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SUMMARY

The Linc-p21 locus, encoding a long non-coding
RNA, plays an important role in p53 signaling, cell-
cycle regulation, and tumor suppression. However,
despite extensive study, confusion exists regarding
its mechanism of action: is activity driven by the tran-
script acting in trans, in cis, or by an underlying func-
tional enhancer? Here, using a knockout mouse
model and a massively parallel enhancer assay, we
delineate the functional elements at this locus. We
observe that, even in tissues with no detectable
Linc-p21 transcript, deletion of the locus significantly
affects local gene expression, including of the cell-
cycle regulator Cdkn1a. To characterize this RNA-in-
dependent regulatory effect, we systematically inter-
rogated the underlying DNA sequence for enhancer
activity at nucleotide resolution and confirmed the
existence of multiple enhancer elements. Together,
these data suggest that, in vivo, the cis-regulatory
effects mediated by Linc-p21, in the presence or
absence of transcription, are due to DNA enhancer
elements.

INTRODUCTION

It has long been known that transcription occurs at many more

sites in the genome than encode proteins. Among the main

constituents of the resulting non-coding transcriptome are

long non-coding (lnc)RNAs, which are more than 200 nucleo-

tides in length and exhibit tissue-specific expression (Birney

et al., 2007; Mercer et al., 2009; Cabili et al., 2011; St Laurent

et al., 2015; Quinn and Chang, 2016). Although originally dis-

missed as transcriptional noise, it is now clear that several

long noncoding RNA (lncRNAs) have important biological func-

tions (Wang and Chang, 2011; Guttman and Rinn, 2012). How-

ever, the rapid creation of entire catalogs of lncRNAs—made

possible by RNA sequencing—has meant that our knowledge
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of where lncRNA genes are located far exceeds our under-

standing of their functions. Indeed, it is even unclear as to

whether the functional element at these loci is the RNA tran-

script itself or the underlying DNA sequence, which could

have enhancer activity. For example, while the Lockd locus ful-

fills all of the requirements of a lncRNA, the phenotype associ-

ated with deletion of this locus is actually due to loss of the

underlying DNA element and not the RNA transcript (Paralkar

et al., 2016).

Linc-p21 is one of the most-studied lncRNAs due to its role in

p53 signaling and relevance to human disease (Huarte et al.,

2010; Dimitrova et al., 2014; Yoon et al., 2012; Tang et al.,

2015). Indeed, since its discovery in 2010, dozens of studies

have examined Linc-p21 in human and/or mouse cell-based

assays and have collectively identified roles in a range of biolog-

ical processes including cell-cycle control, reprogramming,

apoptosis, and energy metabolism (Dimitrova et al., 2014; Bao

et al., 2015; Huarte et al., 2010; Yang et al., 2014). However,

despite being the subject of extensive study, this locus has not

yet been examined in tissues or in vivo. Moreover, confusion ex-

ists regarding the mechanism by which the Linc-p21 locus func-

tions in any context. For example, at different times this locus

has been thought to produce a trans-acting lncRNA (Huarte

et al., 2010), a cis-acting lncRNA (Dimitrova et al., 2014), or an

enhancer-derived RNA (Allen et al., 2014). Here, we aimed to

resolve this confusion by characterizing the functional elements

at the Linc-p21 locus in vivo. Using a Linc-p21 knockout mouse

model (Sauvageau et al., 2013; Goff et al., 2015), we demon-

strate that deletion of Linc-p21 results in the cis-dysregulation

of several genes, includingCdkn1a. Interestingly, this dysregula-

tion was observed across multiple tissues, even those in which

Linc-p21 RNA was not expressed, and thus cannot be due to

an RNA-dependent mechanism. To better understand how a

DNA-dependent effect might be mediated, we comprehensively

surveyed the entire Linc-p21 locus for enhancer activity using

a massively parallel reporter assay and identified multiple

enhancer elements including a conserved p53-binding site.

Collectively, we show that the Linc-p21 locus harbors DNA

enhancer elements that are directly responsible for the cis-regu-

lation of multiple genes in vivo.
rs.
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Figure 1. Linc-p21 In Vivo Deletion Overview

(A) Linc-p21/Cdkn1a locus on mouse chromosome 17. Asterisks indicate known p53 binding sites.

(B) Dendrogram showing the type and number of samples sequenced and the Jenson-Shanon distance, ameasure of total transcriptome similarity, between their

expression profiles. Wild-type is shown in black, and knockout is shown in gray.

(C) Average Linc-p21 expression profile in each tissue. Error bars represent 95% confidence interval.

(D) Heatmap depicting expression of genes significantly differentially expressed in every tissue. Log2 fold change was calculated using the average fragments per

kilobase of transcript per million reads mapped (FPKMs) for all replicates (KO/WT). See also Figure S1.
RESULTS

Deletion of Linc-p21 Results in Quantifiable Effects on
Whole-Organ Gene Expression
Themouse Linc-p21 gene resides in a 21.6-kb locus on chromo-

some 17, approximately 15 kb upstream of the cell-cycle regu-

latorCdkn1a. We previously targeted this locus for deletion using

homologous recombination in which the entire gene body and a

portion of the promoter, including the known p53-binding motif,

were replaced with a lacZ reporter that maintains transcription at

the locus (Figure 1A; Sauvageau et al., 2013). Using this reporter

mouse, we initially investigated the spatial and temporal

expression of Linc-p21 in organ development in order to identify

relevant tissues for downstream experiments (Figure S1).
Importantly, because deletion of the p53 motif meant that

endogenous Linc-p21 expression may not have been faithfully

reported by the model, we validated the observed expression

pattern in wild-type mice, confirming that Linc-p21 expression

was detectable in the tissues where lacZ was present in the

reporter mouse.

Overall, we detected differential expression of the Linc-p21 lo-

cus in different tissues, with expression being highest in striated

muscle—an observation that may relate to the role that Cdkn1a

is known to play in muscle development (Halevy et al., 1995; Guo

et al., 1995). Interestingly, we also found that transcription at this

locus was strongly decreased in adulthood (Figure S1).

Based on these results, we selected a range of embryonic tis-

sues for high throughput RNA sequencing analyses (Figure 1B;
Cell Reports 16, 2178–2186, August 23, 2016 2179



Data S1), including some in which Linc-p21 was expressed in

wild-type mice (e.g., hindlimb and heart) and others in which

there was no detectable expression (e.g., liver and lung) (Figures

1C; Data S1). We also included adult and embryonic brain sam-

ples from our previous study of whole-brain sequencing (Goff

et al., 2015). For each tissue, we conducted a comprehensive

analysis of whole-genome transcription between wild-type and

Linc-p21 knockout (Data S2). We then performed pathway anal-

ysis using the list of genes that were differentially expressed in

one ormore tissues and observed enrichment for genes involved

in cell-cycle and muscle-related processes, consistent with the

observed expression pattern of Linc-p21 (Figures S2A and S2B).

Identification of DNA Regulatory Elements within the
Linc-p21 Locus In Vivo
To better characterize the transcriptional perturbations that

occurred in the absence of Linc-p21, we next identified the

genes that were significantly differentially expressed in all of

the tissues examined. Strikingly, three of the four genes that

met these criteria (Glo1, Rnps1, and Cdkn1a) are located on

chromosome 17—the same chromosome as Linc-p21 (Fig-

ure 1D). Cdkn1a is a well-known regulator of the cell cycle, and

its dysregulation is thus in keeping with the observation that

the genes involved in cell cycle were consistently upregulated

in the knockout (Figure S2D).

To further investigate this regulatory effect upon local gene

expression, we examined whether other nearby genes within a

4-Mb region centered on Linc-p21 were similarly dysregulated

in different tissues. Of the 84 genes within this window, we

observed that eight were significantly dysregulated in one or

more of the tissues examined (four upregulated and four down-

regulated) and that a substantial proportion of the remainder

(34 of 76 genes) showed non-significant expression effects in a

similar direction in all tissues in response to Linc-p21 deletion

(Figure 2A). Notably, in each of the tissues examined, the number

of significantly dysregulated genes in proximity to the Linc-p21

locus was higher than would have been expected by chance

(based on permutation testing using 10,000 randomly selected

size-matched regions in each tissue; Figures 2B–2E; Data S3).

To provide a genome-wide context, we identified those genes

whose expression changed in the same direction across all tis-

sues (irrespective of statistical significance) and observed that

a highly significant fraction of these were located on chromo-

some 17 (91 of 698, p < 2.1 3 10�19; Figures S2C and S2E).

Such a chromosomal bias for gene expression effects is consis-

tent with multiple cis-regulatory effects arising from this locus.

To delineate the relative roles of the DNA element and the

RNA transcript in mediating these cis-regulatory effects, we

next examined the expression of Linc-p21 and Cdkn1a in wild-

type tissues and detected a positive correlation between their

RNA abundances (Figure 3A, R2 = 0.42, p = 2.4 3 10�6). For

each tissue, we then compared the reduction in Cdkn1a expres-

sion that was observed in the knockout mouse with the expres-

sion of Linc-p21 in that tissue in the wild-type. We hypothesized

that if Linc-p21 RNAwas responsible for activatingCdkn1a, then

the reduction inCdkn1a expression should be proportional to the

endogenous abundance of Linc-p21 RNA. However, this rela-

tionship was not observed. In fact, in all of the tissues examined,
2180 Cell Reports 16, 2178–2186, August 23, 2016
themagnitude of the change in expression ofCdkn1awas wholly

unrelated to the wild-type expression level of Linc-p21 in that tis-

sue (Figure 3B, p = 0.96). To consider whether this phenomenon

was limited to Cdkn1a or more widespread, we performed

pathway analysis between individual wild-type and knockout tis-

sues. This demonstrated similar enrichment for cell-cycle pro-

cesses and muscle-related processes across all tissues, even

those in which Linc-p21 was not endogenously expressed (Fig-

ure S2D; Data S3). Together this suggested that the regulatory

effects mediated by this locus were not due to either transcrip-

tion of Linc-p21 or the mature RNA transcript and implied

that another, RNA-independent regulatory mechanism must be

present.

The Linc-p21 Locus Contains Multiple Enhancer
Elements
Based on these results, we investigated whether the Linc-p21

DNA sequence might contain functional enhancer elements

that could explain the observed cis-regulatory effects. We first

examined histone modifications and transcription factor binding

sites across the locus using publically available datasets derived

from murine heart tissue. We found that the Linc-p21 gene body

and promoter have multiple features typically associated with

enhancer activity, including monomethylation of histone 3 at

lysine 4 (H3K4me) and acetylation of histone 3 at lysine 27

(H3K27ac, Figure 3C; data from Rosenbloom et al., 2013). More-

over, chromatin contact data from a genome-wide promoter

capture method, HiCap, indicated that the Linc-p21 locus and

Cdkn1a promoter physically interact through intra-chromosomal

looping (upper panel, Figure 3C; Sahlén et al., 2015). To assess

whether Linc-p21 interacts with other nearby loci, we analyzed

all of the interactions within a 4-Mb region using available data

from a complementary method, Hi-C (Dixon et al., 2012). We

found that genes that physically interact with the Linc-p21 locus

were significantly enriched for those that were dysregulated

following Linc-p21 deletion, compared to the background inter-

action rate (Figure S3A). Similar interactions were also identified

in human capture Hi-C data (Mifsud et al., 2015) between

LINC-p21 and the promoters of genes whose orthologs were

significantly dysregulated in the knockout mouse (including

CDKN1A, PPIL1, and CPNE5; Figure S3B). These findings are

consistent with the Linc-p21 locus containing regulatory DNA

elements that mediate conserved intra-chromosomal cis-regula-

tory contacts.

To test for functional DNA regulatory elements, we assessed

whether the following 1-kb regions could promote transcription

of luciferase from a reporter vector in C2C12 cells, a mouse

myoblast cell line: (1) a region surrounding the promoter and first

exon, including the conserved p53 motif, (2) a region from intron

1, and (3) a negative control from an upstream intergenic region

that has neither enhancer histone marks nor evidence of tran-

scription (Figure 4A). We observed strong activation of luciferase

activity from the Linc-p21 promoter but not the intronic region

(Figure 4B). Much of this signal was shown to be due to the

p53-binding site, as a strong decrease in luciferase activity

was observed if the 16-bp p53 motif was disrupted by site-

directed mutagenesis. Moreover, if this motif was inserted into

intron 1 (the region that previously lacked enhancer activity),
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Figure 2. Linc-p21 Transcript Is Not Required for Local Gene Regulation

(A) Summary of local transcriptional changes upon Linc-p21 deletion (±2Mb of Linc-p21). Dots represent average log2 fold change across all six tissues, and error

bars represent SE. Red indicates significant differential expression in at least one tissue.

(B–E) Expression of genes in local region (±2 Mb of Linc-p21) for E14.5 hindlimbs (B), heart (C), liver (D), and adult brain (E). In each plot, the y axis represents the

log2 FPKM fold change, and genes marked in red were significantly differentially expressed. The p value represents the probability that this number of genes

would be differentially expressed within a region of this size. Insets show Linc-p21 and lacZ expression (FPKM) in wild-type (black) and knockout (gray); error bars

represent 95% confidence interval.

See also Figure S2.
then a 29-fold increase in luciferase activity was observed.

Notably, however, this increased activity level was still much

lower than that of the native promoter (Figure 4B). Together

these results suggest that the p53motif in the Linc-p21 promoter

is a major factor in driving enhancer activity. However, because

ectopic insertion of this motif into an intronic site did not

fully recapitulate the enhancer activity of the promoter and

enhancer-related histone marks are present throughout the

gene body, we hypothesized that other as-yet-unidentified

DNA regulatory elements might be present. To investigate this

possibility, we used a massively parallel reporter assay (MPRA;

Melnikov et al., 2012) to systematically and comprehensively

interrogate the Linc-p21 locus—at nucleotide resolution—and
establish whether additional enhancer elements were present.

To do this, we synthesized a library of 2,225 individually tagged

145-nt oligos that redundantly tiled the entire Linc-p21 locus

(including the gene body and promoter; Figure 4C). This oligo

library was cloned into a GFP+ reporter vector (Melnikov et al.,

2012, 2014), and the coverage in the final pooled library was

checked by high throughput sequencing (Figure 4D). The

plasmid library was then transfected into C2C12 cells, and after

24 hr RNA was extracted and indexed libraries were constructed

and sequenced.

In each sample, the number of tags (indicative of a transcrip-

tional event) was quantified, normalized for sequencing depth,

and used to calculate the signal for each base pair of the region
Cell Reports 16, 2178–2186, August 23, 2016 2181
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Figure 3. In Vivo Evidence of Enhancer

Activity in the Linc-p21 Locus

(A) Correlation ofCdkn1a expressionwith Linc-p21

transcript expression. x axis represents Linc-p21

expression and y axis represents Cdkn1a expres-

sion in each wild-type replicate. Color indicates

the tissue of origin, and the linear regression line is

shown.

(B) Average change in Cdkn1a expression in

knockout tissues (1-KO/WT, bars, left y axis)

plotted against average wild-type Linc-p21

expression levels (red dots, right y axis); error bars

represent SE.

(C) Publically available chromatin interaction

data between Linc-p21 and Cdkn1a from HiCap

(plotted as black lines between capture probes

and gray distal regions). Publically available his-

tone mark and transcription factor binding data at

this locus. All panels are from embryonic or adult

heart tissue, except CEBPB and MyoD binding,

which are from C2C12 cells. See also Figure S3.
(Melnikov et al., 2012; Kheradpour et al., 2013; Figure S4). Using

this approach, we confirmed the enhancer activity of the p53-

binding site across multiple independent oligos. Strikingly, we

also observed four other regions of enhancer activity within the

Linc-p21 locus, two of which displayed stronger enhancer activ-

ity than that of the known p53 motif (Figure 4E). Using available

data from the same cell line, we observed that the first of these

regions overlapped with an experimentally confirmed CCAAT/

Enhancer Binding Protein (CEBPB) binding site, and the second

was located proximal to a MyoD chromatin immunoprecipitation

(ChIP) peak (Figure 4E; Rosenbloom et al., 2013)—a finding that

connects the known role of MyoD in muscle development with

our finding that the Linc-p21 locus is most highly expressed in

muscle (Figures 1C and S1). Collectively, these data indicate

that the Linc-p21 locus is a complex genomic environment

containing several functional DNA elements that interact with,

and regulate the transcription of, multiple local genes including

Cdkn1a.

DISCUSSION

Since its discovery in 2010, Linc-p21 has been the subject of

intense study due to its reported roles in important biological

processes (Huarte et al., 2010; Dimitrova et al., 2014; Yang

et al., 2014; Hall et al., 2015; Bao et al., 2015; Yoon et al.,

2012; Wu et al., 2014; Wang et al., 2014; Tran et al., 2015;

Tang et al., 2015). However, despite extensive investigation,
2182 Cell Reports 16, 2178–2186, August 23, 2016
the nature of transcription at the Linc-

p21 locus and the mechanism by which

the gene functions have not been tested

outside of cell-based assays. Here, we

present, to our knowledge, the first study

of the Linc-p21 locus in vivo, and by

implementing a whole-gene deletion and

reporter knockin, are able to disentangle

the relative contributions of DNA and
RNA to the observed cis-regulatory effects (Bassett et al.,

2014; Goff and Rinn, 2015). Moreover, by combining this

approach with MPRA, we demonstrate that, in vivo, the Linc-

p21 locus is a complex DNA enhancer element that regulates

the expression of multiple genes in a range of tissues in cis.

Several lines of evidence come together to support this

conclusion. First, we observed that Linc-p21 deletion consis-

tently led to changes in the expression of local genes irrespective

of whether the Linc-p21 locus itself was transcribed—thereby

excluding an RNA-dependent regulatory mechanism. Second,

MPRA data revealed that multiple enhancer elements are pre-

sent within the Linc-p21 locus, including a known p53 motif,

which was confirmed to have strong enhancer activity. Third,

the Linc-p21 locus physically interacts in 3D space with the

promoters of local genes that are dysregulated following Linc-

p21 deletion, including Cdkn1a—an observation that is consis-

tent with studies that have shown that p53-bound DNA elements

can interact with local genes via DNA looping (Link et al., 2013;

Melo et al., 2013; Younger et al., 2015). Accordingly, we believe

that Linc-p21 represents an example of a primed p53 enhancer,

in which the structural contact and even the enhancer activity

is established independent of p53, but is further activated

upon p53 binding. In keeping with this conclusion, global

run-on sequencing analysis has previously identified transcrip-

tion at the Linc-p21 locus in p53-null cells, suggesting that

the enhancer is functional even without p53 binding (Allen

et al., 2014).
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Figure 4. MPRA of the Entire Linc-p21 Locus Reveals Enhancer Activity

(A) Experimental design for luciferase reporter assay using an intergenic control and regions from the Linc-p21 promoter and exon 1 (‘‘exon’’), intron 1 (‘‘intron’’),

exon with mutated p53 binding sequence (‘‘exon –p53’’), and intron with p53 binding sequence (‘‘intron +p53’’). Each region was cloned into a luciferase reporter

construct. P53 motif indicated in red.

(B) Relative luminescence for each construct, normalized against the signal from exon fragment, and averaged across triplicate samples. p values were

calculated using unpaired one-tailed t tests. Error bars represent SEM.

(C) Massively parallel reporter assay (MPRA) experimental design: oligos were synthesized, subcloned into a minimal backbone, opened by enzymatic digestion,

and re-ligated with a GFP cDNA insert. Pooled constructs were transfected into C2C12 cells in triplicate and libraries were made from GFP+ RNA.

(D) Coverage of final pooled GFP+ vector library across the Linc-p21 locus and promoter (assessed by high-throughput sequencing).

(E) MPRA signal across the Linc-p21 locus. y axis represents the log2 ratio of normalized RNA to control signal per base (averaged in 500-bp sliding windows

every 50 bp). Significance (p < 0.01) is calculated by comparing this signal to 1,000 random shuffles of the input data. Significant peaks are shown in red. Inlayed

tracks are CEBPB and MyoD ChIP-seq signals from UCSC genome browser.

See also Figure S4.
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It is important to consider how these data fit with other studies

in which Linc-p21 has been proposed to be a trans- or cis-acting

lncRNA. While several of the initial studies of Linc-p21 reported

trans-regulatory effects, many of these are now thought to be

mediated indirectly via genes that Linc-p21 regulates in cis (Di-

mitrova et al., 2014). Indeed, Dimitrova and colleagues demon-

strated thatCdkn1a expression was reduced by�50% following

deletion of the Linc-p21 promoter and concluded that Linc-p21

is a cis-regulatory lncRNA (Dimitrova et al., 2014). However,

this deletion included the p53-binding site that we have shown

has important enhancer activity. These data would therefore

also be consistent with a functional DNA element and further

highlight both the specific role of this element in the control of

Cdkn1a expression and the general importance of genetic stra-

tegies that can definitively delineate the relative contributions

of DNA and RNA to any observed function.

The Linc-p21 locus exemplifies the difficulties in elucidating

the relative functions of DNA, RNA, and the act of transcription

at non-coding loci. While there are clear examples of lncRNAs

that function through their RNA transcript (Brown et al., 1992;

Rinn et al., 2007), there are also examples where the RNA is

dispensable and either transcription itself or elements within

the DNA sequence are responsible for observed functions (Pa-

ralkar et al., 2016). These potential mechanisms cannot be

resolved through deletion of the entire locus (Bassett et al.,

2014; Goff and Rinn, 2015), and thus other methods are needed

to dissect their relative contributions.

To date, most of these methods have focused upon disrupting

the RNA transcript by reducing transcription or truncating the

transcript using terminator sequences (Paralkar et al., 2016;

Bassett et al., 2014). Here, we show that MPRA can be used to

detect functional DNA elements within non-coding loci and

thus provides an important complementary technique. Indeed,

using this approach, we discover several previously uncharac-

terized regions within the Linc-p21 locus that have enhancer ac-

tivity and overlap histone and protein ChIP peaks—consistent

with DNA enhancer elements. Moreover, these regions of

enhancer activity lie within the vicinity of structural chromosome

contact points that would bring them to the promoter of Cdkn1a

and other nearby genes. Interestingly, many direct targets of p53

are known to associate with primed enhancers that are further

activated by p53 binding (Melo et al., 2013; Allen et al., 2014;

Younger et al., 2015). It could therefore be hypothesized that

these novel enhancer regions might be pioneer-factor binding

sites that could organize local chromatin contacts and bring

the Linc-p21 p53 motif into the vicinity of the nearby promoters,

where it can simultaneously activate transcription in both

regions.

The Linc-p21 promoter region (but not the transcript) is

well conserved between human and mouse, both in terms of

sequence homology and physical interactions with orthologous

genes (Figure S3B). Intriguingly, this suggests that enhancer

contacts between this locus and nearby genesmay be evolution-

arily conserved, whichmight also explain why genetic variation in

this region has been associated with human disease, including

colorectal cancer and cardiac defects (Sotoodehnia et al.,

2010; Dunlop et al., 2012; Ritchie et al., 2013; Hong et al.,

2014). Collectively, these data provide a starting point to better
2184 Cell Reports 16, 2178–2186, August 23, 2016
understand the exact nature of the regulatory interactions at

this locus, which could ultimately provide important insights

into the pathogenesis of several human diseases.

In summary, our data demonstrate that the cis-regulatory ef-

fects mediated by Linc-p21 are due to a functional DNA element

rather than the RNA transcript. As such, wewould support the re-

classification of the Linc-p21 RNA as an eRNA, and note that,

although this term usually implies some cis-regulatory function,

in this example neither the transcript nor transcription are

required for local gene regulation by the locus. It is important

to note, however, that the RNA transcript may still have other

functions that are not related to cis regulation, and which have

not been identified in this study. For example, we did not seek

to explore the mechanism underlying any potential trans-regula-

tory effects, and we also cannot exclude the possibility that the

RNA has a function at an earlier developmental stage, which is

subsequently lost as tissues differentiate. Moreover, we suspect

that many lncRNA loci probably contain both functional DNA

elements and RNA transcripts, and that these possibilities

should not be considered mutually exclusive. Indeed, just as

coding gene loci can contain functional intragenic enhancers

(Li et al., 2012; Zhang et al., 2013) and still produce translated

mRNA transcripts, we expect that a similarly complex situation

will exist at many non-coding loci. Unraveling the respective

functions of DNA and RNA at these loci is likely to be an ongoing

challenge for the field and one that may ultimately lead to a revi-

sion of our classification of non-coding transcripts, along with

the catalogs of transcripts themselves.

EXPERIMENTAL PROCEDURES

Mice

Mice were housed under pathogen-free conditions in Harvard University’s

Biological Research Infrastructure. All procedures were approved by the

Harvard University Committee on the Use of Animals in Research and Teach-

ing and performed in accordance with the National Institutes of Health

guidelines.

RNA Isolation and RNA-Seq Library Preparation and Sequencing

Global gene expression was assessed by RNA sequencing (RNA-seq) of

different organs and tissues from at least three Linc-p21 knockout and three

wild-type embryos. Hindlimbs, liver, lungs, and heart were harvested from

E14.5 embryos and immediately homogenized in TRIzol (Life Technologies).

Total RNA was extracted by chloroform extraction followed by spin-column

purification (RNeasy mini kit, QIAGEN). RNA-seq libraries (TruSeq RNA Sam-

ple Preparation Kit v.2; Illumina) were prepared as previously described using

500 ng of total RNA and a ten-cycle PCR enrichment to minimize PCR artifacts

(Sauvageau et al., 2013; Goff et al., 2015). Knockout and wild-type samples

from different litters were processed within each library preparation. The in-

dexed libraries were sequenced in pools of six (Illumina HiSeq 2000, 101-bp

paired-end reads).

RNA-Seq Analysis

Reads from fastq samples were aligned to the mouse genome (mm10) using

Tophat2 with non-standard options ‘‘–no-coverage-search–max-multihits

10 -p 8’’ (Kim et al., 2013). Data on embryonic and adult brains were processed

from publically available data set GEO: GSE61716. Each sample was quanti-

fied using Cuffquant with nonstandard options ‘‘-p 8–no-update-check,’’ and

differential analysis was performed for each wild-type-versus-knockout tissue

comparison using Cuffdiff2 with nonstandard option ‘‘-p 8.’’ We also per-

formed a Cuffdiff2 analysis in which all wild-type-versus-knockout samples

were assessed together using nonstandard option ‘‘-p 8’’ (Trapnell et al.,



2013). All analysis scripts are available as Data S2 and S4, all code is available

on Github, and we frequently used Cummerbund for analysis and to generate

figures (Goff et al., 2013; https://github.com/rinnlab/lincp21).

Cloning and Mutagenesis

The Linc-p21 locus was cloned using a BAC plasmid (RP24-248L4) obtained

fromChildren’s Hospital Oakland Research Institute. Acc651 and Xho1 restric-

tion sites were added to amplification primers to enable ligation into the mul-

tiple cloning site of the pGL4.23 vector (Promega) containing the luciferase

gene. The p53 binding site was perturbed using inverse PCR and 50 phosphor-
ylated primers containing mutations amplified off of the exon 1 clone in

pGL4.23 similar to the Quick Change protocol (Agilent Technologies). The

pGL4.73 vector was used in co-transfection as a transformation control ex-

pressing Renilla luciferase.

Cell Culture and Transfection

The C2C12 cell line was obtained from ATCC (CRL-1772) and maintained ac-

cording to the recommended guidelines. Transfections were performed using

TransfeX reagent (ATCC ACS-4005) for luciferase assays and Lipofectamine

3000 (Thermo Fisher) for the MPRA experiment. All experiments were per-

formed in triplicate.

Massively Parallel Reporter Assay

Wedesigned 145-nt oligos to redundantly tile the genomic region spanning the

Linc-p21 locus and 500 bp of its promoter, as previously described (Melnikov

et al., 2012, 2014; Kheradpour et al., 2013). Our pool consisted of 90-bp

genomic regions starting every 50 bp. Each genomic region was represented

by five unique barcodes. Oligos were synthesized by the Broad Institute Tech-

nology Core and cloned into final GFP+ constructs as previously described

(Melnikov et al., 2012, 2014; Kheradpour et al., 2013). 10 mg of GFP+ pooled

construct was used to transfect C2C12 cells in 6-well plates. After 24 hr, cells

were harvested in TRIzol, and total RNA was extracted as described and

treated with DNase. MPRA libraries were constructed from 1 mg input RNA

as previously described (Melnikov et al., 2014). Libraries from the pooled

vector construct were used as a control. All libraries were purified by a triple

SPRI bead cleanup (0.653, 0.83, 0.83, Agencourt AMPure XP, Beckman

Coulter), quantified by Qubit, and size-checked on a BioAnalyzer before

deep sequencing (HiSeq 2500). Experiments were performed in triplicate.

MPRA Analysis

We counted tags originating from reads containing GFP sequence and with a

perfect match to the barcodes we designed and then normalized each sample

to the total number of counts from that sample. We calculated themedian ratio

of RNA library signal to vector library signal for each base pair and calculated

rolling signal means across the locus with different windows and slides (Data

S4). For all analysis reported in this paper, we used a window of 500 bp and

a slide of 50 bp. To generate p values for significance of any given region,

we permuted the signal ratio values across the entire locus 1,000 times and

repeated the sliding window analysis for each permutation, generating a ran-

domized permutation p value for each 500-bp window.

For extended experimental procedures, please see the Supplemental

Information.
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