukdΓ =

∫

Γ

u∗lkpkdΓ (D.4)
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Figure D.2: Two-dimensional body divided into constant boundary elements

where ci
lk =

1

2
δlk is valid for boundary nodes.

D.2 Numerical Solution

For a plane strain problem, the displacement and traction vectors are defined as

u =





u1

u2





; p =





p1

p2





(D.5)

and the Green’s functions of the formulation as

u∗ =




u∗11 u∗12

u∗21 u∗22


 ; p∗ =




p∗11 p∗12

p∗21 p∗22


 (D.6)

hence Equation D.4 can be written as

1

2
ui +

∫

Γ

p∗udΓ =

∫

Γ

u ∗ pdΓ (D.7)

Let the boundary Γ be discretized into N elements. Numerous shape functions can

be applied to define the variation in field variable across the element [10]; for simplicity

assume a constant shape function meaning each element is defined by a single, central

node and the field variable is constant over the whole element as shown in Figure D.2.
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This allows Equation D.7 to be written as

1

2
ui +

N∑
j=1

[∫

Γj

p∗dΓ

]
uj =

N∑
j=1

[∫

Γj

u∗dΓ

]
pj (D.8)

where the boundary integrals have been written as a summation of integrals along

the elements, and the elemental displacements and tractions (uj and pj) can be taken

outside the integrals as they are constant over the element.

The integrals can be recognized as 2 × 2 matrices which relate the node of interest

i with the node of the integration element j allowing Equation D.8 to be written in

matrix form as
N∑

j=1

Hijuj =
N∑

j=1

Gijpj for i = 1, 2, . . . , N (D.9)

where

Hij =





∫
Γj

p∗dΓ +
1

2
; i = j

∫
Γj

p∗dΓ ; i 6= j

(D.10a)

Gij =

∫

Γj

u∗dΓ (D.10b)

When Equation D.9 is applied to all boundary elements, the resulting system of equa-

tions is given by

HG = UP (D.11)

where the influence matrices H and G are 2N × 2N . The computation of the influence

coefficients integrals is generally done numerically as they contain a mixture of Bessel

functions which makes an analytical solution difficult to find (see Dominguez [22] for a

computationally efficient Gaussian-quadrature method).

The final consideration is the application of the boundary conditions; at some nodes

the displacement may be constrained while at others the known tractions may be ap-

plied. Standard matrix algebra is applied to move all unknowns to the left-hand side of
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Equation D.11 and all known parameters to the right, resulting in a standard system of

equations

AX = F (D.12)

where X represents all unknowns (i.e. displacements and tractions) in the problem.



Appendix E

The PiP Derivation in 3D

A long tunnel of circular cross-section buried in a fullspace can be conceptualized as

an infinitely long tube surrounded by soil of infinite extend. This arrangement can be

simulated as shown in Figure E.1 using an inner pipe (i.e. the tunnel) coupled to an outer

pipe with infinite outer radius (i.e. the soil). Since the wall thickness of the inner pipe

is thin compared to its radius, cylindrical thin-shell theory is used to model the tunnel’s

response. The thick-shell response of the tunnel is modeled using elastic continuum

equations. The following sections show the derivation of the coupled tunnel-soil model

as developed by Forrest [33].

E.1 3D Cylindrical Shell Equations

The general dynamic equations for a three-dimensional cylindrical shell made of linear

elastic, homogeneous, isotropic materials are given by Forrest [33] as reproduced below.

These equations are based on the general shell equations derived by Volmir [154] and

Flügge [32]. Each of the three equations represents dynamic equilibrium in one of the

three principal cylindrical directions.

179
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Figure E.1: Schematic of the pipe-in-pipe arrangement: inner pipe representing the tunnel modeled as
a thin-walled cylinder (left) and outer pipe representing the soil with outer radius R2 = ∞ (right)

Longitudinal direction:

a
∂2u

∂x2
+

(1− ν)

2a

∂2u

∂θ2
+

(1 + ν)

2

∂2v

∂x∂θ
− ν

∂w

∂x

+
h2

12

[
(1− ν)

2a3

∂2u

∂θ2
+

∂3w

∂x3
− (1− ν)

2a2

∂3w

∂x∂θ2

]

+a
(1− ν2)

Eh
qx − ρa

(1− ν2)

E

∂2u

∂t2
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(E.1)

Tangential direction:
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2

∂2u

∂x∂θ
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2
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∂x2
+
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a

∂2v
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a
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+
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[
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2a

∂2v
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+
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2a

∂3w

∂x2∂θ

]
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(1− ν2)
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(1− ν2)

E

∂2v

∂t2
= 0

(E.2)
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(a)

(b)

(c)

Figure E.2: Coordinate system for three-dimensional cylindrical shell equations showing (a) the prin-
ciple directions for a typical element of the shell, (b) the corresponding displacement components and
(c) the corresponding surface stress components.

Radial direction:

ν
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∂x
+

1
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a
∂4w

∂x4
+

2

a

∂4w

∂x2∂θ2
+

1

a3

∂4w

∂θ4
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−h2

12

[
∂3u

∂x3
− (1− ν)

2a2

∂3u

∂x∂θ2
+

(3− ν)

2a

∂3v

∂x2∂θ
+

1

a3
w +

2

a3

∂2w

∂θ2

]

+a
(1− ν2)

Eh
qz − ρa

(1− ν2)

E

∂2w

∂t2
= 0

(E.3)

The displacement components ux, uθ and ur vary with time t and correspond to

the x, θ and r directions, respectively (see Figure E.2(b)). The shell is of radius a and

thickness h and has material defined by elastic modulus E, Poisson’s ratio ν and density

ρ. The net applied stress components acting on the inside surface of the shell (i.e. the

difference between the interior and exterior surface stresses) are described using two

shear tractions qx and qθ, and one normal stress qr (see Figure E.2(c)).

The loading applied to the infinitely long cylindrical shell is assumed to be harmonic
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in both space and time and provided the loading is symmetric (e.g. longitudinal and

radial loading) it takes the form

qx = Q̃xn · cos nθ · ei(ωt+ξx)

qθ = Q̃θn · sin nθ · ei(ωt+ξx)

qr = Q̃rn · cos nθ · ei(ωt+ξx).

(E.4)

The resulting displacements can be written in the form

ux = Ũxn · cos nθ · ei(ωt+ξx)

uθ = Ũθn · sin nθ · ei(ωt+ξx)

ur = Ũrn · cos nθ · ei(ωt+ξx).

(E.5)

The coefficients Ũxn, Ũθn, Ũrn, Q̃xn, Q̃θn and Q̃rn are functions of frequency ω, longi-

tudinal wavenumber ξ, and ring-mode n. For clarity the capitalization of the coefficients

indicates the frequency domain, the tilde indicates the wavenumber domain, and the

subscript n indicates the ring-mode domain.

Substituting equations E.4 and E.5 into E.1, E.2 and E.3 results in the following

relationship

[
Ã

]





Ũxn

Ũθn

Ũrn





=
−a(1− ν2)

Eh





Q̃xn

Q̃θn

Q̃rn





(E.6)
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where the
[
Ã

]
matrix is 3× 3 whose elements are calculated by

a11 =
ρa(1− ν2)

E
ω2 − aξ2 − (1− ν)

2a
n2 − (1− ν)

2a

h2

12a2
n2

a12 =
(1 + ν)

2
iξn

a13 = −νiξ +
h2

12
(iξ)3 +

h2

12a2

(1− ν)

2
iξn2

a21 = −(1 + ν)

2
iξn

a22 =
ρa(1− ν2)

E
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2
ξ2 − 1

a
n2 − a(1− ν)

2

h2

4a2
ξ2
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1

a
n +

h2

12
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2a
ξ2n
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12
(iξ)3 − h2

12a2

(1− ν)

2
iξn2

a32 =
1

a
n +

h2

12

(3− ν)

2a
ξ2n

a33 =
ρa(1− ν2)

E
ω2 − h2

12

(
aξ4 +

2

a
ξ2n2 +

1

a3
n4

)
− 1

a
+

h2

6a3
n2 − h2

12a3

(E.7)

For simplicity this can be written as

Ũn = H̃tunnelQ̃n (E.8a)

where

H̃tunnel =
−a(1− ν2)

Eh

[
Ã

]−1

(E.8b)
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Hussein shows that if the applied loading is anti-symmetric about θ = 0 (e.g. cir-

cumferential loading) a12, a21, a23 and a32 must be multiplied by −1 [61].

E.2 3D Elastic Continuum Equations

The general dynamic equations for a three-dimensional, linear elastic, homogeneous,

isotropic solid in the form of a thick-walled cylinder with finite inner radius and infinite

outer radius are given by Forrest [33] as reproduced below. These equations are based on

the work of Gazis [43]and Köpke [84]. The 3D wave equation is given by Graff [47], amongst

others, as

(λ + µ)OO · u + µO2u + ρf = ρ
∂2u

∂t2
(E.9)

where u is the displacement vector, f is the body force vector, t is time, ρ is density, and

λ and µ are Lamé’s elastic constants. The standard elastic constants can be calculated

from Lamé’s constants as follows

E = µ
3λ + 2µ

λ + µ

ν =
λ

2(λ + µ)

G = µ.

(E.10)

In the current investigation the only body forces present are due to gravity; since the

dynamic solution of interest vibrates about the equilibrium position the effect of gravity

can be neglected thus f is set to zero. The wave equation can be solved using Lamé’s

potentials in cylindrical coordinates which describe the field transformation

u = Oφ + O×H (E.11)

and

O×H = F (r, t) (E.12)
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(a)

(b)

(c)

Figure E.3: Coordinate system for three-dimensional elastic continuum in cylindrical coordinates show-
ing (a) the principle directions for a typical element, (b) the corresponding displacement components
and (c) the corresponding surface stress components.

where F is an arbitrary scalar function and r is the position vector (r, θ, z). The co-

ordinate directions used to describe r, with the corresponding displacement and stress

directions, are given in Figure E.3.

The potentials satisfy the wave equation (E.9) if

O2φ =
1

c2
1

∂2φ

∂t2
(E.13)

and

O2H =
1

c2
2

∂2H

∂t2
(E.14)

where c1 =
√

(λ + 2µ)/ρ) is the pressure wave speed of the medium and c2 =
√

µ/ρ is

the shear wave speed of the medium. The potentials are assumed to be harmonic and
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separable in the three space variables as follows

φ = f · cos nθ · ei(ωt+ξx)

Hr = gr · sin nθ · ei(ωt+ξx)

Hθ = gθ · cos nθ · ei(ωt+ξx)

Hx = gx · sin nθ · ei(ωt+ξx)

(E.15)

where f and g are functions of r, ω, ξ and n. Substituting equation E.15 into E.13 and

E.14 results in

r2f ′′ + rf ′ −
[(

ξ2 − ω2

c2
1

)
r2 + n2

]
f = 0

r2g′′x + rg′x −
[(

ξ2 − ω2

c2
2

)
r2 + n2

]
gx = 0

r2g′′θ + rg′θ −
[(

ξ2 − ω2

c2
2

)
r2 + n2 + 1

]
gθ + 2ngr = 0

r2g′′r + rg′r −
[(

ξ2 − ω2

c2
2

)
r2 + n2 + 1

]
gr + 2ngθ = 0.

(E.16)

The first two equations of E.16 are modified Bessel equations of order n. To solve the

last two equations Forrest makes use of the arbitrary scalar function in equation E.12

by setting gr = −gθ, which results in a modified Bessel equation of order (n + 1)

r2g′′r + rg′r −
[(

ξ2 − ω2

c2
2

)
r2 + (n + 1)2

]
gr = 0. (E.17)

For more information regarding this derivation refer to Forrest [33], Gazis [43], or Morse

and Feshbach [104].

Thus, the solutions to f , gx, gθ and gr can be determined from equations E.16 and
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E.17 as

f = AIn(αr) + BKn(αr)

gx = AxIn(βr) + BxKn(βr)

gr = ArIn+1(βr) + BrKn+1(βr) = −gθ

(E.18)

where α2 = (ξ2 − ω2/c2
1) and β2 = (ξ2 − ω2/c2

2), and In and Kn are modified Bessel

functions of the first and second kinds of order n, respectively. The coefficients A, B,

Ax, Bx, Ar, Br are to be determined from the boundary conditions.

Substituting equation E.15 into equation E.11 and using Hooke’s laws of general

stress-strain relations [148] the harmonic solutions for the displacement vector u and

stress vector τ can be written as follows

u =





uxx

uθθ

urr





= [S] ·
[
Ũ

]
·Cei(ωt+ξx)

τ =



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τrx

τrθ

τrr

τθθ

τθx

τxx





=




S 0

0 S


 ·

[
T̃

]
·Cei(ωt+ξx)

(E.19)
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where

[S] =




cos nθ 0 0

0 sin nθ 0

0 0 cos nθ




C =

{
A B Ax Bx Ar Br

}T

(E.20)

The coefficients for the 3× 6 matrix
[
Ũ

]
and 6× 6 matrix

[
T̃

]
are given at the end of

this section.

The displacements and surface stresses of the elastic continuum can be written in

the wavenumber-frequency domain in a similar way to the shell results (E.6)





Ũxxn

Ũθθn

Ũrrn





=
[
Ũ

]
·C and





T̃rxn

T̃rθn

T̃rrn





=
[
T̃r

]
·C (E.21)

where the 3× 6 matrix
[
T̃r

]
is the top half of the 6× 6 matrix

[
T̃

]
in E.19.
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u11 = iξIn(αr)

u12 = iξKn(αr)

u13 = −βIn(βr)

u14 = βKn(βr)

u15 = 0

u16 = 0

u21 = −n

r
In(αr)

u22 = −n

r
Kn(αr)

u23 = iξIn+1(βr)

u24 = iξKn+1(βr)

u25 = −n

r
In(βr)− βIn+1(βr)

u26 = −n

r
Kn(βr) + βKn+1(βr)

u31 =
n

r
In(αr) + αIn+1(αr)

u32 =
n

r
Kn(αr)− αKn+1(αr)

u33 = iξIn+1(βr)

u34 = iξKn+1(βr)

u35 =
n

r
In(βr)

u36 =
n

r
Kn(βr)
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t11 = 2µiξ
n

r
In(αr) + 2µiξαIn+1(αr)

t12 = 2µiξ
n

r
Kn(αr)− 2µiξαKn+1(αr)

t13 = −µ
n

r
βIn(βr)− µ(ξ2 + β2)In+1(βr)

t14 = µ
n

r
βKn(βr)− µ(ξ2 + β2)Kn+1(βr)

t15 = µiξ
n

r
In(βr)

t16 = µiξ
n

r
Kn(βr)

t21 = −2µ
(n2 − n)

r2
In(αr)− 2µ

n

r
αIn+1(αr)

t22 = −2µ
(n2 − n)

r2
Kn(αr) + 2µ

n

r
αKn+1(αr)

t23 = µiξβIn(βr)− 2µiξ
(n + 1)

r
In+1(βr)

t24 = −µiξβKn(βr)− 2µiξ
(n + 1)

r
Kn+1(βr)

t25 =

(
−2µ

(n2 − n)

r2
− µβ2

)
In(βr) + 2µ

β

r
In+1(βr)

t26 =

(
−2µ

(n2 − n)

r2
− µβ2

)
Kn(βr)− 2µ

β

r
Kn+1(βr)

t31 =

(
2µ

(n2 − n)

r2
− λξ2 + (λ + 2µ)α2

)
In(αr)− 2µ

α

r
In+1(αr)

t32 =

(
2µ

(n2 − n)

r2
− λξ2 + (λ + 2µ)α2

)
Kn(αr) + 2µ

α

r
Kn+1(αr)

t33 = 2µiξβIn(βr)− 2µiξ
(n + 1)

r
In+1(βr)

t34 = −2µiξβKn(βr)− 2µiξ
(n + 1)

r
Kn+1(βr)

t35 = 2µ
(n2 − n)

r2
In(βr) + 2µ

n

r
βIn+1(βr)

t36 = 2µ
(n2 − n)

r2
Kn(βr)− 2µ

n

r
βKn+1(βr)
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t41 =

(
−2µ

(n2 − n)

r2
+ λ(α2 − ξ2)

)
In(αr) + 2µ

α

r
In+1(αr)

t42 =

(
−2µ

(n2 − n)

r2
+ λ(α2 − ξ2)

)
Kn(αr)− 2µ

α

r
Kn+1(αr)

t43 = 2µiξ
(n + 1)

r
In+1(βr)

t44 = 2µiξ
(n + 1)

r
Kn+1(βr)

t45 = −2µ
(n2 − n)

r2
In(βr)− 2µ

n

r
βIn+1(βr)

t46 = −2µ
(n2 − n)

r2
Kn(βr) + 2µ

n

r
βKn+1(βr)

t51 = −2µiξ
n

r
In(αr)

t52 = −2µiξ
n

r
Kn(αr)

t53 = µ
n

r
βIn(βr)− µξ2In+1(βr)

t54 = −µ
n

r
βKn(βr)− µξ2Kn+1(βr)

t55 = −µiξ
n

r
In(βr)− µiξβIn+1(βr)

t56 = −µiξ
n

r
Kn(βr) + µiξβKn+1(βr)

t61 =
(
λα2 − (λ + 2µ)ξ2

)
In(αr)

t62 =
(
λα2 − (λ + 2µ)ξ2

)
Kn(αr)

t63 = −2µiξβIn(βr)

t64 = 2µiξβKn(βr)

t65 = 0

t66 = 0
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E.3 The Coupled Tunnel-Soil Equations

The coupling of the thin-walled tunnel to the thick-walled soil require three sets of

boundary conditions to be satisfied:

1. The stresses on the thin-shell are equal to the summation of the applied loading

plus the reactionary stressed developed at the interface between the tunnel and

soil (stress equilibrium)

2. The displacements of the tunnel shell and soil continuum must be equivalent at

the interface (displacement compatibility)

3. The displacements of the soil continuum must decay to zero as the radius from

the center of the tunnel approaches infinity (radiation condition)

Consider the third condition. Recall from E.21 that the displacement and stress compo-

nents of the continuum are expressed in terms of modified Bessel functions (e.g. In and

Kn). Only the modified Bessel function of the second kind K decays for all arguments

as r approaches infinity, thus all coefficients in E.21 associated with modified Bessel

functions of the first kind I must be set to zero to satisfy the radiation condition

A = Ar = Ax = 0

⇒ C = {0 B 0 Bx 0 Br}T

(E.22)

Therefore the displacements and stresses in a thick-shell continuum with infinite outer

radius can be written as follows (note the coordinate system of the tunnel shell is adopted

to simplify the coupling of the two systems)





Ũxn

Ũθn

Ũrn





=





Ũxxn

Ũθθn

−Ũrrn





=




u12 u14 u16

u22 u24 u26

−u32 −u34 −u36








B

Bx

Br





=
[
Ũ∞

]
r=r1

·B (E.23)
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and





T̃xn

T̃θn

T̃rn





=





−T̃rxn

−T̃rθn

T̃rrn





=




−t12 −t14 −t16

−t22 −t24 −t26

t32 t34 t36








B

Bx

Br





=
[
T̃∞

]
r=r1

·B (E.24)

Combining Equations E.23 and E.24 allows the relationship to be written in standard

form

Ũn = H̃soilT̃n (E.25a)

where

H̃soil =
[
Ũ∞

]
r=r1

[
T̃∞

]−1

r=r1

(E.25b)

It should be noted that if the applied loading is anti-symmetric about θ = 0 (e.g.

circumferential loading) coefficients 12, 13, 21, 32 and 33 of Ũ∞ and T̃∞ must be

multiplied by −1 [61].

Finally, combining the remaining boundary conditions and the equations of motion

for the tunnel shell (E.8) and soil continuum (E.25), the coupled tunnel-soil equations

to be written as follows

Ũn =
(
I + H̃tunnelH̃

−1

soil

)−1

H̃tunnelF̃n (E.26)

where F̃n is the applied loading vector to the inside surface of the tunnel and Ũn is the

displacement vector at the interface between the shell and continuum.

The transfer function at any radius R in the soil can be calculated simply by deriving
[
Ũ∞

]
at r = R resulting in

ŨnR
= H̃soilRT̃n (E.27a)

where

H̃soilR =
[
Ũ∞

]
r=R

[
T̃∞

]−1

r=r1

(E.27b)





Appendix F

The PiP Derivation in 2D

Plane-Strain

A problem can be considered plane-strain if it involves a long, prismatic body loaded

by forces that are perpendicular to the longitudinal direction and do not vary along the

length; under these conditions it may be assumed that all cross sections will experience

the same conditions [148]. For a line-load acting in the PiP model the displacement

components uθ and ur are functions of θ and r but are independent of the longitudinal

coordinate x. Since the longitudinal displacement ux is zero it follows that the strains

normal to the θ − r plane are zero (i.e. εxx = εθx = εrx = 0) and shear stresses

associated with the longitudinal direction are also zero (i.e. τxθ = τxr = 0). This 2D

stress-strain state can be determined from the three-dimensional shell and continuum

equations outlined in Sections E.1 and E.2 by simply setting the wavenumber ξ = 0.

This is confirmed through comparison with the equations derived by Gazis [42] for plane-

strain response of thick-walled shells.

195
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F.1 Thin-shell and Continuum Equations in 2D Plane-

Strain

Converting the three-dimensional cylindrical shell equations E.4 to E.7 into plane-strain

results in stress and displacement vectors

qθ = Qθn · sin nθ · eiωt

qr = Qrn · cos nθ · eiωt.
(F.1)

and

uθ = Uθn · sin nθ · eiωt

ur = Urn · cos nθ · eiωt.
(F.2)

Notice the tildes have been omitted since the equations do not depend on the wavenum-

ber ξ. The relationship between stress and displacement in plane-strain is given below

[A]PS





Uθn

Urn





=
−a(1− ν2)

Eh





Qθn

Qrn





(F.3)

where the elements of the 2× 2 [A]PS matrix are calculated as follows

aPS
11 =

ρa(1− ν2)

E
ω2 − 1

a
n2

aPS
12 =

1

a
n

aPS
21 =

1

a
n

aPS
22 =

ρa(1− ν2)

E
ω2 − 1

a
− h2

12a3
(n4 + 2n2 − 1) .

(F.4)

Similarly the three-dimensional continuum equations can be converted into plane-
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strain as follows

u =





uθθ

urr





= [S] · [U]PS ·Ceiωt

τ =





τrθ

τrr

τθθ

τxx





=




S 0

0 S


 · [T]PS ·Ceiωt

(F.5)

where

[S] =




sin nθ 0

0 cos nθ




C =

{
A B Ar Br

}T

.

(F.6)

The coefficients for the 2× 4 matrix [U]PS and 4× 4 matrix [T]PS are given at the end

of this section.

As before, the displacements and surface stresses of the elastic continuum can be

written in the wavenumber-frequency domain in a similar way to the shell results (F.3)





Ũxxn

Ũθθn

Ũrrn





=
[
Ũ

]
·C and





T̃rxn

T̃rθn

T̃rrn





=
[
T̃r

]
·C (F.7)

where the 3× 6 matrix
[
T̃r

]PS

is the top half of the 6× 6 matrix
[
T̃

]PS

in F.5.
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uPS
11 = −n

r
In(αr)

uPS
12 = −n

r
Kn(αr)

uPS
13 = −n

r
In(βr)− βIn+1(βr)

uPS
14 = −n

r
Kn(βr) + βKn+1(βr)

uPS
21 =

n

r
In(αr) + αIn+1(αr)

uPS
22 =

n

r
Kn(αr)− αKn+1(αr)

uPS
23 =

n

r
In(βr)

uPS
24 =

n

r
Kn(βr)
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tPS
11 = −2µ

(n2 − n)

r2
In(αr)− 2µ

n

r
αIn+1(αr)

tPS
12 = −2µ

(n2 − n)

r2
Kn(αr) + 2µ

n

r
αKn+1(αr)

tPS
13 =

(
−2µ

(n2 − n)

r2
− µβ2

)
In(βr) + 2µ

β

r
In+1(βr)

tPS
14 =

(
−2µ

(n2 − n)

r2
− µβ2

)
Kn(βr)− 2µ

β

r
Kn+1(βr)

tPS
21 =

(
2µ

(n2 − n)

r2
+ (λ + 2µ)α2

)
In(αr)− 2µ

α

r
In+1(αr)

tPS
22 =

(
2µ

(n2 − n)

r2
+ (λ + 2µ)α2

)
Kn(αr) + 2µ

α

r
Kn+1(αr)

tPS
23 = 2µ

(n2 − n)

r2
In(βr) + 2µ

n

r
βIn+1(βr)

tPS
24 = 2µ

(n2 − n)

r2
Kn(βr)− 2µ

n

r
βKn+1(βr)

tPS
31 =

(
−2µ

(n2 − n)

r2
+ λα2

)
In(αr) + 2µ

α

r
In+1(αr)

tPS
32 =

(
−2µ

(n2 − n)

r2
+ λα2

)
Kn(αr)− 2µ

α

r
Kn+1(αr)

tPS
33 = −2µ

(n2 − n)

r2
In(βr)− 2µ

n

r
βIn+1(βr)

tPS
34 = −2µ

(n2 − n)

r2
Kn(βr) + 2µ

n

r
βKn+1(βr)

tPS
41 = λα2In(αr)

tPS
42 = λα2Kn(αr)

tPS
43 = 0

tPS
44 = 0
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F.1.1 The Coupled Tunnel-Soil Equations in 2D Plane-Strain

Applying the boundary conditions outlined in Section E.3 for stress equilibrium, dis-

placement compatibility and the radiation condition results in

A = Ar = 0

⇒ C = {0 B 0 Br}T

(F.8)

Therefore the displacements and stresses in a plane-strain, thick-shell continuum with

infinite outer radius can be written as follows (note the coordinate system of the tunnel

shell is adopted to simplify the coupling of the two systems)





Ũθn

Ũrn





=





Ũθθn

−Ũrrn





=




u22 u26

−u32 −u36








B

Br





=
[
Ũ∞

]PS

r=r1

·C (F.9)

and





T̃θn

T̃rn





=




−T̃rθn

T̃rrn





=



−t22 −t26

t32 t36








B

Br





=
[
T̃∞

]PS

r=r1

·C (F.10)

where the superscript PS signifies plane-strain. Finally the coupled tunnel-soil equations

to be written as follows

[
−Eh

a(1− ν2)

[
Ã

]PS

+
[
T̃∞

]PS

r=r1

([
Ũ∞

]PS

r=r1

)−1
]




Ũθn

Ũrn





=





F̃θn

F̃rn





(F.11)

where F̃n is the applied loading vector and Ũn is the displacement vector at the interface

between the shell and continuum.



Appendix G

Equivalent internal source method

in plane-strain

The equivalent internal source method (EIS) in plane-strain uses discrete lineloads in

a fullspace to reproduce the soil loading predicted by the standard pipe-in-pipe model

subjected to an internal lineload; this is shown schematically in Figure G.1. See Ap-

pendix F for more information on the plane-strain PiP method. Hussein [61] shows that

the discrete lineloads should be arranged in a circle whose radius rEIS is smaller than

that of the tunnel r1.

Recall the standard pipe-in-pipe derivation in plain strain for a tunnel of outer radius

r1 and thickness h

−Eh

(r1)(1− ν2)
[A]PS





Uθn

Urn





=





Qθn

Qrn





(G.1)

or

[A1]
PS





Uθn

Urn





tunnel

=





Qθn

Qrn





tunnel

(G.2)
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(a) (b)

Figure G.1: Schematic of the PiP arrangement (left) and equivalent internal source arrangement (right)
to simulate a tunnel buried in a fullspace under plane-strain loading.

and for the soil with inner radius r1





Uθθn

Urrn





soil

= [U∞]PS
r1
·C (G.3)





Trθn

Trrn





soil

= [T∞]PS
r1
·C. (G.4)

The superscript PS signifying these are plane-strain derivations will be omitted for

clarity throughout the remainder of this section.

Enforcing continuity and equilibrium at the interface between the tunnel and soil

results in the coupled equation

(
[A1] + [T∞]r1 [U∞]−1

r1

)
Un = Fn (G.5)

where Fn = {0 fn}T is a line load acting on the bottom of the tunnel invert. The value

of this line load is determined using delta function form [33] [61] and can be decomposed
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Figure G.2: The core-in-pipe arrangement: a solid core of radius rEIS coupled to the inside of a hollow
cylinder with inner radius rEIS and infinite outer radius; this arrangement simulates a fullspace.

into a Fourier series around a cylinder of radius r1 as

δ(θ)

r1

eiωt =
∞∑

n=0

fn cos(nθ) · eiωt (G.6)

where f0 =
1

2πr1

, fn =
1

πr1

for n ≥ 1, and θ measured as shown in Figure G.1.

G.1 Fullspace core-in-pipe model

Consider now a fullspace modeled using the pipe-in-pipe arrangement: a solid inner

cylinder with outer radius rEIS coupled to an outer pipe with infinite outer radius and

inner radius rEIS as detailed in Figure G.2. Both the inner cylinder (core) and outer

cylinder (soil) are given the same soil properties.

The equations of motion G.3 and G.4 are used for the outer pipe with r = rEIS





Uθθn

Urrn





rEIS

= [U∞]rEIS
·C (G.7)





Trθn

Trrn





rEIS

= [T∞]rEIS
·C. (G.8)
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The equations of motion for the core can be written in a similar form





Uθθn

Urrn





rEIS

= [U0]rEIS
·B (G.9)





Trθn

Trrn





rEIS

= [T0]rEIS
·B. (G.10)

where the elements of [U0]rEIS
and [T0]rEIS

are calculated as in Appendix F in conjunc-

tion with a new boundary condition:

• the displacements of the soil continuum of the core must be finite as the radius of

the cylinder approaches zero (boundedness condition).

Note that the modified Bessel functions of the second kind (Kn) tend to infinity at zero

arguments (i.e. r = 0), therefore all coefficients associated with these functions must be

set to zero to satisfy the boundedness condition.

For simplicity in coupling the core and pipe systems, the displacements and stresses of

the continuum core are written in the coordinate system of the tunnel shell. Recall from

Figure E.3(c) that the stress directions are defined from the outward normal direction.

Since the outward normal of the core at the coupling interface is the opposite direction

to that of the pipe, the stress vector must be multiplied by −1.





Uθn

Urn





=





Uθθn

−Urrn





=




u21 u25

−u31 −u35








A

Ar





= [U0]rEIS
·B (G.11)

and





Tθn

Trn





=





Trθn

−Trrn





=




t21 t25

−t31 −t35








A

Ar





= [T0]rEIS
·B. (G.12)

Imposing displacement compatibility and stress equilibrium at the interface between
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the core and the pipe results in the following boundary conditions

Ucore
rEIS

= Upipe
rEIS

(G.13a)

and

FEIS = Tpipe
rEIS

−Tcore
rEIS

. (G.13b)

The first boundary condition gives

[U0]rEIS
·B = [U∞]rEIS

·C (G.14)

and the second boundary condition gives

FEIS = [T∞]rEIS
·C− [T0]rEIS

·B. (G.15)

Solving for B in Eq. G.14 and subbing into Eq. G.15 gives

FEIS =
(
[T∞]rEIS

− [T0]rEIS
[U0]

−1
rEIS

[U∞]rEIS

)
C. (G.16)

The value of C can be determined by forcing the displacement at radius r1 to be equal

to that calculated using the PiP formulation given in Eq. G.5 as

C = [U∞]−1
r1

[Un]PiP . (G.17)

Therefore, the final equation giving the EIS vector in terms of the PiP displacement

vector at the tunnel-soil interface is

FEIS =
(
[T∞]rEIS

− [T0]rEIS
[U0]

−1
rEIS

[U∞]rEIS

)
[U∞]−1

r1
[Un]PiP . (G.18)

The FEIS vector is in the ring mode domain for a radius of rEIS (note the subscript
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n in Eq. G.18). The cartesian value of a particular force at a discrete location can be

determined using a standard inverse Fourier expansion.
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