490

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 13, NO. 2, FEBRUARY 2018

Efficient, Portable Template Attacks

Marios O. Choudary

Abstract— Template attacks recover data values processed by
tamper-resistant devices from side-channel waveforms, such as
supply-current fluctuations (power analysis) or electromagnetic
emissions. They first profile a device to generate multivariate
statistics of the waveforms emitted for each of a set of known
processed values, which then identify maximum-likelihood candi-
dates of unknown processed values during an attack. We identify
several practical obstacles arising in the implementation of
template attacks, ranging from numerical errors to the incom-
patibility of templates across different devices, and propose
and compare several solutions. We identify pooled covariance
matrices and prior dimensionality reduction through Fisher’s
linear discriminant analysis as particularly efficient and effective,
especially where many attack traces can be acquired. We evaluate
alternative algorithms not only for the task of recovering key
bytes from a hardware implementation of the Advanced Encryp-
tion Standard; we even reconstruct the value transferred by an
individual byte-load instruction, with success rates reaching 85%
(or a guessing entropy of less than a quarter bit remaining) after
1000 attack traces, thereby demonstrating direct eavesdropping
of eight-bit parallel data lines. Using different devices during
the profiling and attack phase can substantially reduce the
effectiveness of template attacks. We demonstrate that the same
problem can also occur across different measurement campaigns
with the same device and that DC offsets (e.g., due to temperature
drift) are a significant cause. We improve the portability of
template parameters across devices by manipulating the DC
content of the eigenvectors that form the projection matrix used
for dimensionality reduction of the waveforms.

Index Terms— Hardware security, side-channel attack, tem-
plate attack, power analysis.

I. INTRODUCTION

IDE-CHANNEL attacks are powerful tools for inferring

secret algorithms or data (passwords, cryptographic keys,
etc.) processed inside tamper-resistant hardware, if an attacker
can monitor some channel leaking such information out of the
device, most notably the power-supply current and unintended
electromagnetic emissions.

One of the most powerful techniques for exploiting side-
channel information is the template attack [6], which relies
on a multivariate model of the side-channel traces. While the
basic algorithm is comparatively simple (Section II), there are
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several steps that can cause problems when implementing the
attack in practice.

We examine some of the most common problems that
can arise: dealing with a large number of voltage sam-
ples (Section III) and using different devices for profiling
and attack (Section V). Some of the proposed solutions rely
on using known statistical techniques (e.g. using a pooled
covariance matrix, see Section III-B, or linear discriminant,
see Section III-E), while others are based on new ways to
use existing algorithms, such as Principal Component Analy-
sis (PCA) or Fisher’s Linear Discriminant Analysis (LDA)
(Section V-B.1).

We evaluate our methods using an ATMEL AVR XMEGA
8-bit microcontroller, which has an AES hardware crypto-
graphic core. Our results show that, by using the meth-
ods presented in this paper, we can improve considerably
the success of template attacks in different practical scenar-
ios (Section 1V), compared to a classic implementation of
these attacks (Section II). These results should be useful to
both evaluators and designers of secure microcontrollers.

This journal article builds on two previous conference
papers by the authors: Efficient Template Attacks [28] and
Template Attacks on Different Devices [30]. We include
the main results from those two papers to obtain a self-
contained manuscript, along with the following improve-
ments: (a) clarified likelihood computation in Section II;
(b) updated notation for consistency; (c) review of more
recent literature [32]-[35] (Sections III-A, III-C.3 and V-B.3);
(d) expanded Section III-C (Compression Methods) to provide
more details about the computation of the sample selection
methods, the alternative PCA method, and Fisher’s LDA
coefficients; (e¢) merged the entire derivation of the linear
discriminant into a single section, so that it is easier to follow
and understand; (f) simplified Figure 3, for easier comparison
of results; (g) added Section IV-C to demonstrate that a
DPA-style template attack (especially with LDA compression)
is a much less challenging problem on the same data set;
and (h) added new results from a hardware AES engine
(Section IV-D).

II. TEMPLATE ATTACKS

To implement a template attack, we need physical access to
a pair of identical devices, which we refer to as the profiling
and the attacked device. We wish to infer some secret value
k*x € S, processed by the attacked device at some point. For
an 8-bit microcontroller, S = {0, ...,255} might be the set
of possible byte values manipulated by a particular machine
instruction.

We assume that we determined the approximate moments of
time when the secret value kx is manipulated and we are able
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to record signal traces (e.g., supply current or electro-magnetic
waveforms) around these moments. We refer to these traces as
leakage vectors. Let {t1, ..., t,r} be the set of time samples
and x" € R™ be the random vector from which leakage traces
are drawn.

During the profiling phase we record np leakage vectors
X;,; € R™ (1 <i< np) from the profiling device for each
possible value k € S, and combine these as row vectors xii’
in the leakage matrix X; € Rrpxm 1

Typically, the raw leakage vectors x;; provided by the
data-acquisition device contain a very large number m' of
samples (random variables), due to high sampling rates used.
Therefore, we might compress them before further processing,
either by selecting only a subset of m « m" of those sam-
ples, or by applying some other data-dimensionality reduction
method, such as Principal Component Analysis (PCA) or
Fisher’s Linear Discriminant Analysis (LDA).

We refer to such compressed leakage vectors as x; € R™
and combine all of these as rows into the compressed leakage
matrix Xz € R™*™. (Without any such compression step,
we would have X; = X} and m =m".)

Using X; we can compute the template parameters X; € R™
and Sx € R™*™ for each possible value k € S as

n
_ 1 <
= >
P

Tp
. > ki — %) (xui — X))

e —
P i=1

(1a)

Sk

(1b)

where the sample mean X; and the sample covariance
matrix Sy estimate the true mean E (x;) and true covariance
Cov(xy) of random vector x;. Note that

"p

D i — %) (ki — %) = XXy,

i=1
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where Xy is X with X; subtracted from each row, and the
latter form can help with fast vectorized computation of the
covariance matrices in (1b).

Side-channel leakage traces can generally be modeled well
by a multivariate normal distribution [6], which we also
observed in our experiments. In this case, the sample mean
X; and sample covariance Sy are sufficient statistics: they
completely define the underlying distribution [12, Ch. 4]. Then
the probability density function (pdf) of a leakage vector x,
given the parameters X; and Sy for each &, is
e~ T O%)'S; (%)

fx|k)= 3)

1

V 2r)™ Skl

In the attack phase, we try to infer the secret value kx € S
processed by the attacked device. We obtain n, leakage vectors
x; € R” from the attacked device, using the same recording
technique and compression method as in the profiling phase,
resulting in the leakage matrix Xy, € R"*_ Then, for each
k € S, we compute a discriminant score D(k | Xg,). Finally,
we try all k € S on the attacked device, in order of decreasing

1Throughout this paper X’ is the transpose of X.
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score (optimized brute-force search, e.g. for a password or
cryptographic key), until we find the correct k. Given a trace
x; from Xj,, a commonly used discriminant [9], [15], [18],
derived from Bayes’ rule, is

D(k | x;) = f(xi | k) P(k), “)
where the denominator from Bayes’ rule
X; | k)P (k

Lk | x1) = J(xi [ k)P (k) )

2 S&i [ k)P

is omitted, as it is the same for each k. Assuming a uniform

a-priori probability P(k) = |S|~!, applying Bayes’ rule
becomes equivalent to computing the likelihood
J(xi | k)
Lk x) = = ©)
T e S K

where f can be computed from (3).

III. NUMERICAL PROBLEMS

We start our exposition of practical problems by showing the
issues that appear when using a large number of samples m.

A. Inverse of Covariance Matrix

Several authors [18], [19] noted that inverting the covariance
matrix S; from (1b), as needed in (3), can cause numerical
problems for large m, but it is important to understand why
Sk can become singular (|Sg| ~ 0), causing these problems.
Since Sy is essentially the matrix product X/ Xk (2), both
Sk and Xk have the same rank. Therefore Sy is singular iff
X, has dependent columns, which is guaranteed if np, < m.
The constraint on X; to have zero-mean rows implies that
it has dependent columns even for n, = m. Therefore,
np > m is a necessary condition for S; to be non-singular.
See [12, Result 3.3] for a more detailed proof.

The restriction n, > m is one main reason for reducing m
through compression (see Section III-C). Note that in practice
some samples can be highly correlated, in which case n, needs
to be somewhat larger than m (e.g., np > 3000 for m = 1250
with our Section IV-B data) just to ensure a non-singular Sg,
and we often need np > m to make Sy an effective estimate
of Cov(xy). (See [36] for an empirical relationship, in one
setting, for good choices of m and n;,, depending on SNR.)

B. The Pooled Covariance

In our experiments, we observed that the particular covari-
ance matrices Sy are very similar and seem to be independent
of the candidate k. This means that the signal related to k is
entirely contained in the mean vectors X;, while the Sy model
the measurement noise. In this case, we can use a pooled
covariance matrix

ISI( Z Z(Xla - Xk)(th - Xk)
o~ kES i=

to obtain a much better estimate of the true covariance matrices
Cov(x¢). In this case, Spooled is computed from |S]| - n;, traces.
Hence, the necessary condition for Spooled being invertible
becomes m < |S| - np, OF Np > ISI’ which is easier to satisfy
than when using individual covariance matrices.

@)

Spooled
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C. Compression Methods for Template Attacks

In order to deal with the problems mentioned above,
we should also compress the leakage traces x; € R™ into
X; € R™ (m <« m"), in order to reduce the number of variables
involved while at the same time keeping as much information
as possible. It turns out that the choice of compression method
is an essential step for the success of profiled attacks. The
first proposed methods [6] relied on selecting some samples
that maximise the data-dependent signal, but this can be error-
prone. Later, Principal Component Analysis (PCA) [9] and
Fisher’s Linear Discriminant Analysis (LDA) [15] helped to
maximise the information used in the attack step with a
very small number m of samples. Below we briefly describe
these methods in the context of template attacks. All of these
approaches rely on the between-groups vectors

=% - X ®)

that define the signal of interest, where

1
X'=— X )
151 keS

1) Selection of Samples: In this method we first compute
a signal-strength estimate s(t), ¢t € {t1,..., tyr}, and then we
select a subset of m points based on this estimate.

There are several proposals for producing s(f), such as
Difference of Means (DOM) [6, Sec. 2.1], the Sum of Squared
Differences (SOSD) [10], the Signal-to-Noise Ratio (SNR) [19]
and SOST [10]. All these are similar, with the notable differ-
ence that the first two do not take the variance of the traces
into consideration, while the latter two do.

The DOM  method was first proposed by
Chari et al. [6, Sec. 2.1], to select samples at which
large pairwise differences between the means show up.
Later, Rechberger and Oswald [8, Sec. 3.2] explicitly
suggested to sum these pairwise differences and then
select the samples from the traces with largest peaks.
Gierlichs et al. [10, Sec. 2.1] observed that wusing the
sum is not appropriate, proposing the sum of squared
differences (SOSD) instead.

We found that the sum of the absolute value of pairwise
differences

spom(t) = (10

>

1<k<k' <|S|

X (1) — X3 (1)

gives very good results, which is what we refer to as DOM
from now on.2 Here, iz are the mean vectors, as in (la), but
calculated from the raw leakage vectors x;;.

In Figure 1, we show these estimates for the Grizzly Beta
dataset (see Section IV). The methods SNR and SOST are in
fact the same if we consider the variance at each sample point
to be independent of the candidate k, which is expected in
our setting. Under this condition SNR and SOST reduce to

2Using SNR instead of DOM as the signal-strength estimate s(7) provided
very similar results.

dom
sosd
snr
std |
— — —clock

A

25

clock cycles

Fig. 1.  Signal-strength estimates from DOM, SOSD and SNR (identical
to SOST) on the Grizzly Beta dataset, along with the average standard
deviation (STD) of the traces (np = 2000) and clock signal. All estimates
are rescaled to fit into the plot, so the vertical axis (linear) has no scale.

computing the F-score

(%E]mm—imf,M&—n

keS
(Zkes i (i) = %0)2) /(1S 1 = 1))

as used in the Analysis of Variance (ANOVA) [12, Sec. 6.4].
F(t) can be used to reject, at any desired significance level,
the hypothesis that the sample mean values at sample point
t are equal, therefore providing a good indication in which
samples the variation is more related to k.3

In the second step of this compression method we need to
choose m samples based on the signal-strength estimate s. The
goal is to select the smallest set of samples that contains most
of the information about our target. In our experiments we
used the DOM estimate with different selections of samples
(see Section IV) and concluded that we should select several
samples per clock cycle [28], as long as we can use the pooled
covariance matrix.

2) Principal Component Analysis (PCA): Archambeau
et al. [9] proposed the following method for using PCA as
a compression method for template attacks. First compute the
sample between groups matrix B:

B=) (% — %) — ).

keS

F(t) = (11)

12)

Next obtain the singular value decomposition (SVD) B =
UDU’, where each column of U e R™>m" is an eigenvector u;
of B, and D € R™ > contains the corresponding eigenvalues
dj on its diagonal.* The crucial point is that only the first
m <& |S| eigenvectors (uj...u,) = U™ are needed in
order to preserve most of the variability from the mean
vectors iz. Therefore, we can restrict U to U" € R xm
Finally, we can project the mean vectors X; and covariance
matrices Sj (computed with (1) on the raw traces X}) into
the new coordinate system defined by U™ to obtain the PCA

3For an example of using the F-score with the Grizzly dataset, see
Choudary’s PhD thesis [31, p. 67].

4§ince B = TT with T = ((iq =X (X, —x) - (X -x") €
R™ *XIS| has rank less than |S], it is sufficient to compute what some numeric
libraries call the “thin” or “economy size” singular-value decomposition
T = VAW’ where V € R™*? with v = min{m", |S|} contains the left-
singular vectors of T as columns, which are orthonormal eigenvectors of B,
and where diagonal matrix A € R”*? contains the corresponding square
roots of the eigenvalues of B. (In our experiments with m" = 2500 the direct
computation of the SVD on the matrix B also worked well.)
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template parameters X; € R” and Sy € R™*"™:

X = UM%}, S = U™'SLU™. (13)

3) Choice of PCA Components: Archambeau et al. [9]
proposed to select only those first m eigenvectors u; for
which the corresponding eigenvalues 6; are a few orders of
magnitude larger than the rest. This technique, also known as
elbow rule or Scree Graph [7], requires manual inspection
of the eigenvalues. A more algorithmic technique uses the
Cumulative Percentage of Total Variation [7]. It selects those
first m eigenvectors that retain at least fraction f of the total
variance, by computing the score

< 0j
zkéﬂi,lfmfmi (14)
Zlgjgm'éj

and selecting the lowest m for which ¢(m) > f.5

Eigenvector features can also help to chose the right projec-
tion axes. In Section V-B.1 we demonstrate the significance
of the DC component (average voltage) of PCA eigenvectors
u;. The idea that useful eigenvectors are likely to show
localized peaks (see middle of Figure 9 later on) has also
been explored to construct selection features [24], [33]. The
Explained Local Variance (ELV) method proposed by Cagli
et al. [33] calculates for each sample time 7 in each PCA
eigenvector u; the value

P(m) =

Sju3 (1)
Z;"l/r:l 5/”’

to then compute the sum o; = Z?,:l sort, {ELV (u;, 1)}(t")
of the g largest ELV values of each eigenvector u;. The o;
are essentially the eigenvalues J; weighed with a measure
of the peakiness of the eigenvectors. We tried this measure
on our datasets (with ¢ = 25), but the top four ¢; values
selected the same u; as the top eigenvalues J;, so we were
unable to confirm an improvement. Ultimately, “there is no
definitive answer [to the question of how many components to
choose]” [12, Ch. 8].

4) Alternative Computation of PCA Templates: Standaert
and Archambeau [15, Sec. 4.1] mention that PCA can help
where computing the full covariance matrix S} is prohibitive,
due to large m'. However, their approach still requires the
computation of S}, see (13). Also, numerical artifacts during
the double matrix multiplication in (13) can make S; non-
symmetric. Both problems can be avoided: rather than first
computing S and then applying (13), we can first compute
the projected leakage matrix

ELV(u;, ) = (15)

X, = X[ U” (16)

and then compute the PCA-based template parameters

using (1). The result is equivalent since Cov(x;U") =
U™ Cov(xp)U™ [12, eq. (3)-(45)].

SIn our experiments, for f = 0.95 and np < 1000 this method retained the
m = 4 largest components, which correspond to the same components that
we had selected using the elbow rule. However, when np > 1000 the number
of components needed for f > 0.95 decreased to m < 4, which led to worse
results of the template attack.

493

5) Fisher’s Linear Discriminant Analysis (LDA): Given a
random vector of leakage traces x", applying Fisher’s idea [2],
[12] means to consider projections y; = a;'x" and find
directions (vectors of coefficients) a; € R™ along which the
ratio

> (E (i) —E ()

keS

ZVar (yjk)

keS

> (a/(E () —E((x)))’
_ keSS
B ZVar (aj’x;()

keS

of the between-groups variance to the within-groups variance
is maximised (where X} with y;; = a;'x] is the same random
vector within group k).

Given leakage traces x;; (rows of Xj), this ratio (times
|S| — 1) can be estimated as

Sl — 1) D~ (a) (&g — X)*

keS

"p
D> a) (xui — %) (ki — %i)'a;

keS i=1

Ba;
a;'Ba;

A7)

T >

= .
aj pooleda]

where B is the sample between-groups matrix from (12)
and S, 4 = ﬁ > kes S is the common covariance of all
candidates (see also Section III-B). Note the similarity between
the left hand side of (17) and the F-test (11), SNR and SOST.
While in the sample selection method we first compute (11) for
each sample and then select the samples with the highest F(r),
Fisher’s method finds the linear combinations of the trace
samples that maximise (17).

The coefficients a; that maximise (17), subject to the con-
straint that Cov(yix, yjk) = O for i # j, are the eigenvectors
of ( ;Ooled)le with the largest eigenvalues.®

As with PCA, we only need to use the first m coefficients
ap, ..., a,, which can be selected using the same rules as for
PCA. If we let A = (a;...a,) be the matrix of coefficients,
we can project each leakage matrix as:

X = XA (18)
and compute the LDA-based template parameters using (1).

Several authors [15], [18] have used Fisher’s LDA for
template attacks, but without mentioning two important
aspects. Firstly, the condition of equal covariances (known
as homoscedasticity) may be important for the success of
Fisher’s LDA. Therefore, the PCA method, which does not
depend on this condition, might be a better choice in some
settings. Secondly, the coefficients that maximise (17) can
be obtained using scaled versions of S;ooled or different
approaches [15], [18], which will result in a different scale

SNote that (Srooled)_lB is not necessarily symmetric, so we cannot
directly apply singular-value decomposition to obtain orthonormal eigen-
vectors. Instead, we can first compute the eigenvectors u; of the symmet-

_1 _1
ric matrix (Siyooled) ZB(S;ooled) 2, which has the same eigenvalues as

(S,

pooled)ilB [12, Exercise 11.21], and from which we can then obtain the

_1 R .
coefficients a; = (S{)ooled) 2u;. There are a maximum of s = min(m", |S|—
1) non-zero eigenvectors, as that is the maximum number of independent
linear combinations available in B.
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of the coefficients a;. This has a major impact on the tem-
plate attack: only when we scale the coefficients a;, such
that a j’S{)OOleda j = 1, the covariance between discriminants
becomes the identity matrix [12], i.e. Sy = L. In this case the
sample means in (1) suffice and we can discard the covariance
matrix from the discriminant scores in Section III-E, which
greatly reduces computation and storage requirements. The
method we presented above to obtain the coefficients a;
guarantees this condition.

D. Floating-Point Limitations

A second practical problem with (3) is that for large m the
statistical distance

(x — %)'S; ' (x — %)

can cause the subsequent exponentiation operation to overflow.
For example, in IEEE double precision, e is only safe with
|x|] < 710, easily exceeded for large m.

Another problem is that for large m the determinant |Sy| can
overflow. For example, considering that |Sk| is the product
of the eigenvalues of Si, in some of our experiments the
100 largest eigenvalues were at least 10° and multiplying
merely 52 such values again overflows the IEEE double-
precision format.

E. The Linear Discriminant

Such numerical issues can be avoided by replacing the
multivariate pdf (3) with an equivalent discriminant score.

A first step is to use the logarithm of the multivariate normal
distribution:

1 1
log f(x | ©) == log 2n— > log 8¢ — 5 (x—%)'S; | (x—%0),
(19)
where we compute the logarithm of the determinant as
m
log S| =2 logcii, (20)

i=1

using the Cholesky decomposition Sy = C'C of the symmetric
matrix Sy. (Since C is a triangular matrix, its determinant is
the product of its diagonal elements c;;.)

By dropping the first term, which is constant across all k,
we obtain a discriminant score based on the log-likelihood:
1 s VQ—1 <
_(Xi —X)'S; " (xi — Xk)

1
Dlog(k [xi) = —> 10g [Sk| —

10g F&i k) + =
=log L(k | x;)+ const.

log 2n
21

Using Spooled, We can discard the first two terms in (19) and
use the generalized statistical distance

dy(x, %) = (x — ik)/sl;ololed(x —%) >0, (22)

also known as the Mahalanobis distance [1], to compare
the candidates k. The inequality in (22) holds because the

covariance matrix is positive semidefinite. From (19,22) we
can derive the discriminant score

1 _
Dma(k | x;) = —Edﬁ(x,-,xm

= Diog(k | x;) + const., (23)
where the constant does not vary with k.
We can then rewrite the Mahalanobis distance (22) as
dM (X Xp) =X SpcvcvledX 2)_(,’/cS[;ololedx + )_(;( S;cvloledik’ 24

and observe that the first term is constant for all candidates k,
so we can discard it. That means we can now use the score

el =
Diinear(k | X;) = stpooledxl - Exkspooledxk

= Dma(k | x;) + const., (25)

which depends linearly on x; (const. does not depend on k).

Although equivalent (for comparing single bytes), the linear
discriminant Djinear avoids most of the numerical issues asso-
ciated with the multivariate normal distribution. Furthermore,
it can be far more efficient to compute than the quadratic
log-likelihood discriminant Dpg. To see this, compare the
discriminants when used to combine n, attack traces (essential
for the success of many side-channel attacks) by computing
the joint likelihood

Lk | Xe) = [] L*Ix) (26)
X; in X
or equivalently the joint log-likelihood
Na
log Lk | Xgx) = > log L(k | x;) 27)

i=1
which leads us to these joint scores:

n 1 a B _ _
=— 5*‘ log|S¢|— > ; (xi —%)'S; ' (i — %),

Dlog(k | Xk*)

(28)
1
Dmatk | Xe) = =5 > (% = %0)'S; (xi = %), (29)
i=1
i . )
Diinear (k | Xpx) = stpooled(zxi) - =X /S;(,o]edxk- (30)

i=1
Given n, leakage traces x; (the rows of X,), Diog requires
time O(nym?) while Dijpear only requires O(ngm + m?),
since the operations stpololed and ikSpooledxk only need to be
done once. This is a great advantage in practice: for example,
our evaluations of the guessing entropy (see Section IV) for
m =125 and 1 < n, < 1000 took about 3.5 days with Diog

but only 30 minutes with Dijinear.’

IV. RESULTS ON A SINGLE DEVICE

In this section, we present the framework used to evaluate
the success of template attacks, comparing the methods (com-
pression, linear discriminant) from Section III in the context
of a single device. This framework, as well as the datasets
presented here, will also be used in the context of different
devices (Section V).

TMATLAB, single core CPU with 3794 MIPS.
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A. Guessing Entropy

We are interested in evaluating the overall practical success
of the template attacks. For this, we consider the number of
guesses that an optimized brute-force search has to perform,
which tries candidate values k € S in order of decreasing
score D(k | Xgx) until finding the correct value kx. The
expected value of this number can be used to calculate
an upper bound for the Shannon entropy of the remaining
uncertainty about the target value [3]. It is commonly called
“guesswork™ [5] or “guessing entropy” [4], [14], [17]. The
lower the guessing entropy, the more successful the attack has
been and the less search effort remains to find the correct k.

To estimate this guessing entropy, we average the rank
of the score D(kx | Xi,) of the correct candidate over all
kx € S. In detail, we compute the score D(k | Xyy) (either
Diog or Diinear) for each combination of candidate value &
and target value kx, resulting in a score matrix M € RISIXISI
with M(kx,k) = D(k | Xgx). Each row in M contains
the score of each candidate value k given the traces Xy
corresponding to a given target value k*. Next we sort each
row of M, in decreasing order, to obtain a rank matrix R €
(1,..., 1S}ISXISI with

R(kx, k)
= position of D(k | Xix) in the sorted row of M(kx, -).
(31

Using the rank matrix R, we calculate the guessing entropy
for a particular set E = {Xj}ixes Of |S]-n, evaluation attack
traces as

G(E) = é > Rk, k). (32)

keS

As the guessing entropy is nicer to plot on a logarithmic
scale, we usually state its binary logarithm g = log, G, and
indicate this with the suffix “bits”. A random score would
result in a guessing entropy of g = log,(|S| + 1) — 1 bits.
Below, we compute the guessing entropy for 10 random trace
selections E and plot the average over these as a function
of nj,.

B. Results on 8-Bit Microcontroller Load Instruction

Our first target is the data bus of the Atmel XMEGA
256 A3U, an easily available 8-bit microcontroller without
side-channel countermeasures, mounted on our own evaluation
board to monitor the total current in all CPU ground pins via
a 10 Q resistor. We powered it from a battery via a 3.3 V
regulator and supplied a 1 MHz sine clock (see Figure 2, left).
We used a Tektronix TDS 7054 8-bit oscilloscope with
P6243 active probe, at 250 MS/s, with 500 MHz bandwidth in
SAMPLE mode. For this evaluation we used the same device
for both the profiling and the attack phase.

For each candidate value k € {0,...,255} we recorded
3072 traces xzi (i.e., 786432 traces in total), which we
divided into a training set (for the profiling phase) and an
evaluation set (for the attack phase). Each trace contains
m" = 2500 samples, recorded while the target microcontroller

495

©

Trigger signal

)

Current [mA]
S~

Time [ps]

Fig. 2. Left: the device used during our experiments. Right: A single example
trace X}- from our experimental setup.

np = 200 np = 2000

PCA, m=4
--=-sample, 1ppc
—sample, 3ppc
- - sample, 20ppc
----sample, allap

)

~

Sk (Diog)

~

Guessing entropy (bits)
Guessing entropy (bits)

N, (log axis)

—LDA, m=4
61 PCA, m=4
----sample, 1ppc
—sample, 3ppc
- - sample, 20ppc
----sample, allap

~

©

~

Guessing entropy (bits)

Spooled (Diinear)

0
10° 10' 102 10°
n, (log axis)

7, (log axis)

Fig. 3. Guessing entropy remaining after template attacks, with different
compressions, for np = 200 (left) and np = 2000 (right) profiling traces, using
individual covariances Sy with Djog (top) or a pooled covariance Spooled With
Dijpear (bottom).

executed the same sequence of instructions loaded from the
same addresses: a MOV instruction, followed by several
LOAD instructions (see Figure 2, right). We changed the
candidate byte k in random order during these measurements,
to avoid it correlating with any environmental changes, such
as temperature. All the LOAD instructions require two clock
cycles to transfer a value from RAM into a register, using
indirect addressing. We shall refer to the traces from this
experiment as the Grizzly dataset [29]. In our experiments
with this dataset, our goal was to determine the success of
the template attacks in recovering the byte k processed by
the second LOAD instruction. All the other instructions were
processing the value zero, meaning that in our traces none
of the variability should be caused by variable data in other
nearby instructions that may be processed concurrently in
various pipeline stages.®

We compare in Figure 3 the guessing entropy remain-
ing after template attacks using either the logarithm vari-
ant of the multivariate normal distribution discriminant with

8A similar approach was used by Standaert and Archambeau [15] and
Oswald and Paar [21] to report results of template attacks on (part of) the
key loading stage of a block cipher.
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the individual covariance matrices Si (Diog — top) or
the linear discriminant with the pooled covariance matrix
Spooled (Dlinear — bottom). In each case we show the high-
compression methods, such as PCA, LDA (only works with
a pooled covariance matrix, so Dio; was not applicable
here) and the sample selections using one sample per clock
at most (Ippc, m =~ 8), as well as a larger number of
samples: the 3ppc (m = 25), 20ppc (m =~ 7T7) and
allap (m =~ 125) selections.” We can see that the pooled
covariance greatly improves the overall results'” and that
in general the methods PCA and LDA provide the best
results.

Another important observation is that with the pooled
covariance matrix and np = 2000, the guessing entropy drops
to just 0.25 bits for n, = 103, where in 85% of all attacks the
maximum-likelihood candidate was the correct one. In other
words, we are able to differentiate well between the power
consumption of each individual bus line. These provide some
of the best results of this kind to date, when comparing with
other publications that mention or evaluate template attacks in
a fixed-data (SPA) scenario [19], [25], [35].!

C. Results on a DPA-Style Attack

Targeting the byte value transferred by a simple LOAD
instruction, as demonstrated above, is a substantially more dif-
ficult challenge than attacking a subkey byte in a cryptographic
algorithm executed with known plaintext, which is what most
other template-attack demonstrations reported in the literature
do. To demonstrate the difference, we use the same Grizzly
data set from above in order to simulate a DPA-style template
attack on AES.

For this, we treat the values k used during profiling and
attack as if they where actually the output v = Sbox(p @ k)
of the AES S-box. In other words, we generate a random
key byte and for each existing trace then obtain the cor-
responding plaintext byte p such that v = Sbox(p @ k)
is the byte loaded. Using the same trace data all mea-
surement parameters remain identical, making the results
comparable.'?

During the attack, we know for each trace x; the plain-
text byte p, and compute for each candidate key byte k
the S-box output value » = Sbox(p @ k). We then
obtain the linear discriminant of each candidate key byte
k as

el
Diinear (k | X;) = X:) pooledXi

- Ei; ;ololediﬂ' (33)

9The selections 1ppc, 3ppc and 20ppc provide a variable number of samples
because of the additional restriction that the selected samples must be above
the highest 95th percentile of s(¢), which varies with np, for each clock edge.

10A5 was also observed in older [13], [21], as well as more recent [35]
publications.

Ty [19], the authors mention that in general the best we can hope from
a SPA scenario is to obtain only the Hamming Weight of the value; in [25,
Table 7.1], Oswald reports a guessing entropy above 1.8 bits, even with np =
na = 4000 traces; in [35], when targeting the move of ciphertext (in a SPA
scenario), the guessing entropy remains above 2 bits for na = 1000 traces.

IZDPA attacks on real AES software implementations are usually less
challenging: they can observe more than just one instruction handling v.
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Fig. 4. Guessing entropy after template attack on the Grizzly dataset in an

AES S-box scenario (left), and on the Polar dataset (right, AES engine), when
using different compression methods.

Therefore, when combining multiple attack traces we have to
add the linear discriminant of each attack trace, obtaining

e 1,1 =
Diinear (k | Xix) = Z (X;Spololedxi - EX;Spololedxv)o (34)

X; EXk*

While this now takes O (n, - m?) steps, we can precompute
the fixed factors corresponding to the value o, and obtain a
computation in O(n, - m) operations. For the computation of
the guessing entropy, we only used a single fixed key value k,
since the target value v depends also on the plaintext bytes p.

Figure 4 (left) shows the guessing entropy achieved: in the
DPA scenario targeting AES, the guessing entropy drops to
almost zero within just n, = 5 attack traces and n, = 200,
compared to the LOAD instruction scenario (Figure 3), where
we need n, = 10> traces for comparable results.

D. Results on AES Hardware Cryptographic Engine

Since the Atmel XMEGA A3U microcontroller also con-
tains an AES hardware cryptographic module, we also imple-
mented the above attack against that target. The module can
perform one AES encryption with a 128-bit key in 375 CPU
clock cycles. Each such AES encryption requires 10 encryp-
tion rounds. We recorded a dataset with a total of 384000
traces, taken while running the hardware AES encryption
module with the 16-byte fixed random key (in hexadeci-
mal notation) “3c53eb11a470e4f7df71b49f2f7e72¢6” and uni-
formly distributed 16-byte plaintexts (we shall refer to these
traces as the Polar dataset). Each trace contains 5000 leakage
samples, recorded at 500 MS/s using the HIRES mode of the
Tektronix TDS 7054 oscilloscope, with 250 MHz bandwidth.
The XMEGA PCB was powered from batteries via a 3.3 V
linear regulator, and we provided the CPU with a sine wave
clock signal at 2 MHz. These traces cover the first 20 CPU
clock cycles of the AES encryption, which correspond only to
part of the first encryption round of AES.

We implemented the template attack with the linear discrim-
inant as above, using the byte v = Sbox(p @ k) from the first
AES encryption round as our target, where p and k represent
the first byte of the plaintext and key, respectively. During
the profiling step, we compute the value v = Sbox(p @ k)
corresponding to each plaintext byte p and compute the
template parameters for each value of » instead of k.

Figure 4 (right) shows the guessing entropy remaining after
using n, = 1000 profiling traces per target value v with the
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Fig. 5. The four XMEGA PCB devices used in our experiments.

compression methods LDA, PCA, Ippc, 3ppc and 20ppc. Each
line represents the average over 1000 experiments. We see that
as n, increases, LDA becomes the most efficient method (as
expected, given the analysis of Bruneau et al. [34]), followed
by PCA and 3ppc, similarly to the results in Section I'V-B.
A notable difference is that, when attacking a LOAD instruc-
tion, the guessing entropy decreases abruptly within the first
n, = 10 traces, and then starts to level off, but here (as in
Section IV-C) the guessing entropy steadily drops towards zero
as n, grows. This is because now we target different values
v, which reduces the set of possible candidates with each
new attack trace (e.g. there is a single value with Hamming
weight 0) and helps the attack to converge faster.

V. RESULTS USING DIFFERENT DEVICES

Most publications on template attacks [6], [10], [15], [17],
[28] used the same device (and most probably the same
acquisition campaign) for the profiling and attack phases in
their evaluation. The results of template attacks in this ideal
case were shown in the previous section. However, attackers
who can access a target device only briefly will be forced to
use a different device for profiling. To explore the application
of template attacks in this perhaps more realistic scenario,
we produced four custom PCBs (see Figure 5) for the XMEGA
microcontroller. We ran five acquisition campaigns: one for
each of the devices, which we call Alpha, Beta, Gamma and
Delta (the same name as the device,13) and another one at
a later time for Beta, which we call Beta Bis. All these
acquisition campaigns use the same setup as described in
Section IV-B, hence are also part of the Grizzly dataset.

There have been some previous publications in this con-
text. Renauld et al. [20] performed an extensive study on
20 different devices with 65 nm CMOS transistor technology,
showing that the template attack may not work at all when the
profiling and attack steps are performed on different devices.
However, they only used a sample compression method with
1 to 3 samples. Elaabid et al. [22] showed that acquisition cam-
paigns on the same device, but conducted at different times,
also lead to worse template-attack results. They also only

BDevices Alpha and Beta used a CPU with week batch ID 1145, while
Gamma and Delta had 1230.
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Fig. 6. Classic template attacks in different scenarios. Left: using Alpha for
profiling and Beta for attack. Right: using same device (Beta) but different
acquisition campaigns for profile (Beta) and attack (Beta Bis).

evaluated a single compression method (PCA with m = 1).
Heuser et al. [23] used a variant of PCA that did not use
information from the mean vectors (in contrast to how we
use PCA and LDA here). Lomné et al. [26] also evaluated
different devices, using electromagnetic leakage, again with
just a single compression method. Below we compare many
variants of compression methods.

As we show in Figure 6 (left), the overall efficacy of
template attacks drops dramatically when using different
devices for the profiling and attack steps. This confirms what
Renauld er al. [20] observed. In Figure 6 (right) we find
that, even when using the same device but different acqui-
sition campaigns (same acquisition settings), we get results as
bad or even worse as when using different devices, as was
previously observed by Elaabid and Guilley [22]. However,
a notable observation is that LDA is in fact able to produce
good results even in this scenario. In the following we offer
an explanation for these results and show how to use PCA and
LDA efficiently.

A. Main Cause for Differences

Figure 7 shows the overall mean vectors X" = I?ll D s X
for each campaign, from which we removed the overall mean
vector of Beta (hence the vector for Beta is 0). From this figure
we see that all overall mean vectors X' (except the one for
Beta) are far outside the confidence region of Beta (a = 0.05).
Moreover, we see that the overall mean vector X' for Beta Bis
is the most distant from the overall mean vector of Beta. This
leads us to the hypothesis that the main difference between our
acquisition campaigns is an overall offset caused by campaign-
dependent factors, such as temperature drift or battery charge,
and not necessarily by the use of different devices. A similar
observation was made by Elaabid and Guilley [22], however
they used different setups for the different campaigns on the
same devices. In our study we have used the exact same setup
for the acquisition of data, while replacing only the tested
device (evaluation board).

We also plot in Figure 8 the distributions of our data for
Alpha and Beta. We observe that the distributions are very
similar (in particular the ordering of the different candidates k
is generally the same) but differ mainly by an overall offset,
as observed earlier. Therefore, for our experiments, this offset
seems to be the main reason why template attacks perform
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parameters (X;, S;ooled) for k € {0, ..., 9} on Alpha (left) and Beta (right).

badly when using different campaigns for the profiling and
attack steps.

In some circumstances, traces might be misaligned, e.g. due
to lack of a good trigger signal, or random delays introduced
by some countermeasure. In such cases, one could first apply a
resynchronisation method, such as those proposed by Homma
et al. [11]. Our experiments used a very stable trigger, as
shown by the exact alignments of sharp peaks in Figure 7.

B. Improved Attacks on Different Devices

There are several ways to improve template attacks when
using different devices for the profiling and attack steps. One
straight-forward method is to perform the profiling step over
several devices (or campaigns) in order to capture some of
the inter-campaign variation [20], [30]. Another approach is
to compensate for the DC offset directly, e.g. by recording
through a DC-block or high-pass filter, or normalizing the
mean in the traces, by subtracting an estimate of the DC
offset [27], [30], or indirectly by compressing only differences
between attack traces [23]. Compensating a DC offset may
improve the results of template attacks in some cases, but also
carries a risk, in particular with longer recordings: DC filters

add non-local effects (impulse response) that can spread the
influence of localized noise (e.g., from variations in other data
or control-flow several clock cycles away). Such noise can also
affect DC-offset estimates, unless the samples used in these
estimates have been carefully selected, and therefore spread its
effects during mean normalization. Offset compensation can
actually decrease the performance of PCA or LDA [30].

Therefore, rather than adding extra DC-compensating pre-
processing steps, we explore below how to manipulate the
PCA and LDA dimensionality-reduction techniques to make
their output less sensitive to low-frequency variability.

1) Efficient Use of PCA and LDA: Remember from
Section III-C that LDA takes into consideration the raw pooled
covariance S;ooled' Also, we mention that we acquired traces
for random permutations of all values k at a time and our
acquisition campaigns took a few hours to complete. There-
fore, the pooled covariance S;ooled of a given campaign con-
tains information about the drifting parameters that may have
influenced the current consumption of our microcontrollers
over the acquisition period. But one of the major sources
of low-frequency noise is temperature variation (which can
affect the CPU, the voltage regulator of our boards, the voltage
reference of the oscilloscope, our measurement resistor; see
also the study by Heuser et al. [23]), and we expect such
temperatures to be as variable within a campaign as they are
across campaigns if each acquisition campaign takes several
hours. As a result, the temperature variation captured by the
covariance matrix S;ooled of one campaign should be similar
across different campaigns. However, the mean vectors Xj
across different campaigns can be different due to different DC
offsets (even if the overall temperature variation is similar),
and this is why the sample selection methods (e.g. 20ppc,
allap) perform poorly across different campaigns. Neverthe-
less, the LDA algorithm appears to be able to remove the DC
component and use only the rest of the trace for the attack.
This, combined with the fact that with LDA we no longer
need a covariance matrix after compression, allows LDA to
filter out temperature variations and other variability sources
that are similar across campaigns, and provide good results
even across different devices.

In order to show how LDA and PCA deal with the DC off-
set, we show in Figure 9 (top) the DC components (magnitude
of mean) of the LDA and PCA eigenvectors. For LDA we can
see that there is a peak at the fifth DC component, which
shows that our choice of m = 4 avoided the component with
largest DC offset by chance. For PCA we can see a similar
peak, also for the fifth component, and again our choice m = 4
avoided this component. However, for PCA this turned out to
be a disadvantage, because PCA does use a covariance matrix
after projection, and therefore it would benefit from getting
knowledge of the temperature variation from the samples. This
variation will be encoded by the eigenvector with a high DC
offset and therefore we expect that adding this eigenvector
may provide better results. We also show in Figure 9 the
first six eigenvectors of (S;mled)le (LDA), B (PCA) and
S{)ooled’ along with the first 20 eigenvalues of LDA and PCA.
A small DC offset can be seen in the fifth eigenvector for
the PCA example, but is not visually obvious for the LDA
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Fig. 10. Template attack on different campaigns (profiling on Alpha, attack
on Beta). Left: using various compressions with the classic method. Right:
using PCA and LDA after adding random DC offset.

one. Also, we see that the division by S;ooled in LDA has
removed much of the noise found in the PCA eigenvectors, and
it appears that LDA has reduced the number of components
extracting most information from four (in PCA) down to
three.

To confirm the above observations, we show
in Figure 10 (left) the results of template attacks when
using PCA and LDA with different values of m. We see
that for LDA there is a great gap between using m = 4 and
m = 5, no gap between m = 3 and m = 4, while the gap
between m = 5 and m = 40 is very small. This confirms
our previous observation that with LDA we should ignore
the eigenvector containing a strong DC coefficient. Also,
we see that for PCA there is a huge gap between using
m = 4 and m = 5 (in the opposite sense as with LDA),
but the gap between m = 5 and m = 40 is negligible.
Therefore, PCA can work well across devices if we include
the eigenvectors containing the DC offset information. These
results provide an important lesson for implementing template
attacks across different devices or campaigns: the choice of
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components should consider the DC offset contribution of
each eigenvector. This suggests that previous studies may
have missed important information, by using only sample
selections with one to three samples [20] or only the first
PCA component [22].

2) Add DC Offset Variation to PCA: Renauld et al. [20]
mentioned that “physical variability makes the application of
PCA irrelevant, as it cannot distinguish between inter-plaintext
and inter-chip variances”. While it is true that the standard
PCA approach [9] is not aimed at distinguishing between
the two types of variance, we showed earlier that PCA can
actually provide good results if we select the eigenvectors
carefully. Starting from this observation, we can try to enhance
the PCA algorithm by deliberately adding DC noise, in the
hope of concentrating the DC sensitivity in one of the first
eigenvectors, thereby making the other eigenvectors less DC
sensitive (as all eigenvectors are orthogonal). This method can
be implemented using the following steps:

1) Obtain the raw leakage traces X; from the profiling

device, for each k.
2) Obtain the raw pooled covariance matrix S;ooled €
Rm'xmr.
3) Pick a random offset ¢; for each mean vector ii.m
4) Compute the between-groups matrix as
B=>,s& —X"+1"- )X, — X" +1"-¢;)".
5) Use PCA (uses B only) or LDA (uses both B and S;ooled)
to compress the raw leakage traces and obtain X; for
each k.
6) Compute the template parameters (Xk, Spooled) USing
(1) and (7).

7) Obtain the compressed leakage traces Xy, from the

attacked device.

8) Compute the guessing entropy (see Section IV-A).

The results of this method are shown in Figure 10 (right).
We see that now PCA provides good results even with m = 4,
whereas LDA now gives worse results with m = 4.
Figure 11 shows the eigenvectors from LDA and PCA, along
with their DC component. We can see that, by using this
method, we managed to push the eigenvector having the
strongest DC component first, and this was useful for PCA.
However, LDA does not benefit from including a noise eigen-
vector into B, so we propose this method only for use with
PCA.

3) Applicability: Note that the attack evaluated in Fig-
ure 6 targets an 8-bit LOAD instruction directly, just like in
Section I'V-B and Figure 3, but on different devices. This is a
very challenging attack and therefore particularly sensitive to
inter-campaign differences. If instead we repeat this attack in
the much easier scenario of Section IV-C and Figure 4 (left),
against a (simulation of a) software-implementation of AES,
these differences weigh much less and the attack performs well
without special measures, such as those proposed above or the
clustering technique proposed by Whitnall and Oswald [32]:
the guessing entropy still drops to zero with just n, = 20
traces, for LDA even with just n, = 5 traces.

14yWe have chosen ¢k uniformly from the interval [—u, u], where u is the
absolute average offset between the overall mean vectors shown in Figure 7.
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VI. CONCLUSIONS

In this paper, we have explored in detail some of the
main problems that may arise in practice when implementing
template attacks based on the multivariate normal distribu-
tion. These problems appear when using a large number of
samples, or different devices for the profiling and attack steps,
both of which are most likely to happen in a practical template
attack.

We presented several methods that can help dealing with
these problems, such as the use of pooled covariance matrices
(Slr)ooled, Spooled) and the compression methods PCA and
LDA, as well as the use of a linear discriminant Diipear,
which can be much more efficient than the logarithm of
the multivariate normal distribution Djoe (in some of our
experiments we reduced the evaluation time from 3.5 days
to 30 minutes). We also showed that there are ways to
use these compression methods in the context of different
devices to increase the performance of template attacks in this
scenario.

We applied all the methods presented in this paper to
real traces from an AVR XMEGA 8-bit microcontroller.
We targeted both its CPU and hardware AES engine. Firstly,
we eavesdropped directly on the CPU transferring an unknown
byte in a LOAD instruction, independent of any cryptographic
algorithm. Secondly, we simulated an attack on a software
implementation of the AES cipher, reconstructing a subkey
byte from known plaintext and targeting a first-round Sbox
output. Finally, we did the same to the hardware AES engine.
We compared our methods in all three scenarios by means
of the guessing entropy. Even for the particularly demanding,
algorithm-neutral attack on the LOAD instruction, where we
had to distinguish the power signatures of each individual data-
bus wire, we were able to reduce the guessing entropy to near
zero bits, i.e. we are able to extract all 8 bits processed by a
single LOAD instruction (i.e., not just their Hamming weight).

We also showed how to use PCA and LDA to achieve similar
results when using different devices for profiling and attack.

Data and Code Availability: In the interest of reproducible
research we make available our data and associated MATLAB
scripts [29].
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