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BACKGROUND: Obesity is a risk factor for both cardiovascular disease and dementia, but the mechanisms underlying this
association are not fully understood. We examined associations between obesity, including estimates of central obesity using
different modalities, with brain gray matter (GM) volume in the UK Biobank, a large population-based cohort study.
METHODS: To determine relationships between obesity and the brain we used brain MRI, abdominal MRI, dual-energy X-ray
absorptiometry (DXA), and bioelectric whole-body impedance. We determined whether obesity was associated with any change in
brain gray matter (GM) and white matter (WM) volumes, and brain network efficiency derived from the structural connectome
(wiring of the brain) as determined from diffusion-tensor MRI tractography. Using Waist-Hip Ratio (WHR), abdominal MRI and DXA
we determined whether any associations were primarily with central rather than peripheral obesity, and whether associations were
mediated by known cardiovascular risk factors. We analyzed brain MRI data from 15,634.
RESULTS: We found that central obesity, was associated with decreased GM volume (anthropometric data: p= 6.7 × 10−16, DXA:
p= 8.3 × 10−81, abdominal MRI: p= 0.0006). Regional associations were found between central obesity and with specific GM
subcortical nuclei (thalamus, caudate, pallidum, nucleus accumbens). In contrast, no associations were found with WM volume or
structure, or brain network efficiency. The effects of central obesity on GM volume were not mediated by C-reactive protein or
blood pressure, glucose, lipids.
CONCLUSIONS: Central body-fat distribution rather than the overall body-fat percentage is associated with gray matter changes in
people with obesity. Further work is required to identify the factors that mediate the association between central obesity and GM
atrophy.

International Journal of Obesity (2022) 46:1059–1067; https://doi.org/10.1038/s41366-021-00992-2

INTRODUCTION
Obesity is defined as an excess of body fat that adversely effects
health and is rising in prevalence globally. It is well recognized
that obesity is associated with type-2 diabetes and cardiovascular
disease [1]. Increasing evidence suggests effects on brain function
with links reported between obesity and both cognitive function
and dementia [2]. Effects on brain structure have been suggested
to underlie these associations.
Obesity has been associated with global cerebral gray matter

(GM) atrophy [3], but inconsistent associations with white matter
(WM) volume have been published with reports of both
decreases [4] and increases [5, 6]. More recent research used
diffusion-tensor MRI tractography to reconstruct the connec-
tome (characteristic wiring of the human brain at the
mesoscale), and derived measures of brain network integrity
that essentially indicate the robustness of the connectome
against fault. These network metrics have been shown to
correlate better with cognition than macrostructural WM
volume, or WM hyperintensities (WMH) in both normal ageing

[7] and disease states [8] and might be a more sensitive marker
of white matter damage in obesity.
Assessing the effect of obesity on the brain is complicated by

differing consequences of central or abdominal (high android-to-
gynoid ratio which represents an increase in visceral fat around
abdominal organs), and peripheral or subcutaneous (low android-
to-gynoid ratio) obesity [9, 10]. The former has been particularly
associated with metabolic syndrome [11], type-2 diabetes,
myocardial infarction [12], and Alzheimer’s disease [13]. The
effects of central obesity on the central nervous system (CNS) are
less well understood.
As precise measurements of body fat and fat distribution are

challenging to perform at scale, in clinical practice, anthropo-
metric measures such as BMI (body mass index: weight in kg/
height in m2) and waist-to-hip ratio (WHR) are used. However,
abdominal MRI provides a much more reliable assessment of
body-fat distribution, including the distinction between subcuta-
neous and visceral fat [14], although unless whole-body MRI is
performed this does not allow quantification of total body fat. A
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further technique, dual-energy X-ray absorptiometry (DXA), can be
used to obtain high-precision whole-body scans that provide
accurate estimates of the body composition including the three
major body components: fat mass, lean tissue mass, and bone
mineral mass [15]. Whole-body bioelectrical impedance measures
also provide indirect estimates of body fat.
To investigate associations between fat mass and fat distribu-

tion and the brain we combined the use of brain MRI, abdominal
MRI, DXA, and bioelectric whole-body impedance. We determined
whether [1] obesity/fat distribution was associated with any
change in GM or WM volumes [2], with impairment of brain
network efficiency derived from diffusion-tensor MRI and whether
any associations were mediated by cardiovascular risk factors or
blood biochemistry markers.
We also determined the relationship between markers of

obesity with brain regions including the basal ganglia including
caudate, putamen, pallidum and their major output nucleus the
thalamus, as well as hippocampal volume as hippocampal atrophy
has previously been reported in obesity [16].

METHODS
Study participants
UK Biobank is a population-based cohort study comprising ~500,000 men
and women aged 40–69 years, recruited across the United Kingdom
(England, Scotland, and Wales) between 2006 and 2010 [17]. Following an
initial assessment, a subset of participants returned for a neuroimaging
visit that included brain 3.0T MRI, abdominal 1.5T MRI, and dual-energy X-
ray absorptiometry (DXA) an average of 7.7 (SD= 1.4) years later. We used
data from 15,634 subjects attending this imaging visit in this analysis.
To assess obesity, we used data on BMI and WHR available in all cases, as

well as abdominal MRI (N= 15,634), DXA (N= 4,286), and bioelectric
whole-body impedance data (N= 15,868). Availability of cognitive scores
that were suitable for analysis varied from N= 15,631 for the visual
memory and N= 7519 for the trial making task.
UK Biobank received ethical approval from the Research Ethics

Committee (reference 11/NW/0382), and all participants provided written
informed consent. The present analyses were conducted under UK
Biobank application 36509.

Measures of obesity
The following measures of body composition were used, all available as
imaging-derived phenotypes in the UK Biobank dataset.

(a) BMI and WHR: UK Biobank has an anthropometry category that
includes data on manually obtained body composition measure. We
used BMI from the second assessment visit (to correspond to the
imaging assessment) and calculated WHR as waist circumference
divided by hip circumference.

(b) Whole-body bioelectrical impedance measures that were acquired
using the Tanita BC418MA body composition analyzer (Tanita Corp.,
Tokyo, Japan), including segmental estimates of fat mass, fat-free mass.

(c) Abdominal MRI: We used imaging-derived indicators of abdominal
composition, namely visceral adipose tissue, abdominal subcutaneous
adipose tissue, total adipose tissue volume and total lean tissue volume,
derived from abdominal 1.5T-MRI. All abdominal MRI measurements
were performed using Siemens 1.5T MAGNETOM Aera (Siemens,
Munich, Germany) using two pulse sequences to acquire the data: the
first sequence consisted of a single breath-hold cardiac-gated T1-
mapping Modified Look-Locker Inversion Recovery (MOLLI) sequence
(typically 12 s), which acquires a series of seven images (8mm slice
thickness, in-plane pixel spacing 9.3mm) each with a different
T-weighting [18]. A single transverse slice located at the porta hepatis
was chosen to represent the liver. Indices of body composition derived
from the abdominal MRI data were supplied by AMRA (Advanced MR
Analytics AB, AMRA, Sweden) according to described methods [14, 19].

(d) Dual X-ray absorptiometry (DXA): We used imaging-derived pheno-
types of body composition, namely android-to-gynoid fat mass ratio,
visceral adipose tissue mass, trunk-to-leg fat mass, trunk-to-leg lean
mass, fat mass index, and lean body mass index, derived from DXA.
DXA data were acquired using an iDXA instrument (GE-Lunar, Madison,
Wisconsin) and measures of lean and fat mass were determined. The

iDXA instrument was calibrated to a manufacturer’s phantom (GE-
Lunar, Madison, Wisconsin) and underwent a daily QC procedure.

Measures of brain structure
Brain MRI scans were acquired on a standard Siemens Skyra 3T (Siemens,
Munich, Germany).

Brain volumes and white matter hyperintensities. We used the cerebral
GM and WM volumes image-derived phenotypes in the UK Biobank
dataset. These were derived from T1-weighted images and analyzed by
an image-processing pipeline developed and run on behalf of UK
Biobank [18]. We used volumes for specific brain regions: the caudate
nucleus, putamen, pallidum, thalamus, hippocampus, that were derived
from the structural T1-weighted images using FAST (FMRIB’s Automated
Segmentation Tool) [20].
We analyzed the total volume of WM hyperintensities derived by UK

Biobank using both T1 and T2-FLAIR images (N= 14662) and calculated
with BIANCA [21].

Diffusion MRI and network construction. We derived network measures
from the original diffusion MRI images. Diffusion-tensor MRI tractography
was used to reconstruct the structural connectome (characteristic wiring of
large tracts in the human brain) and brain network metrics were derived
from the connectome that are indicative of how robust the brain network
is against fault [22].
More specifically, diffusion-weighted images were corrected for eddy

currents, head motion, outlier slices, and gradient distortion using FSL
(FMRIB software library) [23]. Diffusion tensors were then fitted using the
b= 1000 s/mm2 to get fractional anisotropy (FA) images for each subject.
Each subjects’ FA image was non-linearly registered into standard space
[18]. The FA image in diffusion space was then used as a seed for
deterministic diffusion tractography carried out using MRtrix3 [24].
Termination criteria included: 20mm< streamline length < 250mm, turn-
ing angle > 45°, or voxel FA < 0.15 [25].
To construct networks we used the brain regions that are part of the

Automated Anatomical Labeling (AAL) atlas [26] to generate adjacency
matrices for each subject. These adjacency matrices fully describe the
strength of connectivity node by node and represent the connectome at
the level of the AAL atlas resolution. This atlas comprises 90 manually
labeled cortical and subcortical areas (45 per hemisphere) in standard
space, after having discarded cerebellar brain regions.
The tensorial field calculated from each participant’s FA image into

standard space was inverted and then applied to the AAL using nearest-
neighbor interpolation to register the AAL into diffusion space (where
deterministic tractography was carried out). Two areas in the AAL were
considered connected if joined by the endpoints of a reconstructed
streamline, resulting in a non-zero edge in the adjacency matrix. Edges
were weighted according to the number of streamlines connecting two
regions, multiplied by the inverse average streamline length, as longer
streamlines are seeded multiple times [27]. Edges weights <1 were zeroed
to minimize noise-related false positives. This yielded a symmetric,
undirected 90 × 90 adjacency matrix for each subject.
We used the adjacency matrix to compute global and local network

efficiencies [28, 29], the most commonly used network metrics, using the
brain graph package [30] and the igraph package available in R.

Measures of cognitive performance
The cognitive tests used in our study were administered via touchscreen
during the MRI visit. Visual memory was assessed using a pairs-matching
test and scored as the total number of incorrect matches made. Reaction
time was assessed using a timed symbol matching test similar to the card
game ‘Snap’ and scored as the mean response time in milliseconds across
all trials containing matching pairs. Prospective memory was assessed by
giving participants an instruction they had to remember later in the
assessment and scored as 1 if the participant remembered the instruction
of their first try or 0 if not. Visual attention and task switching was assessed
using a standard Trail Making Test.

Blood biochemistry
Blood samples were collected at recruitment (for all 500,000 participants) and
repeat assessment ~5 years later (for 20,000 participants), measuring a range
of key biochemistry markers [31]. Blood glucose, high-density lipoprotein
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cholesterol, low-density lipoprotein cholesterol and glycated hemoglobin
(HbA1c) were drawn from the blood biochemistry assessment at the first visit.
The biomarkers were selected for analysis because they represent established
risk factors associated with obesity and metabolic syndrome.
Within the UK Biobank study design, two blood pressure measurements

were performed using automated or manual devices. We used the manual
blood pressure measurement from the first assessment visit for the data
analysis described below.

Statistical data analysis
Statistical analyses were carried out using Python’s statistical, computing,
machine learning packages SciPy [32] and Python’s stats package penguin [33]
To investigate the effects of obesity as determined from BMI and WHR

measurements, and differentiate the effects of central and peripheral obesity,
we stratified participants into 6 groups using previously reported cut-offs: [9] 1.
Normal weight and no central obesity (males: 18.5 < BMI < 25, WHR< 0.9,
females: 18.5 < BMI < 25, WHR< 0.8), 2. Normal weight and central obesity
(males: 18.5 < BMI < 25, WHR> 0.9, females: 18.5 > BMI < 25, WHR> 0.8), 3.
Overweight and no central obesity (males: 25 < BMI < 30, WHR < 0.9, females:
25 < BMI < 30, WHR< 0.9), 4. Overweight and central obesity (males: 25 <
BMI < 30, WHR> 0.8. females: 25 < BMI < 30, WHR> 0.9), 5. General obesity
and no central obesity (males: BMI > 30, WHR< 0.9, females: BMI > 30, WHR<
0.8), 6. Both general and central obesity (males: BMI > 30, WHR> 0.9, females:
BMI > 30, WHR> 0.80. Subjects who were markedly underweight which may
represent cachexia due to another cause (i.e., had a BMI < 18.5) were excluded.
We determined differences between groups for the brain measures:

total brain volume (normalized for head size, from T1 images), cerebral GM
volume (normalized for head size), WM volume (normalized for head size),
log-transformed WM hyperintensities (normalized for head size), normal-
ized network metrics, and cognitive scores. Analysis of covariance was
used to test for group differences in neuroimaging outcomes across the
stratified BMI/WHR groups using the following covariates sex, age,
Townsend-Deprivation index (TDI), alcohol intake, current smoking,
diabetes mellitus, systolic blood pressure, diastolic blood pressure and
glycated hemoglobin (HbA1c). Partial correlations were used to test for
associations between continuous indicators of obesity and neuroimaging
outcomes after adjusting for the same set of covariates.
We also conducted a region-of-interest (ROI) analysis on regional brain

volumes, derived from T1 images (see above). Due to previous data
implicating basal ganglia circuits and the hippocampus in obesity we
studied the following brain regions: caudate, putamen, pallidum, as well as
the thalamus, amygdala, nucleus accumbens, and hippocampus. Basal
ganglia dysfunction [34] and alterations in amygdala and thalamus [35]
and hippocampal volumes [16] have been reported in obesity. The nucleus
accumbens plays a role in food addiction [36] and is a target for deep brain
stimulation in severe obesity [37].
In a second analysis, anthropometric data (BMI and WHR), impedance

measures of body fat and lean body mass, and imaging (abdominal MRI
and DXA scans) derived measures of general and central obesity were
used as continuous predictors to investigate their effect on the
normalized cerebral GM volume using the same covariates as
mentioned above. We then determined whether indicators from blood
biochemistry or blood pressure mediated the effect of obesity on the
normalized GM volume, by running a mediation analysis using IBM
SPSS Amos for Structural Equation Modeling [38].

RESULTS
Sample size
Subjects were included in the data analysis if imaging outcomes
and data of the following co-variates were available: sex, age, TDI,
alcohol intake, current smoking, diabetes mellitus, systolic blood
pressure, diastolic blood pressure and HbA1c.
Data were available for the following number of subjects: Brain

volumes N= 15,634; multimodal WMH (based on FLAIR and T1
images) N= 14,662; DTI and network analysis: 14,368. BMI and WHR
were available for all subjects who underwent brain imaging. Data on
assessment of obesity was available for bioelectric impedance
analysis N= 15,437; abdominal MRI N= 5155; DXA N= 4212.

BMI, WHR and brain measures
Unless otherwise stated results are adjusted for the covariates
(see methods section). There was a significant progressive

reduction in cerebral GM volume as WHR increased, with WHR
rather than BMI being the primary driver of this association,
with GM volume being lowest in people with overweight and
central obesity (p= 6.7 × 10−16, ηp

2 = 0.004, see Fig. 1). The
association of combined BMI/WHR group and GM volume
appeared to be related to a loss of normalized brain volume
(p= 2.2 × 10−16, ηp

2 = 0.011). In contrast, there was no
association with WM volume (p= 0.135, ηp

2 = 0.001). Further-
more, there was no overall effect of combined BMI/WHR group
with any brain network measure: weighted global efficiency
(p= 0.594, ηp

2 = 0.001, see Fig. 1), weighted local efficiency
(p= 0.607, ηp

2 = 0.001). There was a weak association with WM
hyperintensities (p= 2.4 × 10−32, ηp

2 = 0.011).
Next associations between obesity groups were performed for

individual cerebral GM regions. After adjustment for global GM
volume, significant associations remained with the following
regions: bilateral thalamus, bilateral caudate, bilateral pallidum,
bilateral nucleus accumbens, after accounting for Bonferroni-
corrected p value of 0.004. Associations with bilateral putamen,
bilateral amygdala, and bilateral hippocampus were not sig-
nificant after Bonferroni correction (see Table 1).

Association with indicators of body-fat mass
Bioelectrical impedance. Higher body-fat mass was associated
with lower GM volume (see Fig. 2), as well as lower total brain
volume, but not with WM volume (see Table 2).

Abdominal MRI. Higher total adipose tissue volume was asso-
ciated with lower GM volume as well as lower total brain volume
(see Table 3 and Fig. 3). By contrast, no association was found
between total adipose tissue volume and WM volume (see Table 3).

DXA. Fat-mass index (FMI) showed a significant negative effect
on GM volume as well as total brain volume and but not on WM
volume after adjusting for the covariates (see Supplementary Fig.
2 and Supplementary Table 1).
No association was found between network metrics and any

indicator of body-fat mass irrespective of imaging modality

Association with indicators of lean body mass
Bioelectrical impedance. Higher whole-body-fat free mass was
associated with lower GM volume, as well as lower total brain
volume (see Fig. 2 and Table 2). Similarly, a negative association
was found between whole-body-fat free mass and WM volume
(see Table 2).

Abdominal MRI. Lean tissue volume (normalized by body weight)
was not associated with any difference in GM volume after
adjusting for the covariates. Weak correlations were found
between total lean tissue volume (normalized by body weight)
and normalized WM volume as well as normalized total brain
volume (see Table 3 and Fig. 3).

DXA. Lean body-mass index (LBMI) showed a significant negative
effect on GM volume as well as total brain volume and but not on
WM volume after adjusting for the covariates (see Supplementary
Fig. 2 and Supplementary Table 1).
No association was found between network metrics and any

indicator of lean body mass irrespective of imaging modality.

Association with indicators of fat distribution
Abdominal MRI. Higher visceral adipose tissue volume was
associated with lower total brain volume. As for WHR, this was
explained by a significant negative correlation with GM volume
after adjusting for covariates, before and after normalization by
each subject’s body weight (p= 0.001, Fig. 3), but there was no
association with WM volume (Table 3 and Fig. 3).

C.-P. Pflanz et al.

1061

International Journal of Obesity (2022) 46:1059 – 1067



Similarly, abdominal subcutaneous adipose tissue volume was
negatively associated with GM volume and total brain volume (Table
3 and Fig. 3). However, no significant correlation was found between
abdominal subcutaneous adipose tissue volume and WM volume.

DXA. Higher visceral adipose tissue mass was associated with
lower GM volume and total brain volume, but not with WM
volume or network metrics (Supplementary Table 1).
There was a significant negative correlation between android-

to-gynoid fat ratio and GM volume before adjusting for the
covariates (r=−0.23, p= 1.3 × 10−57), but this effect was not
significant after adjusting for covariates (r= 0.022, 95% CI=
[−0.01, 0.05]). Associations between android-to-gynoid fat ratio
and WM volume were significant, but small in magnitude.
Trunk-to-leg fat mass ratio showed a significant negative

correlation with GM volume before adjusting for the covariates
(r=−0.27, p= 8.3 × 10−81). However, the trunk-to-leg fat mass
ratio did not show a significant association with GM volume, total
brain volume, or WM volume after adjusting for the covariates
(Supplementary Table 1).

No association was found between network metrics and any
indicator of fat distribution irrespective of imaging modality.

Association with cognitive scores
Analysis of co-variance did not reveal any significant effects of
combined BMI/WHR group on the following cognitive scores: log-
transformed number of incorrect matches in the visual memory
task (p= 0.313), log-transformed difference between Trail making
test – Part B and Trail making test – Part A (p= 0.388), the
prospective memory task score (p= 0.756), and the number of
correctly made symbol digit matches (p= 0.891). The effect of
combined BMI/WHR on the log-transformed, average time to
correctly identify matches was not significant after correcting for
multiple comparisons (uncorrected p= 0.001).

Mediation analysis using structural equation modeling
The effect of WHR on GM volume was not mediated by blood
glucose, glycated hemoglobin (HbA1c), HDL cholesterol, systolic or
diastolic blood pressure (all p > 0.05, Supplementary Figs. 3 and 4).
Similarly, the effects of visceral adipose tissue volume from

Fig. 1 Association between BMI and WHR with GM and WM volumes, WMH and brain network measures (global and local efficiency).
Significant differences across the stratified BMI and WHR groups are present for GM volume and WMH but not for WM volumes or network
measures. (Error bars show standard deviations, boxes correspond to the interquartile range.).
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abdominal MRI and visceral adipose tissue mass from dual X-ray
absorptiometry were not mediated by any of the aforementioned
mediators (Supplementary Fig. 5).

Interactions between indicators of obesity and sex. Finally, we
investigated interaction effects between indicators of obesity and
sex when predicting GM, WM, WMH and total brain volumes
(Supplementary Table 2). We found significant interaction effects
between sex and body fat mass, body fat-free mass (impedance),
abdominal subcutaneous adipose tissue volume (abdominal MRI) as
well as adipose tissue volume (abdominal MRI). By contrast, no
interaction with gender was found for android-to-gynoid fat mass
ratio, trunk-to-leg fat mass ratio, or trunk-to-leg lean mass ratio.

DISCUSSION
In this large population-based study, central obesity was associated
with lower GM volume, but not with WM volume or brain network
integrity. We assessed central obesity using a variety of techniques

including WHR, visceral adipose tissue from abdominal MRI, DXA,
and bioelectrical impedance. Consistent results, with a selective
association with GM volume, were found when central obesity was
assessed by these diverse techniques. Furthermore, indicators of
central obesity (e.g., WHR) were more informative than indicators of
general obesity (e.g., BMI) in predicting brain volumes and being
overweight alone, as measured using BMI, did not seem to have a
detrimental effect on the brain.
Our findings add to the existing knowledge in a number of

ways. Firstly, it is in a larger sample size than previous studies,
including over 15,000 individuals. Secondly, we used multiple
complementary methods for assessing central obesity (BMI/WHR,
abdominal MRI, dual-energy X-ray absorptiometry (DXA), and
bioelectric whole-body impedance) which increases the robust-
ness of the findings. Thirdly, we showed the associations with
central obesity and brain structure were specific for gray matter,
and was not present with white matter or with brain network
connectivity; associations with network connectivity have not
previously been assessed to our knowledge.

Fig. 2 Scatter plots showing the significant negative effect of whole-body fat-free mass and whole-body fat mass on the normalized
cerebral GM volume. Pearson r in these figures corresponds to the overall effect size of whole-body fat-free/fat mass on cerebral GM volume
before correction for the covariates.

Table 1. Analysis of covariance looking at the overall effect of the combined BMI/WHR group on the volumes of subcortical regions-of-interest
before and after adjustment for total GM volume.

Region of interest Hemisphere Results adjusted for covariates Results adjusted for GM atrophy and
covariates

F (5, 15,619) p value ηp
2 F (5, 15,619) p value ηp

2

Thalamus Left 6.618 3.658 × 10−6 0.002 * 4.461 4.606 × 10−4 0.001 *

Thalamus Right 7.056 1.345 × 10−6 0.002 * 4.921 1.672 × 10−4 0.001 *

Caudate Left 5.98 1.559 × 10−5 0.001 * 5.235 8.306 × 10−5 0.001 *

Caudate Right 6.943 1.741 × 10−6 0.002 * 6.164 1.027 × 10−5 0.002 *

Putamen Left 2.752 0.017 0.001 1.695 0.131 5.43 × 10−4

Putamen Right 2.668 0.02 8.542 × 10−4 1.478 0.193 0.0004

Pallidum Left 7.238 8.838 × 10−7 2.314 × 10−3 * 7.24 8.798 × 10−7 2.315 × 10−4 *

Pallidum Right 10.244 8.074 × 10−10 0.003 * 9.356 6.489 × 10−9 0.002 *

Amygdala Left 2.751 0.017 8.81 × 10−4 2.733 0.018 0.001

Amygdala Right 3.804 0.001 0.001 * 3.626 0.0028 0.001 *

Nucleus accumbens Left 8.4318 5.606 × 10−8 0.002 * 4.886 1.805 × 10−4 0.001 *

Nucleus accumbens Right 9.884 1.882 × 10−9 0.003 * 5.676 3.098 × 10−5 0.001 *

Hippocampus Left 0.927 0.461 2 × 10−3 0.586 0.071 1.88

Hippocampus Right 2.546 0.026 0.001 2.563 0.025 0.001

P values in bold, and marked with *, are those significant after Bonferroni correction at p value 0.004.
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Increasing evidence suggests that obesity affects the CNS, and
cognitive function including attention, executive function, decision
making, and verbal learning [39]. Meta-analyses have shown strong
associations between obesity, Alzheimer’s disease, and other
dementias, with obesity in midlife predicting future dementia risk
[2, 40]. Postmortem studies have shown that elderly individuals with
morbid obesity have increased beta-amyloid and tau protein in the
hippocampus and decreased hippocampal volume [41]. However,
how obesity links to impaired cognitive function and dementia
remains uncertain. Previous studies, many in relatively small sample

sizes, have shown associations between obesity and GM volume, but
inconsistent associations with WM volume and WM ultrastructural
function determined on DTI [4–6]
However, many of these have merely measured BMI as an

estimate of obesity and have not looked at the fat distribution
within the body. In central obesity, there is increased fat in the
abdomen and internal organs that causes low-grade inflammation
[39]. Central obesity has been associated with metabolic syndrome
that includes dyslipidemia, decreased insulin sensitivity, hyperinsu-
linemia, hypoglycemia, and hypertension [12]. Our results suggest

Table 3. Partial correlations between indicators of body composition derived from abdominal MRI and neuroimaging outcomes adjusted for
covariates.

Abdominal MRI Brain MRI r CI 95% Adjusted variance
explained

p value Significant

Visceral adipose tissue volume Brain volume −0.072 [−0.1, −0.05] 0.00486 1.928 ×
10−07

*

GM volume −0.096 [−0.12, −0.07] 0.00888 4.279 ×
10−12

*

WM volume 0.023 [0.05, 0.0] 0.00018 0.085

Global efficiency −0.011 [−0.02, 0.04] 0.00031 0.441

Local efficiency −0.018 [−0.01, 0.05] 0.0001 0.217

Abdominal subcutaneous adipose
tissue volume

Brain volume −0.067 [−0.09, −0.04] 0.00419 0.000001 *

GM volume −0.094 [−0.12, −0.07] 0.0085 1.178 ×
10−11

*

WM volume −0.018 [−0.05, 0.01] 0.00004 0.184

Global efficiency 0.015 [−0.01, 0.05] 0.00019 0.289

Local efficiency 0.01 [−0.02, 0.04] 0.00034 0.498

Total adipose tissue volume Brain volume −0.112 [−0.13, −0.09] 0.012 2.679 ×
10−21

*

GM volume −0.08 [−0.1, −0.06] 0.00614 1.157 ×
10−11

*

WM volume −0.021 [−0.04, 0.0] 0.00016 0.075

Global efficiency 0.006 [−0.02, 0.03] 0.00028 0.649

Local efficiency 3E-04 [−0.02, 0.02] 0.0003 0.979

Lean tissue volume (normalized by
body weight)

Brain volume 0.048 [0.03, 0.07] 0.002 0.00004 *

GM volume 0.046 [0.02, 0.07] 0.001878 0.000093 *

WM volume 0.032 [0.01, 0.06] 0.000762 0.0065 *

Global efficiency 0.005 [−0.02, 0.03] 0.000283 0.649

Local efficiency 3E−04 [−0.02, 0.02] 0.000316 0.979

Significant results, at the p= 0.05 level, are shown in bold and with *.

Table 2. Partial correlations between whole-body fat mass and whole-body fat-free mass from bioelectrical impedance analysis and neuroimaging
outcomes adjusted for covariates.

Bioelectical impedance Neuroimaging outcome r CI 95% Adjusted variance explained p value

Whole-body fat mass Brain volume −0.07 [−0.09, −0.06] 0.005 1.772 × 10−19 *

GM volume −0.11 [−0.13, −0.1] 0.012 2.925 × 10−47 *

WM volume −0 [−0.02, 0.01] −0.0001 0.533

Global Efficiency 0.001 [−0.01, 0.02] −0.0001 0.823

Local Efficiency 0.001 [−0.02, 0.02] −0.0001 0.887

Whole-body-fat free mass Brain volume −0.12 [−0.14, −0.11] 0.014 1.439 × 10−53 *

GM volume −0.17 [−0.18, −0.15] 0.028 5.772 × 10−101 *

WM volume −0.03 [−0.05, −0.02] 0.0009 0.000037 *

Global Efficiency 0.004 [−0.01, 0.02] −0.0001 0.588

Local Efficiency 0.003 [−0.01, 0.02] −0.0001 0.688

Significant results, at the p= 0.05 level, are shown in bold and with *.
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Fig. 3 Associations between indicators of body composition from abdominal MRI and normalized GM volume. Visceral adipose tissue
volume (normalized by body weight), abdominal subcutaneous adipose tissue volume, total adipose tissue volume and total lean tissue
volume (normalized by body weight), derived from abdominal MRI, as predictors of normalized cerebral GM volume. Pearson r in these figures
corresponds to the overall effect size of the association before correction for the covariates.
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that it is central obesity rather than peripheral obesity that is
associated with CNS damage.
While previous smaller studies have associated obesity with GM

loss, there have been conflicting associations reported with WM
volume and structure [4–6]. Since obesity has been associated
with cognitive deficits including executive function [42], which
itself depends on complex brain networks depending on WM
integrity and connectivity, we hypothesized that brain network
analysis may be affected in obesity. However, despite examining
associations in almost 20,000 individuals we found no evidence of
any alteration in WM volume or ultrastructure as measured by DTI
and brain network efficiency. This suggests that CNS damage
associated with central obesity is primarily focused on GM. This
most likely represents neuronal loss rather than degeneration of
tracts, because the cell bodies of neurons are found in the gray
matter of the brain. Associations we have detected with GM
volume might represent changes relatively early in the course of
detrimental effects of central obesity on the brain, and as
individuals age, more widespread changes may be identified with
secondary axonal degeneration and WM changes. Longitudinal
studies are required to determine if this is indeed the case.
While central obesity, perhaps acting via the metabolic syndrome,

may result in brain atrophy, it is also possible that preexisting
alterations in brain structure and function play a causal role in
obesity itself. Several neural circuits have been described which are
involved in energy balance and affect appetite and thermogenesis.
Unconscious reward circuits involve the striatum, amygdala,
hippocampus, substantia nigra, hypothalamus and brainstem which
are all part of the dopaminergic mesocortical limbic circuit [39]. To
determine whether there were specific regional associations with
obesity we examined associations with specific subcortical GM
regions and the hippocampus. We controlled for total GM volume to
ensure that associations were region-specific. The analysis identified
specific associations with thalami, the caudate nuclei, pallidum, and
nuclei accumbens (all bilaterally). However, after controlling for
multiple comparisons, no association was found with the putamen,
amygdala, or hippocampus. The caudate nuclei, pallidum, and nuclei
accumbens are known to play a key role in energy balance that
affect appetite, thermogenesis as well as inhibitory control [39].
More specifically, the nucleus accumbens is involved in components
of reward-motivated behaviors [43] as well as food addictions [36].
The caudate nucleus and pallidum play a role in the inhibitory
control of eating [44] and contribute to physical inactivity in obesity
[34]. Both the striatum and the nucleus accumbens (ventral striatum)
are part of the dopaminergic mesocortical limbic circuit that plays a
crucial role in unconscious reward [39] and has been suggested to
be a common neurobiological circuit between food addiction and
drug abuse [36].
We explored potential pathways by which central obesity might

result in GM atrophy using mediation analysis. Central obesity has
been associated with a low-grade inflammatory state. However, the
association between central obesity and GM volume was not altered
when C-reactive protein, a marker of systemic inflammation, was
controlled for. It has also been hypothesized that the metabolic
syndrome may mediate end-organ damage [45], but the associations
of WHR, or visceral adipose tissue volume, determined either on MRI
or DEXA, was not mediated by blood glucose, HbA1c, HDL
cholesterol, systolic or diastolic blood pressure. This does not support
a direct mediation by individual features of the metabolic syndrome.
Further studies are required to determine which factors associated
with central obesity mediate the association with GM atrophy.
Central obesity might lead to neuronal loss or shrinkage of

neurons in the cerebral GM that is then not seen in the WM in the
first place. Previous research on obesity in UK Biobank found that
higher total body fat was associated with lower subcortical GM
volumes, including the thalamus, caudate nucleus, putamen,
globus pallidus, hippocampus, and nucleus accumbens [46]. These
findings are similar to our results when looking at the negative

effect of WHR on the whole brain and subcortical GM volume. A
further UK Biobank paper showed that the combination of being
overweight according to BMI criteria and central obesity as
indicated by WHR was associated with lower GM volume, whereas
no association between obesity and WM volume were found [9].
Our study has several strengths. This includes a large sample size

and the population-based sampling framework. We estimated central
obesity using multiple different techniques and showed consistency
of findings when central obesity was determined by these different
methods. This is important because each method has its limitations.
DXA can be inaccurate in people with obesity. Impedance measures
also depend on hydration levels. The body MRI data we were able to
use only covered the abdomen rather than whole-body MRI and
therefore an accurate estimate of whole-body fat could not be
obtained. A further strength was that multiple methods were used to
assess brain integrity, including not only conventional measures of
GM and WM volume, but also DTI measures of network efficiency. The
consistency of findings across WM measures adds robustness to the
finding that WM structure does not appear to be altered in obesity.
Our study also has limitations. Its cross-sectional design means

that we can identify associations but not causality. Although UK
Biobank is a population-based study there is selection bias toward
healthy volunteers. Lastly, although highly significant associations
were identified, due to the very large sample size some of the
effect sizes were small.
In conclusion, our results suggest that being overweight itself

has only a limited effect on brain volume, but central obesity is
associated with significant reductions in both global GM volume,
and also with volume of specific subcortical GM nuclei.
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