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abstract

PURPOSE Biologic heterogeneity is a feature of diffuse large B-cell lymphoma (DLBCL), and the existence of
a subgroup with poor prognosis and phenotypic proximity to Burkitt lymphoma is well known. Conventional
cytogenetics identifies some patients with rearrangements of MYC and BCL2 and/or BCL6 (double-hit lym-
phomas) who are increasingly treated with more intensive chemotherapy, but a more biologically coherent and
clinically useful definition of this group is required.

PATIENTS AND METHODS We defined a molecular high-grade (MHG) group by applying a gene expression–
based classifier to 928 patients with DLBCL from a clinical trial that investigated the addition of bortezomib to
standard rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) therapy. The
prognostic significance of MHG was compared with existing biomarkers. We performed targeted sequencing of
70 genes in 400 patients and explored molecular pathology using gene expression signature databases.
Findings were validated in an independent data set.

RESULTS The MHG group comprised 83 patients (9%), with 75 in the cell-of-origin germinal center B-cell-like
group. MYC rearranged and double-hit groups were strongly over-represented in MHG but comprised only one
half of the total. Gene expression analysis revealed a proliferative phenotype with a relationship to centroblasts.
Progression-free survival rate at 36 months after R-CHOP in the MHG group was 37% (95% CI, 24% to 55%)
compared with 72% (95% CI, 68% to 77%) for others, and an analysis of treatment effects suggested a possible
positive effect of bortezomib. Double-hit lymphomas lacking the MHG signature showed no evidence of worse
outcome than other germinal center B-cell-like cases.

CONCLUSION MHG defines a biologically coherent high-grade B-cell lymphoma group with distinct molecular
features and clinical outcomes that effectively doubles the size of the poor-prognosis, double-hit group. Patients
with MHG may benefit from intensified chemotherapy or novel targeted therapies.
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INTRODUCTION

Aggressive B-cell non-Hodgkin lymphomas, including
diffuse large B-cell lymphoma (DLBCL) and Burkitt
lymphoma (BL), comprise a heterogeneous class of
related malignancies for which response and survival
on standard treatment vary substantially, with signifi-
cantly worse outcomes in some subtypes. DLBCL
incidence is high and carries a significant disease
burden,1 whereas BL is a distinct and highly pro-
liferative entity that requires substantially more
intensive chemotherapy. Within DLBCL, the cell-of-
origin (COO) variants germinal center B-cell-like (GCB)
and activated B-cell-like (ABC) DLBCL have been
defined by gene expression patterns.2 These have
different underlying molecular pathology and prog-
nosis, but internal heterogeneity in their genetic and
phenotypic features indicates that further stratification
is necessary for precision treatment.3

Several groups recently have considered DLBCL
stratification by using integrated genetic information,
providing prognostic models,4 or separating patients
further into smaller subgroups on the basis of shared
genetic features.5,6 Earlier work identified patients with
key chromosomal rearrangements of MYC and BCL2
and/or BCL6 genes (double and triple hits) that cor-
related with poor response to standard therapy.7,8MYC
rearrangement (MYC-R) is a feature shared with BL,
and such tumors often have some BL-like genomic
features and patterns of gene expression.9,10 Gene
expression profiling also has been used to distinguish
DLBCL and BL,11,12 but intermediate categories of
high-grade DLBCL remain, including those with
double hits, those whose overall pattern of gene ex-
pression resembles that of BL, and those that strongly
express both MYC and BCL213 proteins, for which the
optimal group definition and treatment choices are still
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unclear. These MYC and BL-related groups do not feature
clearly in the recent genetic classifications,5,6 but they are
present in two new WHO designations as high-grade B-cell
lymphoma with MYC and BCL2 and/or BCL6 translocation
and high-grade B-cell lymphoma not otherwise specified.14

The difficulty in defining the optimum approach to this
group is partly explained by the low frequency of groups
such as double-hit lymphomas, and the absence of a clear
biologic definition. With the benefit of a large clinical trial
data set, we suggest here a unifying definition of a mo-
lecular high-grade (MHG) class that is based on gene
expression and propose that it should form part of our
evolving understanding of DLBCL.

The Randomized Evaluation of Molecular-Guided Therapy
for DLBCL With Bortezomib (REMoDL-B) clinical trial15

tested standard therapy for DLBCL (rituximab, cyclo-
phosphamide, doxorubicin, vincristine, and prednisolone
[R-CHOP]) against its combination with the proteasome
inhibitor bortezomib (RB-CHOP). The hypothesis was that
bortezomib indirectly inhibits the nuclear factor kappa-
light-chain-enhancer of activated B cells pathway be-
lieved to be specifically active in the ABC variant.16 We
present our analysis of the trial data focused on the MHG
group by showing that a biologically coherent and dis-
tinctive group with significantly poorer prognosis can be
identified and validated in independent data. We suggest
that this group should be targeted in the future with pre-
cision medicine approaches.

PATIENTS AND METHODS

Data Set Summary

A total of 928 patients treated in the REMoDL-B trial15 (Data
Supplement) were included in this retrospective study.
Genome-wide gene expression data were available for all
patients from formalin-fixed paraffin-embedded tissue
samples. A subset of 400 patient samples was sequenced
for a 70-gene panel, chosen by known relevance to DLBCL,
with HaloPlexHS (Agilent Technologies, Santa Clara, CA)

target enrichment and HiSeq 4000 (Illumina, San Diego,
CA) sequencing, and analyzed for somatic mutations (Data
Supplement). Furthermore, for the purpose of comparison
with other known biomarkers, a subset of 360 patient
samples was tested for MYC, BCL2, and BCL6 chromo-
somal rearrangements with fluorescent in situ hybridization
assays, and a subset of 355 samples was tested for MYC
and BCL2 protein expression with immunohistochemistry
using tissue microarrays. Clinical features, treatment,
progression status, and follow-up data (median,
30 months) were available for all patients. The available
data are summarized in Figure 1, and full details are
provided in the Data Supplement. Methodological detail in
addition to that given here is provided in the Data
Supplement.

COO Classification and the MHG Subgroup

Gene expression data–based COO classification was per-
formed in the trial with the DLBCL automatic classifier17 in
real-time for random assignment to R-CHOP or RB-CHOP
in the second to sixth treatment cycles. For this analysis, the
COO classification was repeated with the same method to
take advantage of higher-quality samples that became
available for some patients after randomization and im-
proved data normalization over the complete trial data set.
The overall concordance between this retrospective COO
classification (255 ABC, 543 GCB, and 130 unclassified
[UNC]) and the real-time prospective classification (244
ABC, 475 GCB, and 199 UNC) from the trial randomization
was 87%. The main change between prospective and
retrospective COO DLBCL automatic classification was the
reduction of UNC patients who were reassigned to ABC and
GCB in the retrospective classification. The classification
shift between GCB and ABC was low (4.5%). Full details of
the prospective and retrospective classifications are pro-
vided in the Data Supplement.

Our previous work had shown that patients with DLBCL with
a BL-like pattern of gene expression had poor prognosis.18

Accordingly, we applied the gene expression classifier
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FIG 1. Data set summary. The analysis included 928 patients from the Randomized Evaluation of Molecular-
Guided Therapy for Diffuse Large B-Cell Lymphoma With Bortezomib (REMoDL-B) clinical trial. All had full
clinical data (diagnostic variables, treatment, treatment response, progression status, and follow-up time) and
whole-genome expression profiling assayed by the DASL version 4 array (Illumina, San Diego, CA). A subset of
400 patients was analyzed for somatic mutations with a targeted 70-gene panel. In addition, 360 patients were
tested for MYC, BCL2, and BCL6 rearrangements by fluorescent in situ hybridization (FISH), and 355 patients
were tested for MYC and BCL2 protein expression with immunohistochemistry (IHC).

Journal of Clinical Oncology 203

Definition of Molecular High-Grade Lymphoma

Downloaded from ascopubs.org by 90.205.25.229 on January 25, 2019 from 090.205.025.229
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.



developed in that work to REMoDL-B patients, using all
those with BL and DLBCL in our local database for the
normalization background, to define the MHG class. Of
note, the definition of the MHG class was determined in
previous work with an earlier data set and was not trained or
determined in any way from the REMoDL-B trial data.
Conventional diagnosis of all identified patients with MHG
was checked for this study (Data Supplement) and in-
dicated that this group had DLBCL by morphology and
immunophenotype, thus excluding the possibility of con-
tamination with patients with BL.

External Validation

Although the MHG group was defined independently
of the clinical trial data, we validated it further on
another independent and recently published data set4

(European Genome-Phenome Archive study accession
EGAS00001002606) by using the core set of 624 pa-
tients whose gene expression profiles were examined in
that study by RNA sequencing. Adaptation of our clas-
sifier to these data was straightforward because the
classifier was designed and tested18 for cross-platform
applicability. We note, however, that there are no di-
agnoses of BL in this data set, which could have a minor
effect on the overall normalization, and that in this data
set four classifier genes (BMP7, TCL6, SOX11, and
C7orf10) had very low estimated expression levels from
the RNA sequencing data. The classifier, therefore, was
retrained using the original training data,18 with the gene
set reduced by these four genes for application to this
data set. COO classification was that provided by the
authors. Analysis of mutation frequencies in this data set
used the 150 identified driver genes from the original
article filtered by at least 5% mutation frequency in at
least one subgroup and significantly different frequency
(Fisher’s exact P, .05) between any two groups of MHG,
GCB, and ABC.

Statistical Analysis

All survival analyses were carried out using the survival
package in R (https://cran.r-project.org), using single-
factor and multivariable Cox proportional hazards re-
gression models and likelihood ratio tests. Associations in
count data related to clinical variables, chromosomal
rearrangements, mutations, and so forth were analyzed
with Fisher’s exact test. For continuous variables, dif-
ferences between groups were tested with Mann-Whitney
U or t tests as appropriate. All quoted P values are two-
sided.

RESULTS

Definition and Clinical Outcome of MHG Lymphoma

Our gene expression classifier assigned 83 REMoDL-B
patients as MHG (9%; Fig 2). Seventy-five patients in the
MHG group (90%) were within the original GCB group
(Fig 2A) and were considered separately in the subsequent

analysis, with GCB, ABC, and UNC referring (unless oth-
erwise stated) to patients within those classes but not
identified as MHG. A full analysis of associations between
the COO and MHG groups and other clinical prognostic
factors (Data Supplement) showed that MHG has a signif-
icantly higher International Prognostic Index19 (IPI; P =
.004), tumor bulk (P = .007), and stage (P = .06). Median
lactate dehydrogenase levels in patients with MHG were
higher by almost 1.5-fold (P , .001), which reflects higher
proliferation and cell turnover.

Significant differences in progression-free survival (PFS)
and overall survival were observed between MHG and other
COO groups. After treatment with R-CHOP, three-year PFS
rate estimates were 37% for MHG, 78% for GCB, 64% for
ABC, and 65% for UNC (Fig 2B-2E). Multivariable Cox
proportional hazards regression models were used to as-
sess the additional prognostic information provided by the
MHG group (Table 1). The first model showed that MHG
provided additional information to that from clinical vari-
ables as encapsulated in the standard IPI (P , .001), and
the second showed that MHG provided additional in-
formation to relevant clinical variables from the IPI and
other COO groups. In the RB-CHOP arm (Fig 2C), the
results in the MHG group showed a nonsignificant trend
toward improvement (3-year PFS rate, 58%), which pro-
vides possible evidence of a positive effect of bortezomib
despite the small number of patients (P = .08 Fig 2E).

Molecular Characteristics of the MHG Group

To clarify the molecular characteristics of the MHG group,
we augmented the trial data set with 70 patients with
confirmed BL from a previous study18 that used the same
platform to measure gene expression (Data Supplement)
and performed differential gene expression and gene
expression signature analyses. Differential expression
analysis (Data Supplement) revealed that BL is charac-
terized by a large number of upregulated genes compared
with both GCB (2,483 genes) and MHG (1,784 genes). In
contrast, the comparison of MHG and GCB revealed
only 382 upregulated genes. Downregulated genes had
a similar pattern, and together, these figures indicate
that MHG is an intermediate group but closer to GCB
than to BL.

Gene signature databases were used to obtain functional
insights into MHG biology (Fig 3). Figure 3B shows the
results from a compact and lymphoma-enriched data-
base20 for patients with mutation data available (an analysis
of all patients revealed the same patterns). To simplify the
analysis, signatures were first clustered, each cluster was
named according to the function of its constituent signa-
tures and their genes, and expression values were plotted in
the heat map for a chosen representative signature for each
cluster. This shows that MHG and BL share high expression
of signatures that contain cell cycle genes, ribosome bio-
genesis, MYC overexpression, and TCF3 targets, which
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suggests a shared proliferative phenotype. Of note, BL and
MHG showed high expression of the germinal center
centroblast (dark zone) signature and lower expression of
the germinal center centrocyte (light zone) signature rel-
ative to other subgroups.21 (We note that some patients with
ABC showed relatively high expression of both centrocyte
and centroblast signatures, which is likely due to cell cycle
genes in the latter signature and may reflect proliferative
ABCs that resemble plasmablasts.) Signatures that
show low expression in MHG and BL include those involved
with MHC class II, stromal, and immune response. Of note,

our differential expression analysis shows that FOXP1,
which has a number of functions, including the control of
apoptotic genes, immune response signatures, and MHC
class II,22,23 is upregulated in BL and MHG relative to GCB.
A more comprehensive gene set enrichment analysis24

using MSigDB25 to analyze the differential expression
gene lists (Data Supplement) confirmed these results.
Somatic mutation data (Fig 3A; Data Supplement) revealed
the expected associations for the ABC and GCB groups,26,27

with the former enriched for mutations in MYD88, PIM1,
CD79B, BTG2, TBL1XR1, and PRDM1 and the latter for
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FIG 2. Retrospective Randomized Evaluation of Molecular-Guided Therapy for Diffuse Large B-Cell LymphomaWith Bortezomib (REMoDL-B) trial analysis
with the molecular high-grade (MHG) group. (A) Number of REMoDL-B patients with standard cell-of-origin (COO) classification (inner circle) and with
MHG patients separated into a new class (outer circle). For the latter, the overall distribution between classes is shown in the histogram. (B) Progression-
free survival (PFS) curves for rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP)–treated patients by classification, with
MHG as a separate class. (C) As in (B) but for patients treated with R-CHOP with the proteasome inhibitor bortezomib (RB-CHOP). (D) As in (B), but overall
survival (OS) for all patients. (E) Progression-free survival for MHG patients separated by treatment. P values given for overall difference in survival are from
the likelihood ratio test and for individual groups with reference to the best-surviving group from a Cox proportional hazards regression model. ABC,
activated B-cell-like; GCB, germinal center B-cell-like; HR, hazard ratio; NA, not applicable; UNC, unclassified.
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BCL2, EZH2, KMT2D, and MEF2B. MHG had significantly
higher mutation frequencies than GCB in KMT2D, BCL2,
MYC, and DDX3X, whereas some frequent mutations in
GCB (eg, B2M, SGK1, NFKBIA) were rare in MHG. These
mutation patterns share some features (MYC, DDX3X) but
not all (KMT2D, BCL2) with BL.28,29 In a similar vein, MHG
did not have a high rate of mutation of TCF3 or its negative
regulator ID3 typical of BL.28-30 Expression of ID3 was

reduced in MHG compared with BL, whereas TCF3 was
expressed at similar levels (Data Supplement), which
suggests that alternative regulatory mechanisms operate
for these genes in MHG.
Aberrant somatic hypermutation31 probably explains the
high mutation rates of MYC and BCL2 in MHG. Of note,
MYCmutations are associated withMYC-R within the MHG
class (12 of 16 rearranged cases also are mutated) but not

TABLE 1. Multivariable Cox Proportional Hazards Regression Model Analysis of Progression-Free Survival
Multivariable Model No. of Patients No. Progressing (%) HR (95% CI) P

MHG and IPI*

MHG

Non-MHG 845 216 (25.6) Reference

MHG 83 43 (51.8) 2.29 (1.64 to 3.19) , .001

IPI

Low (0-1) 246 43 (17.5) Reference

Intermediate (2-3) 517 143 (27.7) 1.66 (1.18 to 2.33) .004

High (4-5) 165 73 (44.2) 2.83 (1.93 to 4.14) , .001

Treatment

R-CHOP 469 139 (29.6) Reference

RB-CHOP 459 120 (26.1) 0.87 (0.68 to 1.11) .268

Molecular subtype and clinical variables†

Molecular subgroup

GCB 468 99 (21.2) Reference

ABC 249 73 (29.3) 1.44 (1.06 to 1.95) .019

UNC 128 44 (34.4) 1.59 (1.11 to 2.28) .011

MHG 83 43 (51.8) 2.79 (1.94 to 4.03) , .001

Age, years

, 60 332 96 (28.9) Reference

$ 60 596 163 (27.3) 0.93 (0.72 to 1.19) .554

Stage

I/II 286 62 (21.7) Reference

III/IV 642 197 (30.7) 1.39 (1.03 to 1.87) .032

Extra nodal involvement

No 407 97 (23.8) Reference

Yes 521 162 (31.1) 1.10 (0.84 to 1.43) .498

LDH, U/L

, 500 589 131 (22.2) Reference

$ 500 339 128 (37.8) 1.58 (1.23 to 2.04) , .001

Treatment

R-CHOP 469 139 (29.6) Reference

RB-CHOP 459 120 (26.1) 0.87 (0.68 to 1.12) .274

Abbreviations: ABC, activated B-cell-like; GCB, germinal center B-cell-like; HR, hazard ratio; IPI, International Prognostic Index; LDH, lactate
dehydrogenase; MHG, molecular high-grade; R-CHOP, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone; RB-CHOP,
rituximab and bortezomib plus cyclophosphamide, doxorubicin, vincristine, and prednisone; UNC, unclassified.

*Model 1 demonstrates the prognostic effect of the MHG group in addition to the current standard IPI on the basis of clinical variables.
†Model 2 demonstrates the prognostic effect of the MHG group in the context of cell-of-origin subgroups and the separate prognostic clinical

factors that make up the IPI. Because patients with an Eastern Cooperative Oncology Group performance status. 2 were considered ineligible
for the trial, Eastern Cooperative Oncology Group performance status was not included as a factor in the model.
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in other classes (only one of 12 rearranged cases is mu-
tated), which suggests that MYC-Rs outside MHG are bi-
ologically different.

Comparison With Other Established Biomarkers

We assessed the relationship of the MHG group to biomarkers
commonly used to characterize related high-riskDLBCL (Fig 4).

Of the 360 patients for whom fluorescent in situ hybridization
data were available, 51 (14%) had MYC-R, and 35 of these
(67%) were double-hit (also with BCL2 and/or BCL6 rear-
rangement). MostMYC-Rs (75%) were in theMHG group, with
the remainder lying in GCB and UNC (MHG enrichment by
Fisher’s exact test,P, .001), but only 48.6%and36.1%of the
MHG group wereMYC-R and double-hit, respectively (Fig 4A).

(Continued). (SHM) target genes fromSchmitz et al.6 (B)Heatmap of gene expression signatures (bottom) and associatedmutations (top; limited to geneswith
mutation frequency. 5% in at least one group and significantly different [P, .05] between any two groups of MHG, GCB, and ABC). The heat map shows the
mean gene expression level (red = high to blue = low) over genes in the chosen signature cluster representative and is augmented in 70 patients with Burkitt
lymphoma (BL) for comparison of gene expression patterns. The left-side bar chart (top) recapitulates the incidence of the corresponding mutations and their
distribution among subgroups. Fb, fibroblast; NA, not applicable; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cell; NK, natural killer cell.
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Both patients with MYC-R and patients with double-hit
status had worse PFS than those who were MYC-normal
(Data Supplement). Furthermore, irrespective of MYC-R or
double-hit status, the MHG group had a lower PFS than the
GCB group (Figs 4B and 4C). Of note, although patient
numbers were small in the GCB group, there is no evidence
of an effect of MYC-R or double-hit status on PFS, but in

MHG, both confer even lower PFS. A comparative gene
expression analysis (Data Supplement) showed no
differentially expressed genes between MYC-R and MYC-
normal within the MHG group but did show 54 differ-
entially expressed genes between MYC-R MHG and
MYC-R GCB, which supports the biologic distinctiveness
of MHG.
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A subset of 355 samples also was investigated for MYC and
BCL2 protein expression by IHC to identify cases of double-
expressors, and at the mRNA level all trial samples were
assessed for combined high expression of MYC and BCL2.
In contrast to double-hits, double-expressors were found in
significant numbers in all groups, including ABC (Figs 4D
and 4F). Although protein expression was correlated with
mRNA level (Data Supplement), the immunohistochemistry-
identified double-expressor group did not show significant
PFS separation in this study (Data Supplement). However,
patients with double-expressor status defined by mRNA
level where data covered all samples had a significantly
lower PFS and further separated patients within subtypes
(Fig 4E; Data Supplement). Patients with MHG lymphoma
nevertheless showed worse outcome regardless of double-
expressor status relative to ABC and GCB subgroups (Fig
4E). Details of the distribution of all biomarkers in the COO
and MHG groups are provided in the Data Supplement as is
a full analysis of the prognostic effects of these biomarkers.

External Validation of the MHG Group

Our analysis of the external validation data set4 is shown in
Fig 5. Seventy-two of patients (11.5%) were classified as
MHG, and consistent with the first data set (Fig 2A), the
majority (82%) of the MHG group was derived from the
GCB subtype (Fig 5A). The MHG group showed similar

associations with clinical variables (Data Supplement) and
similar mutation spectrum in the REMoDL-B and validation
data sets (Figs 5C and 5D; Data Supplement). Gene ex-
pression signature analysis in the validation data set (Fig
5D), which used our signature set from Figure 3, or the
authors’ signature set used in their original article (Data
Supplement), showed the same proliferation and
centroblast-related biology. MHG had a higher risk in these
authors’ prognostic model compared with the remaining
GCBs (P , .001) and a poor outcome, with a significantly
lower overall survival than the other GCBs (P , .001; Fig
5B).

DISCUSSION

We have defined the MHG group of patients with DLBCL
that identifies a poor-risk subgroup primarily within the
conventional GCB COO class. This encompasses most
patients with double-hit lymphoma but extends the mo-
lecular identification to more than double the size of
this poor-prognosis group, and significantly, this also re-
ciprocally enriches the remaining patients with GCB DLBCL
as a very good–prognosis group. Our analysis indicates that
MHG is a robust and distinct group that is identifiable in
independent data sets. MHG lymphoma has similarity in
gene expression to both BL and GCB-DLBCL but with

Monocytes
Serum response Fb down

T/NK cells
Mast cells

Stromal (Lenz stromal-1)
Plasma cells

Inflammation
ABC

NF-B pathway
Centrocytes

Dendritic cells
MHC class II

Immunoglobulin
BCL6 targets

B cells
MYC overexpression

Ribosomal proteins
Centroblasts

Cell cycle
Proliferation

GCB
TCF3 upregulation

BL

Monocytes
Serum response Fb down
T/NK cells
Mast cells
Stromal (Lenz stromal-1)
Plasma cells
Inflammation
ABC
NF-B pathway
Centrocytes
Dendritic cells
MHC class II
Immunoglobulin
BCL6 targets
B cells
MYC overexpression
Ribosomal proteins
Centroblasts
Cell cycle
Proliferation
GCB
TCF3 upregulation
BL

MHG GCB UNC ABC

MYD88
PIM1

CDKN2A
CD79B

ETV6
TBL1XR1

ZEB2
PIM2

SGK1
CARD11
SOCS1

B2M
IRF8

TET2
EBF1

BCL7A
CDC73
CTBA
JUNB
CD58
MET

AK1J
NF1

RHOA
BTK

CHD1
STAT6

ZFAT
NCOR1
MEF2B

PTEN
TNFRSF14

GNA13
EZH2
TP53
MYC

CREBBP
BCL2

MYD88
PIM1
CDKN2A
CD79B
ETV6
TBL1XR1
ZEB2
PIM2
SGK1
CARD11
SOCS1
B2M
IRF8
TET2
EBF1
BCL7A
CDC73
ACTB
JUNB
CD58
MET
JAK1
NF1
RHOA
BTK
CHD1
STAT6
ZFAT
NCOR1
MEF2B
PTEN
TNFRSF14
GNA13
EZH2
TP53
MYC
CREBBP
BCL2

17%
16%
8%
6%
5%
5%
4%
3%
8%
12%
10%
7%
7%
6%
5%
5%
3%
4%
3%
3%
3%
3%
3%
4%
3%
4%
7%
4%
3%
6%
2%
10%
9%
7%
11%
5%
13%
19%

1512 9 6 3 0

Expression z-Score

Subtype

ABC
MHG
GCB
UNC

D

2
1
0
−1
−2

FIG 5. (Continued).

210 © 2018 by American Society of Clinical Oncology Volume 37, Issue 3

Sha et al

Downloaded from ascopubs.org by 90.205.25.229 on January 25, 2019 from 090.205.025.229
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.



immunophenotype in keeping with DLBCL rather than
BL and a characteristic pattern of genomic mutation. The
poor prognosis for this group when treated with R-CHOP
suggests that different approaches are required: either
intensification of the type increasingly used for the
double-hit lymphomas or, potentially, targeted agents
that may preferentially affect more rapidly cycling
cells. Gene expression patterns indicate that MHG has
a highly proliferative phenotype and shares features with-
centroblasts of the germinal center dark zone in contrast to
the centrocyte or light zone features of other GCBs.21

Recent analyses have suggested new taxonomies of DLBCL
on the basis of genetic characteristics.5,6 Whereas Schmitz
et al6 used a data set focused strongly on the ABC and UNC
COO groups, where the MHG group would be under-
represented, Chapuy et al5 commented on the genetic
complexity of MYC and BCL2 dysregulation that is repre-
sented in more than one of their clusters. Although there
are limitations to our genetic data, which are based on
a small gene panel without germline control and do not
include copy number and other structural variations, our
data reinforce the distinction among BL, MHG, GCB, and

ABC. However, the reproducibly poor outcome in the MHG
group suggests that in this case, the gene expression state
captures biologically and clinically important features that
are not readily identified from the use of genetics alone.
Indeed, our mutation data suggest that the expression state
may result from a number of different genetic drivers, in-
cluding MYC and BCL2 rearrangements, epigenetic effects
related to mutations in KMT2D32 and EZH2, and mutations
that affect other pathways. Although only a small number of
MYC-Rs were identified outside the MHG group, their out-
comes were similar to those of the other GCBs. Our data also
indicate thatMYCmutation levels ofMYC-Rs differ between
MHG and other groups, which suggests a different biology
that could be related to different translocation partners.33

Evidence from the trial of a possible positive effect of
bortezomib in the MHG group, although lacking statistical
power, suggests a potential treatment option for this highly
aggressive subtype. In future studies, it will be important to
explore this mechanism, which seems unlikely to be me-
diated by the nuclear factor kappa-light-chain-enhancer of
activated B cells pathway that is not believed to be active in
GCB or MHG tumors.

AFFILIATIONS
1University of Leeds, Leeds, United Kingdom
2St James’ University Hospital, Leeds, United Kingdom
3University of Cambridge, Cambridge, United Kingdom
4Cancer Research UK Centre and Southampton Clinical Trials Unit,
University of Southampton, Southampton, United Kingdom
5University of Oxford, Oxford, United Kingdom
6Cantonal Hospital Aarau, Aarau/Swiss Group for Clinical Cancer
Research, Switzerland

CORRESPONDING AUTHOR
David R. Westhead, DPhil, School of Molecular and Cellular Biology,
Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT,
United Kingdom; Twitter: @universityleeds, @pwmjohnson; e-mail: d.r.
westhead@leeds.ac.uk.

EQUAL CONTRIBUTION
C.S., S.B., and F.C. are joint first authors.
M.-Q.D., P.W.M.J., and D.R.W. are joint senior authors.

PRIOR PRESENTATION
Presented at the Cambridge Lymphoma Biology International
Symposium, Cambridge, UK, July 17-18, 2018.

SUPPORT
Supported by Bloodwise grant number 15002: Precision Medicine for
Aggressive Lymphoma. The Randomized Evaluation of Molecular-Guided
Therapy for DLBCL With Bortezomib (REMoDL-B) trial was endorsed by
Cancer Research UK, reference number CRUKE/10/024, and Janssen-

Cillag provided funding. A.S. is partly funded by the National Institute for
Health Research Oxford Biomedical Research Centre. D.R.W.
acknowledges UK Medical Research Council grant MR/L01629X/1 for
infrastructure support.

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
AND DATA AVAILABILITY STATEMENT
Disclosuresprovidedby theauthors anddata availability statement (if applicable)
are available with this article at DOI https://doi.org/10.1200/JCO.18.01314.

AUTHOR CONTRIBUTIONS
Conception and design: David R. Westhead, Reuben Tooze, Catherine
Burton, Ming-Qing Du, Peter W.M. Johnson
Provision of study material or patients: Andrew Davies, Peter W.M. Johnson

Collection and assembly of data: Sharon Barrans, Francesco Cucco,
Hannah Kennedy, Rahman Uddin, Lisa Worrillow, Rebecca Chalkley,
Moniek van Hoppe, Sophia Ahmed, TomMaishman, Josh Caddy, Christoph
Mamot, Andrew Davies, Peter W.M. Johnson, David R. Westhead
Data analysis and interpretation: Chulin Sha, Sharon Barrans, Francesco
Cucco, Thomas Cummin, Michael A. Bentley, Matthew A. Care, Hannah
Kennedy, JoeS. Thompson,RebeccaChalkley, AnnaSchuh, ChristophMamot,
Reuben Tooze, Andrew Davies, Peter W.M. Johnson, David R. Westhead

Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
We thank J. Fitzgibbon, PhD, U. Klein, PhD, E. Roman, PhD, S. Crouch,
PhD, and P. Beer, PhD, for discussions and critical comments on the
manuscript.

Journal of Clinical Oncology 211

Definition of Molecular High-Grade Lymphoma

Downloaded from ascopubs.org by 90.205.25.229 on January 25, 2019 from 090.205.025.229
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.

mailto:d.r.westhead@leeds.ac.uk
mailto:d.r.westhead@leeds.ac.uk
http://ascopubs.org/doi/full/10.1200/JCO.18.01314


REFERENCES
1. Smith A, Crouch S, Lax S, et al: Lymphoma incidence, survival and prevalence 2004-2014: Sub-type analyses from the UK’s Haematological Malignancy

Research Network. Br J Cancer 112:1575-1584, 2015

2. Alizadeh AA, Eisen MB, Davis RE, et al: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503-511, 2000

3. Intlekofer AM, Younes A: Precision therapy for lymphoma--current state and future directions. Nat Rev Clin Oncol 11:585-596, 2014

4. Reddy A, Zhang J, Davis NS, et al: Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171:481-494.e15, 2017

5. Chapuy B, Stewart C, Dunford AJ, et al: Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and
outcomes. Nat Med 24:679-690, 2018

6. Schmitz R, Wright GW, Huang DW, et al: Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med 378:1396-1407, 2018

7. Akyurek N, Uner A, Benekli M, et al: Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated
with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab. Cancer 118:4173-4183, 2012

8. Snuderl M, Kolman OK, Chen YB, et al: B-cell lymphomas with concurrent IGH-BCL2 and MYC rearrangements are aggressive neoplasms with clinical and
pathologic features distinct from Burkitt lymphoma and diffuse large B-cell lymphoma. Am J Surg Pathol 34:327-340, 2010

9. Momose S, Weißbach S, Pischimarov J, et al: The diagnostic gray zone between Burkitt lymphoma and diffuse large B-cell lymphoma is also a gray zone of the
mutational spectrum. Leukemia 29:1789-1791, 2015

10. Rosenthal A, Younes A: High grade B-cell lymphoma with rearrangements of MYC and BCL2 and/or BCL6: Double hit and triple hit lymphomas and double
expressing lymphoma. Blood Rev 31:37-42, 2017

11. Dave SS, Fu K, Wright GW, et al: Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431-2442, 2006

12. Hummel M, Bentink S, Berger H, et al: A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354:2419-2430,
2006

13. Staiger AM, Ziepert M, Horn H, et al: Clinical impact of the cell-of-origin classification and the MYC/BCL2 dual expresser status in diffuse large B-cell lymphoma
treated within prospective clinical trials of the German High-Grade Non-Hodgkin’s Lymphoma Study Group. J Clin Oncol 35:2515-2526, 2017

14. Swerdlow SH, Campo E, Pileri SA, et al: The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127:2375-2390, 2016

15. Davies AJ, Barrans S, Maishman T, et al: Differential efficacy of bortezomib in subtypes of diffuse large B-cell lymphoma (DLBL): A prospective randomised
study stratified by transcriptome profiling: REMoDL-B. Hematol Oncol 35:130-131, 2017

16. Shaffer AL III, Young RM, Staudt LM: Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30:565-610, 2012

17. Care MA, Barrans S, Worrillow L, et al: A microarray platform-independent classification tool for cell of origin class allows comparative analysis of gene
expression in diffuse large B-cell lymphoma. PLoS One 8:e55895, 2013

18. Sha C, Barrans S, Care MA, et al: Transferring genomics to the clinic: Distinguishing Burkitt and diffuse large B cell lymphomas. Genome Med 7:64, 2015

19. International Non-Hodgkin’s Lymphoma Prognostic Factors Project: A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 329:987-994,
1993

20. Shaffer AL, Wright G, Yang L, et al: A library of gene expression signatures to illuminate normal and pathological lymphoid biology. Immunol Rev 210:67-85,
2006

21. Victora GD, Dominguez-Sola D, Holmes AB, et al: Identification of human germinal center light and dark zone cells and their relationship to human B-cell
lymphomas. Blood 120:2240-2248, 2012

22. Brown PJ, Wong KK, Felce SL, et al: FOXP1 suppresses immune response signatures and MHC class II expression in activated B-cell-like diffuse large B-cell
lymphomas. Leukemia 30:605-616, 2016

23. Gascoyne DM, Banham AH: The significance of FOXP1 in diffuse large B-cell lymphoma. Leuk Lymphoma 58:1037-1051, 2017

24. Subramanian A, Tamayo P, Mootha VK, et al: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A 102:15545-15550, 2005

25. Liberzon A, Subramanian A, Pinchback R, et al: Molecular signatures database (MSigDB) 3.0. Bioinformatics 27:1739-1740, 2011

26. Pasqualucci L, Trifonov V, Fabbri G, et al: Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43:830-837, 2011

27. Zhang J, Grubor V, Love CL, et al: Genetic heterogeneity of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 110:1398-1403, 2013

28. Love C, Sun Z, Jima D, et al: The genetic landscape of mutations in Burkitt lymphoma. Nat Genet 44:1321-1325, 2012

29. Schmitz R, Young RM, Ceribelli M, et al: Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490:116-120,
2012

30. Schmitz R, Ceribelli M, Pittaluga S, et al: Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harb Perspect Med 4:a014282, 2014

31. Khodabakhshi AH, Morin RD, Fejes AP, et al: Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3:1308-1319, 2012

32. Ortega-Molina A, Boss IW, Canela A, et al: The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma
development. Nat Med 21:1199-1208, 2015

33. Copie-Bergman C, Cuillière-Dartigues P, Baia M, et al: MYC-IG rearrangements are negative predictors of survival in DLBCL patients treated with immu-
nochemotherapy: A GELA/LYSA study. Blood 126:2466-2474, 2015

n n n

212 © 2018 by American Society of Clinical Oncology Volume 37, Issue 3

Sha et al

Downloaded from ascopubs.org by 90.205.25.229 on January 25, 2019 from 090.205.025.229
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.



AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held
unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about
ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Sharon Barrans

Travel, Accommodations, Expenses: HTG Molecular Diagnostics

Thomas Cummin

Research Funding: Plexxikon

Rebecca Chalkley

Research Funding: Cizzle Biotech (Inst)

Moniek van Hoppe

Employment: Leeds Teaching Hospitals NHS Trust
Travel, Accommodations, Expenses: Leeds Teaching Hospitals NHS Trust (I)

Anna Schuh

Consulting or Advisory Role: Gilead Sciences, AbbVie, Roche, Janssen
Pharmaceuticals
Research Funding: Johnson & Johnson
Travel, Accommodations, Expenses: AbbVie, Gilead Sciences

Christoph Mamot

Consulting or Advisory Role: Roche, MSD, Bristol-Myers Squibb, Boehringer
Ingelheim, Takeda Pharmaceuticals, Novartis, AstraZeneca

Catherine Burton

Honoraria: Takeda Pharmaceuticals, Roche
Consulting or Advisory Role: Celgene, Bristol-Myers Squibb
Speakers’ Bureau: Roche, Celgene
Travel, Accommodations, Expenses: Takeda Science Foundation

Reuben Tooze

Honoraria: Roche, Celgene
Research Funding: UCB
Travel, Accommodations, Expenses: Celgene

Andrew Davies

Honoraria: Gilead Sciences, Roche, Janssen Pharmaceuticals, Celgene
Consulting or Advisory Role: Gilead Sciences, Roche, Acerta Pharma, Kite
Pharma, MorphoSys, Janssen Pharmaceuticals, Celgene
Research Funding: Roche (Inst), Bayer AG (Inst), Gilead Sciences (Inst),
GlaxoSmithKline (Inst), Takeda Pharmaceuticals (Inst), Celgene (Inst),
Karyopharm Therapeutics (Inst), Acerta Pharma (Inst), ADC Therapeutics (Inst)
Expert Testimony: Roche
Travel, Accommodations, Expenses: Roche, Gilead Sciences, Celgene

Ming-Qing Du

Employment: GlaxoSmithKline (I)

Peter W.M. Johnson

Honoraria: Takeda Pharmaceuticals, Bristol-Myers Squibb, Novartis, Celgene,
Kite Pharma, Genmab, Incyte
Consulting or Advisory Role: Janssen Pharmaceuticals, Epizyme, Boehringer
Ingelheim
Research Funding: Epizyme (Inst), Janssen Pharmaceuticals (Inst)
Patents, Royalties, Other Intellectual Property: Combined use of Fc gamma
RIIb (CD32b) and CD20-specific antibodies, WO patent PCT/GB2011/051572;
EU11760819.0
Travel, Accommodations, Expenses: Zenyaku Kogyo

No other potential conflicts of interest were reported

Journal of Clinical Oncology

Definition of Molecular High-Grade Lymphoma

Downloaded from ascopubs.org by 90.205.25.229 on January 25, 2019 from 090.205.025.229
Copyright © 2019 American Society of Clinical Oncology. All rights reserved.

www.asco.org/rwc
jco.ascopubs.org/site/ifc

	Molecular High-Grade B-Cell Lymphoma: Defining a Poor-Risk Group That Requires Different Approaches to Therapy
	INTRODUCTION
	PATIENTS AND METHODS
	Data Set Summary
	COO Classification and the MHG Subgroup
	External Validation
	Statistical Analysis

	RESULTS
	Definition and Clinical Outcome of MHG Lymphoma
	Molecular Characteristics of the MHG Group
	Comparison With Other Established Biomarkers
	External Validation of the MHG Group

	DISCUSSION
	REFERENCES
	jcojcoJCOJournal of Clinical Oncology0732-183XAmerican Society of Clinical Oncology180131410.1200/JCO.18.01314ORIGINAL REPO ...


