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Abstract

We develop a renormalisation group approach to deriving the asymptotics of the spectral gap
of the generator of Glauber type dynamics of spin systems with strong correlations (at and near a
critical point). In our approach, we derive a spectral gap inequality for the measure recursively in
terms of spectral gap inequalities for a sequence of renormalised measures. We apply our method
to hierarchical versions of the 4-dimensional n-component |ϕ|4 model at the critical point and its
approach from the high temperature side, and of the 2-dimensional Sine-Gordon and the Discrete
Gaussian models in the rough phase (Kosterlitz–Thouless phase). For these models, we show that
the spectral gap decays polynomially like the spectral gap of the dynamics of a free field (with a
logarithmic correction for the |ϕ|4 model), the scaling limit of these models in equilibrium.

1 Introduction and main results

1.1. Introduction. Spin systems in equilibrium have been studied by a variety of methods which led
to a very complete mathematical description of the physical phenomena occurring in the different
regimes of the phase diagrams. This includes in particular a good understanding of the critical phe-
nomena in a wide range of models. Much less is known about the Glauber dynamics of spin systems.
For sufficiently high temperatures, it is well understood that the dynamics relaxes exponentially
fast towards the equilibrium measure. For the Ising model, the much more difficult question of fast
relaxation in the entire uniqueness regime was addressed in [22, 46, 50, 51]. In the phase transition
regime, at least for scalar spins, the dynamical behaviour is governed by the interface motion and
the relaxation becomes much slower. In particular, the relaxation time diverges as the system size
increases, but the dynamical scaling depends strongly on the choice of the boundary conditions. We
refer to [49] for a review, as well as to [21, 44] for more recent results. In the vicinity of the critical
point, strong correlations develop and as a consequence the dynamic evolution slows down but is
no longer driven by phase separation. Even though the critical dynamical behaviour has been well
investigated in physics [36], mathematical results are scarce. The only cases for which polynomial
lower bounds on the relaxation or mixing times are known are the two-dimensional Ising model [45],
exactly at the critical point, the Ising model on a tree [27], both without sharp exponent, and the
mean-field Ising model which is fully understood [26,42].

The goal of this paper is to investigate the dynamical relaxation of hierarchical models near and
at the critical point by deriving the scaling of the spectral gap in terms of the temperature (or the
equivalent parameter of the model) and the system size.
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Since their introduction by Dyson [28] and the pioneering work of Bleher–Sinai [11], hierarchical
models have been a stepping stone to develop renormalisation group arguments. At equilibrium,
sharp results on the critical behaviour of a large class of models have typically been obtained first in
a hierarchical framework and then later been extended to the Euclidean lattice. For the equilibrium
problem, the hierarchical framework results in a significant technical simplification, but the results
and methods have turned out to be surprisingly parallel to the case of the Euclidean lattice Z

d.
This point of view is discussed in detail in [9], to which we also refer for an overview of results
and references. Building on the results for the hierarchical set-up for the equilibrium problem,
we derive recursive relations on the spectral gap after one renormalisation step. This enables us
to obtain sharp asymptotic behaviour of the spectral gap for large size Sine-Gordon model in the
rough phase (Kosterlitz–Thouless phase) and for the |ϕ|4 model in the vicinity of the critical point.
The scaling coincides in both cases with the one of the hierarchical free field dynamics (with a
logarithmic corrections for the |ϕ|4 model) which describes the equilibrium scaling limit of these
models. Renormalisation procedures have already been used to analyze spectral gaps for Glauber
dynamics, see e.g., [49], but the renormalisation scheme used in this paper is different and allows to
keep sharp control from one scale to the next.

After recalling the definitions of the hierarchical models and presenting the results of this paper
in Section 1.4, we implement, in Section 2, the induction procedure to control the spectral gap after
one renormalisation step. We believe that our method could be extended beyond the hierarchical
models, thus the induction is described in a general framework under some assumptions which can
then be checked for each microscopic models. This is completed in Section 3 for the hierarchical |ϕ|4
model, and in Section 4 for the hierarchical Sine-Gordon and the Discrete Gaussian models. Proving
these assumptions requires establishing stronger control on the renormalised Hamiltonians in the
large field region than needed when studying the renormalisation at equilibrium (convexity instead
of probabilistic bounds). Such convexity for large fields is the main challenge to extend the method
of this paper beyond hierarchical models.

1.2. Spectral gap. Let Λ be a finite set andM be a symmetric matrix of spin couplings acting on R
Λ.

We consider possibly vector-valued spin configurations ϕ = (ϕix)x∈Λ,i=1,...,n ∈ R
nΛ = {ϕ : Λ → R

n},
with action of the form

H(ϕ) =
1

2
(ϕ,Mϕ) +

∑

x∈Λ
V (ϕx), (ϕ ∈ R

nΛ), (1.1)

for some potential V : Rn → R, where (·, ·) is the standard inner product on R
nΛ. In the vector-

valued case n > 1, we assume that V is O(n)-invariant and that M acts by (Mϕ)ix = (Mϕi)x for
i = 1, . . . , n and x ∈ Λ. The associated probability measure µ has expectation

Eµ(F ) =
1

Z

∫

RnΛ

e−H(ϕ)F (ϕ) dϕ, Z =

∫

RnΛ

e−H(ϕ) dϕ. (1.2)

The (continuous) Glauber dynamics associated withH is given by the system of stochastic differential
equations

dϕx = −∂ϕxH(ϕ) dt+
√
2dBx, (x ∈ Λ), (1.3)

where the Bx are independent n-dimensional standard Brownian motions. (The continuous Glauber
dynamics is also referred to as overdamped Langevin dynamics; to keep the terminology concise we
use the term Glauber dynamics in the continuous as well as in the discrete case.) By construction,
the measure µ defined in (1.2) is invariant with respect to this dynamics. Its relaxation time scale
is controlled by the inverse of the spectral gap of the generator of the Glauber dynamics (see, for
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example, [2, Proposition 2.1]). By definition, the spectral gap is the largest constant γ such that, for
all functions F : RnΛ → R with bounded derivative,

Varµ(F ) = Eµ(F
2)− Eµ(F )

2
6

1

γ
Eµ(∇F,∇F ) . (1.4)

Our goal in this paper is to determine the order of the spectral gap γ for specific choices ofM and
V , when the size of the domain Λ diverges. For statistical mechanics, the setting of primary interest
is a finite domain of a lattice or a torus Λ = ΛN ⊂ Z

d whose size tends to infinity, and a short-range
spin coupling matrix M , such as the discrete Laplace operator −∆ on Λ. The discrete Laplace
operator has a nontrivial kernel. This degeneracy must be removed through boundary conditions
or an external field (mass term). For example, for a cube of side length D with Dirichlet boundary
conditions, the smallest eigenvalue is of order D−2. In the hierarchical set-up that we consider, we
impose an external field instead of boundary conditions whose size is such that the smallest eigenvalue
is at least of order D−2.

For V = 0, or more generally for quadratic potentials which can be absorbed in the definition of
M , the spectral gap γ of the generator of the Langevin dynamics is equal to the minimal eigenvalue
of M (assuming that it is positive) by explicit diagonalisation of (1.3). More generally, for V any
strictly convex potential satisfying V ′′(ϕ) > c > 0 uniformly in ϕ, the Bakry–Emery criterion [3]
implies that

γ > λ+ c, (1.5)

where λ is the smallest eigenvalue of M . Under these conditions, µ actually satisfies a logarithmic
Sobolev inequality with the same constant. In particular, under these assumptions, the dynamics
relaxes quickly, in time of order 1.

The situation is much more subtle when the potential V is non-convex. Indeed, as the potential
becomes sufficiently non-convex, the static measure µ typically undergoes phase transitions. In fact
for unbounded spin systems on a lattice, the relaxation of the Glauber dynamics has been controlled
only in the uniqueness regime under some assumptions on the decay of correlations [12,13,39,41,53]
(see also [52] for conservative dynamics). By considering hierarchical models, we are able to show that
the spectral gap decays polynomially in the vicinity of a phase transition. The idea is to decompose
the measure into renormalised fields such that at each scale, conditioned on a block spin field, the
renormalised potential remains strictly convex. By induction, we then obtain a recursion on the
spectral gaps of the renormalised measures.

Before stating the results, we first turn to the definition of the hierarchical models.

1.3. Hierarchical Laplacian. The Gaussian free field (GFF) on a finite approximation to Z
d is a

Gaussian field whose covariance is the Green function of the Laplace operator. The Green function
has decay |x|−(d−2) in dimensions d > 3 and has asymptotic behaviour − log |x| in dimension d = 2.
The hierarchical Laplace operator is an approximation to the Euclidean one in the sense that its
Green function has comparable long-distance behaviour, but simpler short-distance structure. The
study of hierarchical models has a long history in statistical mechanics going back to [11,28]; recent
studies and uses of hierarchical models include [1, 10,15,35,54] and references.

There is some flexibility in the choice of the hierarchical field; the precise choice is not significant.
Let Λ = ΛN be a cube of side length LN in Z

d, d > 1, for some fixed integer L > 1 and N eventually
chosen large. For scale 0 6 j 6 N , we decompose Λ as the union of disjoint blocks of side lengths Lj

denoted B ∈ Bj ; see Figure 1.1. In particular, B0 = Λ and the unique block in BN is ΛN itself. The
blocks have the structure of a K-ary tree with K = Ld, height N and the leaves are indexed by the
sites x ∈ ΛN .
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3-block

2-blocks

0-blocks

1-blocks

Figure 1.1. Blocks in Bj for j = 0, 1, 2, 3 where d = 2, N = 3, L = 2.

For scale j and x ∈ Λ, let Bj(x) be the block in Bj containing x. As in [9, Chapter 4], define the
block averaging operators, which are the projections

(Qjf)x =
1

|Bj(x)|
∑

y∈Bj(x)
fy, for f ∈ R

Λ. (1.6)

Let Pj = Qj−1 − Qj. Then P1, . . . , PN , QN are orthogonal projections on R
Λ with disjoint ranges

whose direct sum is the full space. An operator on R
Λ is hierarchical if it is diagonal with respect to

this decomposition. To obtain a hierarchical Green function with the scaling of the Green function
of the usual Laplace operator, we choose the hierarchical Laplace operator on Λ to be

−∆H =

N
∑

j=1

L−2(j−1)Pj . (1.7)

Like the usual Laplacian on the discrete torus, this choice of hierarchical Laplacian annihilates the
constant functions. The definition implies that the Green function of the hierarchical Laplacian has
comparable long distance behaviour to that of the nearest-neighbour Laplacian: for |x− y|−1 ≪ m,

(−∆H +m2)−1
xy ≍ |x− y|−(d−2) (d > 2), (1.8)

(−∆H +m2)−1
xy = cN − σ logL |x− y|+O(1) (d = 2), (1.9)

where |x− y| is the Euclidean distance and σ = 1−L−2 is a constant independent of N , and A ≍ B
denotes that A/B and B/A are bounded by N -independent constants. On the other hand, the
hierarchical Laplacian has coarser small distance behaviour than the lattice Laplacian. For a more
detailed introduction to the hierarchical Laplacian, as well as discussion of its relation to the lattice
Laplacian, see [9, Chapters 3–4].

1.4. Models and results. In Section 2, we are going to develop a quite general multiscale strategy
to estimate the spectral gap of (critical) spin systems by using a renormalisation group approach.
We will then apply this method to the n-component |ϕ|4 model and the Sine-Gordon model as well
as the degenerate case of the Discrete Gaussian model. These models correspond to choices of the
potential V defined now. In the setting of the hierarchical spin coupling, we study the critical region
of the |ϕ|4 model and the rough phase of the Sine-Gordon and Discrete Gaussian models. These are
both settings for which the renormalisation group method is well developed for the equilibrium case,
and we use this as input.
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1.4.1. Ginzburg–Landau–Wilson |ϕ|4 model. The n-component |ϕ|4 model is defined by the double-
well potential (if n = 1), respectively Mexican hat shaped potential (if n > 2),

M = −∆H , V (ϕ) =
1

4
g|ϕ|4 + 1

2
ν|ϕ|2, (g > 0, ν ∈ R). (1.10)

Our interest is in the case ν < 0, when this potential is non-convex. The |ϕ|4 model is a prototype
for a spin model with O(n) symmetry. The spatial dimension d = 4 is critical for this model (see,
e.g., [9]). The following theorem quantifies the decay of the spectral gap in the four-dimensional
hierarchical |ϕ|4 model when approaching the critical point from the high temperature side.

Theorem 1.1. Let γN (g, ν, n) be the spectral gap of the hierarchical n-component |ϕ|4 model on ΛN
with dimension d = 4 (as defined above). Let L > L0, and let g > 0 be sufficiently small. There
exists νc = νc(g, n) = −C(n + 2)g + O(g2) and a constant δ > 1 (independent of n) such that for
t0 > t > cL−2N , where t0 is a small constant,

c1t(− log t)−δ(n+2)/(n+8)
6 γN (g, νc + t, n) 6 c2t(− log t)−(n+2)/(n+8), (1.11)

provided that N is sufficiently large. In particular, t > cL−2N is allowed to depend on N .

The proof is postponed to Section 3. The same proof also implies easily that for t > t0 the gap
is of order 1, but since we are interested in the more delicate approach of the critical point, we omit
the details. Together with this, Theorem 1.1 implies that for the |ϕ|4 model, the spectral gap is
of order 1 in the high temperature phase, ν > νc independently of N , and as the critical point is
approached the spectral gap scales like that of the free field, with a logarithmic correction. We expect
that γ ∼ Ct(− log t)−z for a universal critical exponent z = z(n) > n+2

n+8 , which our method does not
determine (see also [36]). The upper bound follows easily from the estimates derived at equilibrium
in [9, Theorem 4.2.1] and we also use the renormalisation group flow constructed in [9] as input to
prove the lower bound (see also [33]). References for the renormalisation group analysis of the |ϕ|4
model on Z

4, with different approaches, include [34,37,38], [31] and [5–8,17–20].

1.4.2. Sine-Gordon model. The Sine-Gordon model is defined by a 2π-periodic potential and coupling
matrix proportional to the inverse temperature β, i.e.,

M = −β∆H (β > 0), V (ϕ) is even and 2π-periodic. (1.12)

The corresponding energy H(ϕ) in (1.1) is invariant under ϕ 7→ ϕ+2πn1
¯
for any n ∈ Z, where 1

¯
denotes the constant function on Λ with 1

¯x
= 1 for all x ∈ Λ. To break this non-compact symmetry,

we add the external field and consider

Hε(ϕ) = H(ϕ) +
ε

2

(

1
√

|Λ|
∑

x

ϕx

)2

=
β

2
(ϕ,−∆Hϕ) +

∑

x

V (ϕx) +
ε

2

(

1
√

|Λ|
∑

x

ϕx

)2

. (1.13)

As previously, we are interested in the large volume limit |Λ| ↑ ∞; to avoid some uninteresting
technicalities, we will make the convenient choice ε = βL−2N . If V was, e.g., the double well
potential V (ϕ) = ϕ4 − ϕ2 instead of a periodic potential as above, then the corresponding measure
has a uniform spectral gap for any β > 0 sufficiently small (see, e.g., [4]). The following theorem
shows that this is not the case for periodic potentials: the spectral gap decreases to 0. Thus that
the resulting models are critical, in the sense of slow decay of correlations, is also reflected in their
dynamics.

For the statement of the theorem, denote by V̂ (q) = (2π)−1
∫ π
−π e

iqϕV (ϕ) dϕ the Fourier coefficient

of the 2π-periodic function V , and let σ = 1− L−2 be the constant in (1.9) with dimension d = 2.
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Theorem 1.2. Let γN (β, V ) be the spectral gap of the hierarchical Sine-Gordon model on ΛN with
dimension d = 2 (as defined above). Assume

∑

q∈Z\{0}(1 + q2)|V̂ (q)| is small enough. Let 0 < β <

σ/(4 log L) and let ε = βL−2N . There are κ ∈ (0, 1) and c > 0 such that the spectral gap scales as

cL−2N
6 γN (β, V ) 6 L−2N (1−O(κN )) (1.14)

provided that N is sufficiently large.

The Sine-Gordon model is dual to a Coulomb gas model (see, e.g., [16, 32]). Under this duality,
the inverse temperature of the Coulomb gas model is proportional to the temperature 1/β of the
Sine-Gordon model. We here primarily view the Sine-Gordon model as a spin model, rather than
as a description of the Coulomb gas, and therefore choose β instead of 1/β in (1.12). Note that
the usual normalisation of the logarithm in (1.9) is cN − 1

2π log |x| + O(1) for the Laplace operator
on Z

2. For this normalisation of the hierarchical Laplace operator, the hierarchical critical inverse
temperature becomes 1/β = 8π. This is only approximately true in the Euclidean model because
of a field-strength (stiffness) renormalisation which is not present in the hierarchical model. For the
critical inverse temperature β = σ/(4 log L), we expect that γ ∼ CL−2NN−z for a universal critical
exponent z > 0. For the presence of logarithmic corrections to the free field scaling in the static
case, see [30]. Our theorem uses the set-up for the renormalisation group for this model of [16] (see
also [48]). References for the Sine-Gordon model on Z

2 include [32] and [23–25,29,30,47].

1.4.3. Discrete Gaussian model. We conclude this section with a discrete model which is closely linked
to the Sine-Gordon model. The Discrete Gaussian model is an integer-valued field with expectation
given by

Eµ(F ) =
1

Z

∑

σ∈(2πZ)Λ
F (σ)e

−β
2
(σ,−∆Hσ)− ε

2
( 1√

|Λ|

∑
x σx)

2

for F : (2πZ)Λ → R, (β > 0). (1.15)

Note that by rescaling β and ε by (2π)2, this definition is equivalent to the one in which the model
takes values in Z rather than 2πZ. The normalisation by 2π is convenient for our proof. The model
formally takes the form of a degenerate Sine-Gordon model in which e−V (ϕ) is replaced by a sum of
δ-functions. As the spins take integer values, we now consider a discrete Glauber dynamics for the
Discrete Gaussian model with Dirichlet form

1

2(2π)2

∑

x∈Λ
Eµ

(

(F (σx+)− F (σ))2 + (F (σx−)− F (σ))2
)

, (1.16)

where σx± is obtained from σ ∈ (2πZ)Λ by increasing/decreasing the entry at x ∈ Λ by 2π. Thus
the corresponding spectral gap of this dynamics is the smallest constant γ such that, for all functions
F : (2πZ)Λ → R with finite variance,

Varµ(F ) 6
1

γ

1

2(2π)2

∑

x∈Λ
Eµ

(

(F (σx+)− F (σ))2 + (F (σx−)− F (σ))2
)

. (1.17)

The following theorem is related to Theorem 1.2. It shows that the spectral gap of the Discrete
Gaussian model scales like the one of the GFF.

Theorem 1.3. Let γN (β) be the spectral gap of the hierarchical Discrete Gaussian model on ΛN in
dimension d = 2 (as defined above). For β > 0 sufficiently small and ε = βL−2N , there are κ ∈ (0, 1)
and c > 0 such that

cL−2N
6 γN (β) 6 L−2N (1−O(κN )) (1.18)

provided that N is sufficiently large.
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2 Induction on renormalised Brascamp–Lieb inequalities

The Brascamp–Lieb inequality is a generalisation of the spectral gap inequality. We here say that a
measure µ on a finite-dimensional vector space X with inner product (·, ·) satisfies a Brascamp–Lieb
inequality with quadratic form D : X → X if for all smooth functions F ,

Varµ(F ) 6 Eµ(∇F,D∇F ). (2.1)

In particular, if the quadratic form satisfies D 6 id/λ for some λ > 0, then µ satisfies a spectral
gap inequality with constant λ. In this section, we construct inductive bounds on Brascamp–Lieb
inequalities between renormalised versions of a spin system. From these we deduce in particular an
induction on the spectral gap. In the remainder of this paper, we will verify the generic assumptions
made in this section in the specific cases of the hierarchical |ϕ|4 and the Sine-Gordon models.

2.1. Hierarchical decomposition. While the results of this section are somewhat more general, in
the remainder of this paper we will apply them to hierarchical models. We therefore recall their
structure which can be helpful to keep in mind throughout this section. From Section 1.3, first recall
the orthogonal projections P1, . . . , PN , QN whose ranges span R

Λ, and the hierarchical Laplacian ∆H

(see (1.7)). By spectral calculus, for any m2 > 0, its Green function can be written as

(−∆H +m2)−1 =

N
∑

j=1

(1 +m2L2(j−1))−1L2(j−1)Pj +m−2QN . (2.2)

Using the definition Pj = Qj−1 −Qj to express the right-hand side of the last equation in terms of
the block averaging operators Qj, we can alternatively write

(−∆H +m2)−1 =

N
∑

j=0

Cj with Cj = λjQj, (2.3)

where

λ0(m
2) =

1

1 +m2
, λN (m

2) =
1

m2(1 +m2L2(N−1))
, (2.4)

λj(m
2) = L2j (1− L−2)

(1 +m2L2j)(1 +m2L2(j−1))
(0 < j < N). (2.5)

The above spin coupling matrices generalise directly to the O(n)-invariant vector-valued case, in
which all operators act separately on each component, and we use the same notation in this case.
Thus the Laplacian and the covariances act on the space X0 = R

nΛ.

The covariances Cj are degenerate and it is convenient to introduce the subspaces of X0 = R
nΛ

on which they are supported. Thus define Xj to be the image of Cj , i.e.,

Xj = {ϕ ∈ R
nΛ : ϕ|B is constant for every B ∈ Bj}, (2.6)

and, for S ⊂ Λ,

Xj(S) = {ϕ ∈ Xj : ϕx = 0 for x 6∈ S}. (2.7)

Then the Gaussian field ζ = {ζx}x∈Λ with values in Xj and covariance Cj can be realised as

∀x ∈ B, ζx = ζB , (2.8)

7



where {ζB}B∈Bj are independent Gaussian variables in R
n with variance

λj
|Bj(x)| = L−djλj .

In general, one can identify ϕ ∈ Xj with {ϕB}B∈Bj . In the following, we are going to consider
functions defined only on the subspaces Xj . Let F be such a function of class C2 written as

{ϕB}B∈Bj ∈ R
n|Bj | 7→ F

(

{ϕB}
)

. (2.9)

Then F can be extended as a smooth function on the whole of RnΛ by setting, for example,

F (ϕ) = F
({ 1

|B|
∑

x∈B
ϕx

})

. (2.10)

For such F , we will consider the gradient and the Hessian of F only in the directions spanned by 1
¯B

so that we set

∀ϕ ∈ Xj , ∇XjF (ϕ) = Qj∇F (ϕ), HessXj F (ϕ) = Qj HessF (ϕ)Qj . (2.11)

As the gradient and the Hessian are projected only in the directions spanned by 1
¯B

, their restrictions
on Xj are independent of the way F has been extended in R

nΛ.

2.2. Renormalised measure. Let X0 = R
nΛ with the standard inner product (·, ·). From now on, we

consider a Gaussian measure on X0 whose covariance C>0 has a decomposition C>0 = C0+ · · ·+CN ,
with the Ci symmetric and positive semi-definite. We then consider the class of probability measures
µ with expectation

Eµ(F ) =
EC>0

(e−V0F )

EC>0
(e−V0)

, (2.12)

for some potential V0. In particular, the models introduced in Section 1 are in this class, with

V0(ϕ) =
∑

x∈Λ
V (ϕx) for ϕ ∈ X0 = R

nΛ, (2.13)

and the decomposition (2.3). Given such a decomposition C0 + · · · + CN and the potential V0, we
define the renormalised potentials Vj inductively by

e−Vj+1(ϕ) = ECj (e
−Vj(ϕ+ζ)), (2.14)

where the expectation applies to ζ. (This definition includes j = N , but throughout this section we
will only use j < N .) The associated renormalised measure µj is then defined by the expectation

Eµj (F ) =
EC>j

(e−VjF )

EC>j
(e−Vj )

, C>j = Cj + · · ·+ CN . (2.15)

As is the case for the hierarchical decomposition, the covariances Cj are permitted to be degenerate
and we denote by Xj the subspaces of X0 on which they are supported, i.e., Xj is the image of Cj
(see (2.6) for the hierarchical decomposition).

2.3. One step of renormalisation. For the remainder of the section, we fix a scale j ∈ {0, 1, . . . , N},
and consider a single renormalisation group step from scale j to scale j + 1 when j < N , and a
final estimate when j = N . To simplify the notation, we usually omit the scale index j and write
+ in place of j + 1. In particular, we write C = Cj , V = Vj , µ = µj , µ+ = µj+1, and so on. Let
X = Xj ⊆ X0 be the image of C and denote by Q the orthogonal projection from X0 onto X. We
need the following assumptions.
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For j < N , in the assumptions below, D+ = Dj+1 is the matrix associated to a quadratic form for
a Brascamp–Lieb inequality for the measure µ+ (see (2.19)), and we set DN+1 = 0. Throughout the
paper, inequalities between operators and matrices are interpreted in the sense of quadratic forms.

A1. Non-convexity of potential. There is a constant ε = εj < 1 such that uniformly in ϕ ∈ X,

E(ϕ) := C1/2(HessX V (ϕ))C1/2
> −εQ. (2.16)

A2. Coupling of scales. The images of C and C+ contain all directions on which D+ is nontrivial,
more precisely

D+ = D+Q = D+Q+. (2.17)

A3. Symmetry. For all ϕ ∈ X,

[E(ϕ), C] = [E(ϕ),D+] = [C,D+] = [C,Q+] = 0, (2.18)

where [A,B] = AB −BA denotes the commutator.

The most significant assumption is (2.16), which will be seen to ensure that the fluctuation field
measure given the block spin field is uniformly strictly convex. The more technical assumptions
(2.17) and (2.18) are very convenient (and obvious in the hierarchical setting (2.3)) but seem less
fundamental. We use (2.16) in Lemma 2.7 and (2.60), (2.17) in (2.56), and (2.18) in (2.59).

Under the above assumptions, we relate the Brascamp–Lieb inequality for µ+ to that for µ.

Theorem 2.1. Fix j < N , and assume (A1)–(A3) and that µ+ satisfies the Brascamp–Lieb inequality

Varµ+(F ) 6 Eµ+(∇F (ϕ),D+∇F (ϕ)). (2.19)

Then µ satisfies a Brascamp–Lieb inequality (2.1) with

D 6
C

1− ε
+

D+

(1− ε)2
. (2.20)

For j = N , assume only that (A1) holds. Then µ satisfies a Brascamp–Lieb inequality (2.1) with

D 6
C

1− ε
. (2.21)

Iterating this theorem starting from j = N gives the Brascamp–Lieb inequality for the original
measure µ0 as follows. In particular, the spectral gap of µ0 is bounded by the inverse of the largest
eigenvalue of the matrix D0.

Corollary 2.2. Assume that, for j = 0, . . . , N , the sequence of renormalised measures (µj) satisfies
Assumptions (A1)-(A3) where ε = εj . Then µ0 satisfies a Brascamp–Lieb inequality with

D0 6

N
∑

k=0

δkCk, δk =
1

1− εk

k−1
∏

l=0

1

(1− εl)2
6 exp

(

2

k
∑

l=0

εl +O(ε2l )

)

. (2.22)

Proof. By backward induction starting from j = N , we will prove that the renormalised measures
µj satisfy the Brascamp–Lieb inequality

Varµj (F ) 6 Eµj (∇F (ϕ),Dj∇F (ϕ)), with Dj 6

N
∑

k=j

δj,kCk (2.23)
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and

δj,k =
1

1− εk

k−1
∏

l=j

1

(1− εl)2
. (2.24)

The claim (2.22) is then the case j = 0. To start the induction, we apply (2.21) which gives (2.23)
for j = N . To advance the induction, suppose 0 6 j < N is such that the inductive assumption
(2.23) holds with j replaced by j+1. This means that (2.19) holds for j and Assumptions (A1)–(A3)
also hold by assumption of the corollary. Theorem 2.1 and the inductive assumption imply that µj
satisfies the Brascamp–Lieb inequality with

Dj 6
Cj

1− εj
+

Dj+1

(1− εj)2
6

Cj
1− εj

+

N
∑

k=j+1

δj+1,k

(1− εj)2
Ck =

N
∑

k=j

δj,kCk. (2.25)

This advances the inductive assumption, i.e., (2.23) holds for j.

Corollary 2.3. Under the assumptions of the previous corollary, the measure µ0 satisfies a spectral
gap inequality with inverse spectral gap less than the largest eigenvalue of the matrix D0.

Proof. The claim is immediate from the definitions of the Brascamp–Lieb and the spectral gap
inequalities. Indeed, if 1/λ is the largest eigenvalue of D0 then

Varµ0(F ) 6 Eµ0(∇F,D0∇F ) 6
1

λ
Eµ0(∇F,∇F ), (2.26)

as claimed.

In Sections 3–4, Assumptions (A1)–(A3) will be checked for the different hierarchical models in
order to derive the scaling of the spectral gap from the previous corollary.

Remark 2.4. More generally, in the assumption D+ = D+(ϕ) and ε = ε(ϕ) could depend on ϕ ∈ X,
with ε uniformly bounded by 1. The conclusion (2.20) is then replaced by

D(ϕ+ ζ) 6
C

1− ε(ϕ + ζ)
+

D+(ϕ)

(1− ε(ϕ+ ζ))2
. (2.27)

However, this strengthened inequality may be difficult to use. To improve the readability, we therefore
do not carry the additional arguments for D+ and ε through the proof.

2.4. Proof of Theorem 2.1. We write the renormalised field at scale j as ζ +ϕ where ϕ ∈ X+ is the
block spin field at the next scale j + 1 and ζ ∈ X is the fluctuation field at scale j. More precisely,
recall that

Eµ(F ) =
EC>

(e−V F )

EC>
(e−V )

=
EC> EC(e

−V (ϕ+ζ)F (ϕ+ ζ))

EC> EC(e−V (ϕ+ζ))
, (2.28)

where C = Cj and ζ denotes the corresponding random field, where C> stands for the covariance
Cj+1+Cj+2+ . . . CN and ϕ denotes the corresponding random field, where C> = C+C>, and where
EC denotes the expectation of a Gaussian measure with covariance C.

Define the expectation conditioned on the block spin field ϕ in X+ by

Eµϕ(F ) = Eµ(F |ϕ) =
EC(e

−V (ϕ+·)F )

EC(e−V (ϕ+·))
=

EC(e
−V (ϕ+·)F )

e−V+(ϕ)
. (2.29)
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where we will often use the notation Eµϕ for the conditional measure Eµ(·|ϕ) to make the notation
more concise. Then, using (2.15),

Eµ(F ) =
1

Zj+1
EC>

(

e−V+(ϕ)
Eµ(F |ϕ)

)

= Eµ+

(

Eµ(F |ϕ)
)

, (2.30)

where Zj+1 is a normalising constant.

To prove Theorem 2.1, we write using the conditional expectation,

Eµ(F
2)− Eµ(F )

2 = Eµ+

(

Eµ(F (ϕ+ ζ)2|ϕ)
)

− Eµ+

(

Eµ(F (ϕ+ ζ)|ϕ)
)2

= A1 + A2, (2.31)

with

A1 = Eµ+

(

Eµ(F (ϕ+ ζ)2|ϕ)− Eµ(F (ϕ+ ζ)|ϕ)2
)

, (2.32)

A2 = Eµ+

(

Eµ(F (ϕ+ ζ)|ϕ)2
)

− Eµ+

(

Eµ(F (ϕ+ ζ)|ϕ)
)2
. (2.33)

In the remainder of this section, we will bound each term separately thanks to the following lemmas.

Lemma 2.5. Assume (A1). Then for any function F with gradient in L2(µ), one has

A1 6 Eµ

(

∇F (ϕ) C

1− ε
∇F (ϕ)

)

. (2.34)

Lemma 2.6. Assume (A1)–(A3) and that µ+ satisfies the Brascamp–Lieb inequality (2.19). Then for
any function F with gradient in L2(µ), one has

A2 6 Eµ

(

∇F (ϕ) D+

(1 − ε)2
∇F (ϕ)

)

. (2.35)

Proof of Theorem 2.1. For j < N , the proof is immediate by combining the decomposition (2.31)
and the previous two lemmas. For j = N , the claim follows directly from Lemma 2.5 only.

2.4.1. Proof of Lemma 2.5. From now on, we freeze the block spin field ϕ ∈ X+. Then the conditional
measure µϕ = µ( · |ϕ) is a probability measure on the space X, the image of C (see (2.6) in the
hierarchical case). As a subspace of the Euclidean vector space X0, the space X has an induced
inner product which we also denote by (·, ·), and an induced surface measure, which is equivalent to
the Lebesgue measure of the dimension of X. The measure µϕ has density proportional to e−Hϕ(ζ)

with respect to this measure given by

Hϕ(ζ) =
1

2
(ζ, C−1ζ) + V (ϕ+ ζ). (2.36)

(By definition of the subspace X we can regard C as an invertible symmetric operator X → X.) For
a function F : X0 → R and ϕ ∈ X0, the function Fϕ : X → R is defined by Fϕ(ζ) = F (ϕ+ ζ).

Lemma 2.7. Assume (A1). Then for all ϕ ∈ X+, the conditional measure µϕ satisfies the Brascamp–
Lieb inequality

Eµϕ(Fϕ(ζ)
2)− Eµϕ(Fϕ(ζ))

2
6 Eµϕ

(

(

∇XFϕ(ζ),
C

1− ε
∇XFϕ(ζ)

)

)

. (2.37)
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Proof. As a consequence of Assumption (2.16) and of the definition of the space X, the Hamiltonian
Hϕ associated with µϕ is strictly convex on X, with

HessX Hϕ = C−1 +HessX Vϕ

= C−1/2( id + C1/2Hess VϕC
1/2)C−1/2

> (1− ε)C−1,

where we used that C is invertible on X and that QC = CQ = C. The Brascamp–Lieb inequality
(A.4) implies the inequality.

Proof of Lemma 2.5. The term A1 is a variance under the conditional measure µϕ. By Lemma 2.7,
the measure satisfies the Brascamp–Lieb inequality (2.37). Therefore

A1 = Eµ+

(

Eµϕ(Fϕ(ζ)
2)− µϕ(Fϕ(ζ))

2
)

6 Eµ+

(

µϕ

(

∇XFϕ(ζ)
C

1− ε
∇XFϕ(ζ)

))

= Eµ

(

∇F (ϕ) C

1− ε
∇F (ϕ)

)

. (2.38)

In the last equality we used that CQ = C by definition of Q as the orthogonal projection onto the
image of C so that ∇X can be replaced by ∇.

2.4.2. Proof of Lemma 2.6. The second term A2 in (2.32) is a variance under µ+:

A2 = Eµ+

(

F̃ (ϕ)2
)

− Eµ+

(

F̃ (ϕ)
)2
, F̃ (ϕ) = Eµϕ(Fϕ(ζ)). (2.39)

Using Assumption (2.19) that the measure µ+ satisfies a Brascamp–Lieb inequality, we have

A2 6 Eµ+

(

‖D1/2
+ ∇F̃ (ϕ)‖22

)

= Eµ+

(

‖D1/2
+ ∇X+

Eµϕ(F (ϕ+ ζ))‖22
)

, (2.40)

where ∇X+
applies to the variable ϕ and ‖f‖22 =

∑

x∈Λ |fx|2.
We first state a technical lemma.

Lemma 2.8. Assume (A3). For ϕ̇ ∈ X+,

(ϕ̇,∇X+
F̃ (ϕ)) = (ϕ̇,∇X+

Eµϕ(F (ϕ+ ζ))) = Covµϕ(F (ϕ+ ζ), (ϕ̇, C−1ζ)). (2.41)

Proof. The derivative applies only on the block spin field ϕ. We write ∇ϕ for ∇X+
with respect to

the variable ϕ and ∇ζ for ∇X with respect to the variable ζ. Using the notation (2.36),

(ϕ̇,∇ϕEµϕ

(

F
(

ϕ+ ζ
))

) = Eµϕ

(

(ϕ̇,∇ϕF
(

ϕ+ ζ
)

)
)

− Covµϕ
(

F
(

ϕ+ ζ
)

, (ϕ̇,∇ϕHϕ(ζ))
)

= Eµϕ

(

(ϕ̇,∇ζF
(

ϕ+ ζ
)

)
)

− Covµϕ
(

F
(

ϕ+ ζ
)

, (ϕ̇,∇ζV
(

ϕ+ ζ
)

)
)

, (2.42)

where in the last term we used that, since ϕ̇ ∈ X+,

(ϕ̇,∇ϕF ) = (ϕ̇,∇ζF ), (ϕ̇,∇ϕHϕ) = (ϕ̇,∇ζV ). (2.43)

By integration by parts, we get also that

Eµϕ

(

∇ζF
(

ϕ+ ζ
))

= Eµϕ (F (ϕ+ ζ)∇ζHϕ(ζ)) . (2.44)

Using this relation and (2.18), we get that for any ζ ∈ X,

(ϕ̇,∇ζHϕ(ζ)) = (ϕ̇,∇ζ
1

2
(ζ, C−1ζ)) + (ϕ̇,∇ζV (ϕ+ ζ)) = (ϕ̇, C−1ζ) + (ϕ̇,∇ζV (ϕ+ ζ)), (2.45)
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and therefore

Eµϕ

(

(ϕ̇,∇ζF
(

ϕ+ ζ
)

)
)

= Eµϕ

(

F (ϕ + ζ)(ϕ̇, C−1ζ)
)

+ Eµϕ (F (ϕ+ ζ)(ϕ̇,∇ζV (ϕ+ ζ))) . (2.46)

The last equality applied to F = 1 implies that (as an identity between elements of X+)

Eµϕ ((ϕ̇,∇ζV (ϕ+ ζ))) = −Eµϕ((ϕ̇, C
−1ζ)). (2.47)

Thus (2.42) becomes

(ϕ̇,∇ϕEµϕ

(

F
(

ϕ+ ζ
))

) = Covµϕ
(

F
(

ϕ+ ζ
)

, (ϕ̇, C−1ζ)
)

, (2.48)

as claimed.

Lemma 2.9. Assume (A1)–(A3). Then for ϕ in X+,

‖D1/2
+ ∇X+

Eµϕ (F (ϕ + ζ)) ‖22 6 Eµϕ

(

‖D
1/2
+

1− ε
∇X+

F (ϕ+ ζ)‖22

)

= Eµϕ

(

‖D
1/2
+

1− ε
∇F (ϕ+ ζ)‖22

)

.

(2.49)

Applying the expectation Eµ+(·) on both sides and substituting the result into (2.40), this com-
pletes Lemma 2.6.

Proof of Lemma 2.9. The block spin field ϕ ∈ X+ is fixed and in the proof we study the measure µϕ
on the subspace X. We define Lϕ to be the self-adjoint generator of the Glauber dynamics for the
conditional measure µϕ on X, i.e.,

LϕF (ζ) = ∆XF (ζ) + (∇XHϕ(ζ),∇XF (ζ)); (2.50)

see also Appendix A. Moreover, we define the Witten Laplacian Lϕ on L2(µϕ)⊗X by

Lϕ = Lϕ ⊗ idX +HessX Hϕ . (2.51)

Using the Helffer-Sjöstrand representation (Theorem A.1), one can rewrite the correlations (2.41)
under the conditional measure in terms of the operator Lϕ as

(ϕ̇,∇X+
Eµϕ(F (ϕ + ζ))) = Covµϕ(F (ϕ + ζ), (C−1ζ, ϕ̇))

= Eµϕ(∇X(C
−1ζ, ϕ̇),L−1

ϕ ∇XF (ϕ+ ζ))

= (C−1ϕ̇,Eµϕ(L−1
ϕ ∇XF (ϕ+ ζ)))

= (ϕ̇,Eµϕ(C
−1L−1

ϕ ∇XF (ϕ+ ζ))). (2.52)

This is an identity in X+ which can be rewritten by using the projection Q+ as

∇X+
Eµϕ(F (ϕ+ ζ)) = Eµϕ(Q+C

−1L−1
ϕ ∇XF (ϕ + ζ)). (2.53)

Composing by D
1/2
+ and using that D+ = D+Q+ by (2.17), we deduce that

D
1/2
+ ∇X+

Eµϕ(F (ϕ + ζ)) = Eµϕ(Mϕ∇XF (ϕ+ ζ)). (2.54)

where the operator Mϕ is defined as

Mϕ = D
1/2
+ C−1L−1

ϕ . (2.55)
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Since D+ commutes with C and with LϕC by (2.18), the operator Mϕ acts on L2(µϕ) ⊗ X and is
self-adjoint. From (2.54) and the Cauchy-Schwarz inequality, we finally obtain

‖D1/2
+ ∇X+

Eµϕ(F (ϕ+ ζ))‖22 6 Eµϕ

(

‖Mϕ∇XF (ϕ+ ζ)‖22
)

, (2.56)

where ‖f‖22 = (f, f) and ∇X+
applies to ϕ and ∇X applies to ζ. In the following, we will show that

the operator Mϕ obeys the following form inequality on L2(µϕ)⊗X:

Mϕ 6 (1− ε)−1D
1/2
+ , (2.57)

which then concludes the proof of the lemma. Recall that the operator Lϕ is defined by

Lϕ = Lϕ ⊗ idX +HessX Hϕ = Lϕ ⊗ idX +HessX V (ϕ+ ζ) + C−1. (2.58)

Under Assumption (2.18), we can write

(HessX V )C = C1/2(HessX V )C1/2. (2.59)

Using that Lϕ and C are positive operators, using Assumption (2.16), it follows that as operators on
L2(µϕ)⊗X,

LϕC = C1/2LϕC1/2 = Lϕ ⊗ C + idX + C1/2(HessX V (ϕ+ ζ))C1/2
> (1− ε)Q. (2.60)

Finally, using that D+ = D+Q by Assumption (2.17), and using (2.18), it follows that Mϕ satisfies
the desired form bound

Mϕ 6 (1− ε)−1D
1/2
+ . (2.61)

This completes the proof.

3 Hierarchical |ϕ|4 model

In this section, we apply Corollaries 2.2–2.3 to the hierarchical |ϕ|4 model. Throughout this section,
the dimension is fixed to be d = 4. Nevertheless, we sometimes write d to emphasise that a factor 4
arises from the dimension d = 4 rather than from the exponent of |ϕ|4.

3.1. Renormalisation group flow. For m2 > 0 (to be determined in Theorem 3.1 as a function of g
and ν), we decompose

(−∆H +m2)−1 = C0 + · · ·+ CN , (3.1)

as in (2.3), and define the renormalised potential with respect to this decomposition as in (2.14),

e−Vj+1(ϕ) = ECj

(

e−Vj(ϕ+ζ)
)

. (3.2)

Note in particular that the sequence of renormalised potentials depends on the choice of m2, and
that Cj 6 ϑ2jL

2jQj where we define ϑj = 2−(j−jm)+ . As a consequence of the hierarchical structure,
the renormalised potential can be written as

Vj(ϕ) =
∑

B∈Bj
Vj(B,ϕ), (3.3)

where Vj(B,ϕ) is a function of ϕ that depends only on the restriction ϕ|B for any block B ∈ Bj.
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We always restrict the domain of the functions Vj(B) to the space Xj(B) ∼= R
n of fields that

are constant on B. Explicitly, for a block B ∈ B, denote by iB : Rn → R
nB the linear map that

sends ϕ ∈ R
n to the constant field ϕ : B → R

n with ϕx = ϕ at every x ∈ B. Then Vj(B) ◦ iB is a
function of a single variable in R

n induced by Vj(B). In particular using (2.10) one can view Vj(B)
as a function in R

nB , so that for any ϕ̇ ∈ Xj(B) taking the constant value ϕ̇B ∈ R
n,

ϕ̇(Hess Vj(B))ϕ̇ = ϕ̇B Hess(Vj(B) ◦ iB)ϕ̇B . (3.4)

If there is a constant s > 0 such that

1

|B| ϕ̇B Hess(Vj(B) ◦ iB)ϕ̇B > −s(ϕ̇B, ϕ̇B), (3.5)

then using that (ϕ̇, ϕ̇) = |ϕ̇B |2|B|, we deduce

ϕ̇(Hess Vj(B))ϕ̇ > −s(ϕ̇, ϕ̇). (3.6)

With the notation (2.11), the inequalities (3.5) and Cj 6 ϑ2jL
2jQj, it follows that

C
1/2
j (HessXj Vj)C

1/2
j > −sϑ2jL2jQj. (3.7)

Thus, in the hierarchical model, Assumption (A1) in (2.16) with εj = sϑ2jL
2j follows from (3.5). In

the rest of this section, we therefore reduce to the study of the function Vj(B) ◦ iB in R
n.

The renormalisation group for the |ϕ|4 model provides precise estimates on the renormalised
potential Vj when the field ϕ is not too large. The following theorem about the renormalisation
group flow is proved in [9]. Note that Vj in (3.2) is the full renormalised potential (the logarithm of
the density with respect to the Gaussian reference measure), not its leading contribution as in [9].
We will denote the latter instead by V̂j as it plays a less central role in the arguments of this paper.
It is determined by the coupling constants (gj , νj) ∈ R

2 through

V̂j(B,ϕ) =
∑

x∈B

(

1

4
gj |ϕx|4 +

1

2
νj|ϕx|2

)

, Ŵj(B,ϕ) =
∑

x∈B

(

1

6
αjg

2
j |ϕx|6

)

, (3.8)

where αj = αj(m
2) = O(L2jL−(j−jm)+) is an explicit (j-dependent) constant and jm = ⌊logLm−1⌋

is the mass scale. We stress the fact that if the field is constant on B then

V̂j(B) ◦ iB(ϕ) = |B|
(

1

4
gj |ϕ|4 +

1

2
νj|ϕ|2

)

, Ŵj(B) ◦ iB(ϕ) = |B|
(

1

6
αjg

2
j |ϕ|6

)

, (3.9)

so that in the following we will often consider the effective potential normalised by the factor 1/|B|
(see also (3.5)).

For the statement of the theorem, define the fluctuation field scale ℓj and the large field scale hj
by

ℓj = L−(d−2)j/2 = L−j, hj = L−dj/4g−1/4
j = L−jg−1/4

j . (3.10)

Finally, we define Fj by F ∈ Fj if for any B ∈ Bj there is a function ϕ ∈ R
nΛ 7→ F (B,ϕ) that (i)

depends only on the average of ϕ over the block B; (ii) the function F (B) ◦ iB is the same for any
block B; and (iii) the function F (B) is invariant under rotations, i.e., F (ϕ,B) = F (Tϕ,B) for any
T ∈ O(n) acting on ϕ ∈ R

nΛ by (Tϕ)x = Tϕx; see [9, Definition 5.1.5].

Theorem 3.1. Let L > L0. For any g > 0 small enough, there exists νc(g) = −C(n+2)g+O(g2) such
that for ν > νc(g) + cL−2N , there exists m2 > 0, a sequence of coupling constants (gj , νj , uj) ⊂ R

3,
and K̂j ∈ Fj such that the following are true.
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(i) The full renormalised potential Vj defined by (3.2) satisfies: for all ϕ that are constant on B,

e−Vj(B,ϕ) = e−uj |B|(e−V̂j(B,ϕ)(1 + Ŵj(B,ϕ)) + K̂j(B,ϕ)). (3.11)

(ii) The sequence (gj , νj) of coupling constants satisfies (g0, ν0) = (g, ν −m2), and

gj+1 = gj − βjg
2
j +O(2−(j−jm)+g3j ), 0 > L2jνj = O(2−(j−jm)+gj), (3.12)

where βj = β00(1 +m2L2j)−2 for an absolute constant β00 > 0 and jm = ⌊logLm−1⌋.

(iii) The functions K̂j satisfy K̂0 = 0 and

sup
ϕ∈Rn

max
06α63

hαj |∇α(K̂j(B) ◦ iB)(ϕ)| = O(2−(j−jm)+g
3/4
j ), (3.13)

max
06α63

ℓαj |∇α(K̂j(B) ◦ iB)(0)| = O(2−(j−jm)+g3j ), (3.14)

where ℓj = L−j and hj = L−jg−1/4
j .

(iv) The relation between t = ν − νc(g) > 0 and m2 > 0 satisfies, as t ↓ 0,

m2 ∼ Cgt(log t
−1)−(n+2)/(n+8). (3.15)

In the above theorem and everywhere else, the error terms O(·) are uniform in the scale j. The
theorem is mainly proved and explained in [9]. For our application to the analysis of the spectral
gap of the Glauber dynamics, it is however more convenient to use a slightly different organisation
than that used in [9]. It is here better to use the decomposition (2.3) instead of (2.2) (used in [9]).
We translate between the conventions in [9] and those used in the statement of Theorem 3.1 in
Appendix B and also give precise references there.

We remark that the normalising constants uj are unimportant for our purposes, and that the
recursion (3.12) implies that, as m2 ↓ 0,

g−1
j = O(g−1

jm
), g−1

jm
∼ β00 logm

−1; (3.16)

see [9, Proposition 6.1.3].

A variant of the theorem implies the following asymptotic behaviour of the susceptibility as the
critical point is approached.

Corollary 3.2. Let F =
∑

x ϕ
1
x. Then for t = ν − νc > cL−2N ,

Varµ(F )

|ΛN |
=

1

m2

(

1 + o

(

1

L2Nm2

))

∼ Cg
1

t
(− log t)(n+2)/(n+8), (3.17)

with o(1) tending to 0 as L2Nm2 → ∞, and Varµ denotes the variance under the full |ϕ|4 measure
as in (1.2).

Indeed, the corollary is [9, Theorem 5.2.1 and (6.2.17)], noting that Varµ(F )/|ΛN | is the finite
volume susceptibility studied there. The corollary provides the upper bound in Theorem 1.1 since,
with F as defined in the corollary,

(∇F,∇F )
|ΛN |

= 1, (3.18)

and γN (g, νc(g)) 6 Varµ(F )/Eµ(∇F,∇F ) for any F by definition of the spectral gap.
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3.2. Small field region. The bounds of Theorem 3.1 are effective for small fields |ϕ| 6 hj . For such

fields ϕ, the approximate effective potential V̂j(ϕ) is a good approximation to Vj(ϕ). Indeed, then

eV̂j(B,ϕ) = eO(1) and

Vj(B,ϕ) − V̂j(B,ϕ) = − log(1 + Ŵj(B,ϕ) + eV̂j(B,ϕ)K̂j(B,ϕ)) + uj|B|
= −Ŵj(B,ϕ) − eV̂j(B,ϕ)K̂j(B,ϕ) + uj|B|+O(Ŵj + eV̂jK̂j)

2. (3.19)

Recall the abbreviation ϑj = 2−(j−jm)+ where jm = ⌊logLm−1⌋ is the mass scale. By (3.12) and
(3.13) and the definition of Ŵ , uniformly in ϕ ∈ R

n with |ϕ| 6 hj ,

max
06α63

hαj |∇α(Ŵj(B) ◦ iB)(ϕ)| = O(ϑjg
2/4
j ), (3.20)

max
06α63

hαj |∇α(eV̂j(B)K̂j(B) ◦ iB)(ϕ)| = O(ϑjg
3/4
j ), (3.21)

and the remainder satisfies an analogous estimate. In particular, by (3.19),

Hess(Vj(B) ◦ iB)(ϕ) = Hess((V̂j − Ŵj)(B) ◦ iB)(ϕ) +O(ϑjh
−2
j g

3/4
j ) idn

= Hess((V̂j − Ŵj)(B) ◦ iB)(ϕ) +O(ϑjL
2jg

5/4
j ) idn, (3.22)

where idn is the identity matrix acting on the single-spin space Rn. The first term on the right-hand
side can be computed explicitly from (3.8), which implies that as quadratic forms,

1

|B| Hess(V̂j(B) ◦ iB)(ϕ) = ((gj |ϕ|2 + νj) idn + 2gj(ϕ
kϕl)k,l) >

(

gj |ϕ|2 + νj
)

idn, (3.23)

1

|B| |Hess(Ŵj(B) ◦ iB)(ϕ)| 6 5αjg
2
j (|ϕ|4 idn + 2|ϕ|2(ϕkϕl)k,l) 6 (15αjg

2
j |ϕ|4) idn, (3.24)

where |B| = Ldj , and where we used that the n× n matrix (ϕkϕl)k,l has eigenvalues 0 and |ϕ|2 > 0.
Combining (3.22) with (3.23)–(3.24), we find that

1

|B| Hess(Vj(B) ◦ iB)(ϕ) >
(

gj |ϕ|2 + ν − 15αjg
2
j |ϕ|4 −O(ϑjL

−2jg
5/4
j )

)

idn. (3.25)

Using that αjgj |ϕ|2 = O(g
1/2
j ) for |ϕ| 6 hj (since αj = O(L2j)), in summary, we have obtained the

following corollary of Theorem 3.1.

Corollary 3.3. Suppose that V0 satisfies the conditions of Theorem 3.1. Then for all scales j ∈ N and
all ϕ ∈ R

n with |ϕ| 6 hj , the effective potential satisfies the quadratic form bounds

1

|B| Hess(Vj(B) ◦ iB)(ϕ) >
(

gj |ϕ|2(1−O(g
1/2
j )) + νj −O(ϑjL

−2jg
5/4
j )

)

idn, (3.26)

with 0 6 −νj = O(ϑjL
−2jgj), and furthermore

1

|B|∇(Vj(B) ◦ iB)(ϕ) = gjϕ|ϕ|2(1−O(g
1/2
j )) + νjϕ+O(ϑjL

−3jgj). (3.27)
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3.3. Large field region. Using the small field estimates as input, we are going to prove the following
estimate for the large field region.

Theorem 3.4. Assume the conditions of Theorem 3.1, in particular that g > 0 is sufficiently small
and that ν > νc(g) + cL−2N . Then for all j ∈ N and all B ∈ Bj, the effective potential satisfies

L2j 1

|B| Hess(Vj(B) ◦ iB) > εj idn for all ϕ ∈ R
n with |ϕ| > hj, (3.28)

where the constants εj satisfy εj+1 = ε̄j −O(ϑ2j ε̄
2
j ) and ε0 =

1
5g

1/2
0 where ε̄j = εj ∧ 1

5g
1/2
j .

To prove Theorem 1.1, we will only use the conclusion εj > 0 from Theorem 3.4. However, in
order to prove Theorem 3.4, it is convenient that the εj do not become too small. The elementary
proof of the following estimate is given in Appendix B.

Lemma 3.5. The sequence (εj) defined in Theorem 3.4 satisfies εj > cgj for all j ∈ N.

We will prove Theorem 3.4 by induction in j. For j = 0, the estimate (3.28) can be checked
directly from (3.23) and ν > νc(g) = −O(g), which imply that

1

|B| Hess(V0(B) ◦ iB) > (g|ϕ|2 + ν) idn > g(|ϕ|2 −O(1)) idn > (g1/2 −O(g)) idn. (3.29)

From the inductive assumption and Corollary 3.3, we can get the following bounds.

Lemma 3.6. Assume that (3.28) holds for some j ∈ N and that εj 6
1
4g

1/2
j −O(gj). Then

L2(j+1) 1

|B| Hess(Vj(B) ◦ iB) > εj idn for all |ϕ| > 1

2
hj+1, (3.30)

L2j 1

|B| Hess(Vj(B) ◦ iB) > −O(gj) idn for all ϕ. (3.31)

Proof. For |ϕ| > hj , the estimate (3.30) follows directly from the assumption (3.28) and the trivial
bound L2εj > εj . Next we consider the case 1

2hj+1 6 |ϕ| 6 hj . By definition,

hj+1 = L−(j+1)g
−1/4
j+1 = L−(j+1)g

−1/4
j (1 +O(gj)) = L−1hj(1 +O(gj)). (3.32)

Therefore (3.26) implies

L2(j+1) 1

|B| Hess(V (B)◦iB) > (gj(
1

2
Lj+1hj+1)

2+νjL
2(j+1)−O(gj)) > (

1

4
g
1/2
j −O(L2gj)) > εj . (3.33)

Similarly, using Corollary 3.3 for the small fields and the inductive assumption for the large fields,
we have for all ϕ that

L2j 1

|B| Hess(Vj(B) ◦ iB) > −O(gj) idn, (3.34)

which implies (3.31). This completes the proof of Lemma 3.6.

The following proposition now advances the induction and thus proves Theorem 3.4.

Proposition 3.7. Assume (3.30)–(3.31) with j < N . For ϕ ∈ R
n with |ϕ| > hj+1 and B+ ∈ Bj+1,

L2(j+1) 1

|B+|
Hess(Vj+1(B+) ◦ iB+

)(ϕ) > (εj −O(ϑ2jε
2
j )) idn. (3.35)
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The proposition will be proved in the remainder of this section. Since the scale j will be fixed
we usually drop the j and write + instead of j + 1. To set-up notation, we fix a block B+ ∈ B+

and write V (B+) =
∑

B∈Bj(B+) V (B). By the hierarchical structure, Hess V (B+) is a block diagonal

matrix indexed by the blocks B ∈ B(B+), and we will always restrict the domain to Xj(B+), the
space of fields constant inside the small blocks B. On this domain, V (B+) can be identified with
a function of Ld vector-valued variables while V+(B+) has domain X+(B+) and can be identified
with a function of a single vector-valued variable. The covariance operator C and the projection
Q operate naturally on X(B+) = Xj(B+) and can be identified with diagonal matrices indexed by
blocks B ∈ B(B+); in particular, they are invertible on X(B+). By the definition of V+ in (3.2),
together with the hierarchical structure of C, it follows that

V+(B+, ϕ) = − logEC(e
−V (B+,ϕ+ζ)) = − log

∫

X(B+)
e−Hϕ(ζ) dζ + constant, (3.36)

where (recall that here C denotes the restriction of C to X(B+))

Hϕ(ζ) =
1

2
(ζ, C−1ζ) + V (B+, ϕ + ζ). (3.37)

By differentiating (3.36) we obtain, for ϕ̇ ∈ X+(B+),

ϕ̇Hess V+(B+, ϕ)ϕ̇ = 〈ϕ̇Hess V (B+, ϕ+ ζ)ϕ̇〉Hϕ −VarHϕ(∇V (B+, ϕ+ ζ) · ϕ̇) (3.38)

where 〈·〉Hϕ denotes the expectation of the probability measure with density e−Hϕ on X(B+), and
∇ is the gradient in X(B+), i.e., with respect to fields that are constants on scale-j blocks in B+.

To estimate the right-hand side of the last equation, we need some information on the typical
value of the fluctuation field ζ under the expectation 〈·〉Hϕ . By assumption of the proposition, the
bound (3.31) holds, and together with the definition of C = Cj in particular,

C1/2 HessV (B+, ζ)C
1/2

> −1

2
Q for all ζ ∈ X(B+), (3.39)

as an operator on X(B+), i.e., ζ is a constant on every B ∈ B(B+). Therefore, uniformly in ζ,

C1/2 HessHϕ(B+, ζ)C
1/2 = Q+ C1/2 HessV (B+, ϕ+ ζ)C1/2

>
1

2
Q. (3.40)

For any ϕ, the action Hϕ is therefore strictly convex on X(B+) and, in particular, it has a unique
minimiser in this space. We denote this minimiser by ζ0. It satisfies the Euler–Lagrange equation

ζ0 = −C∇V (B+, ϕ+ ζ0). (3.41)

Here recall the definition V (B+) =
∑

B∈B(B+) V (B), and hence that ∇V (B+) is a vector of blocks
indexed by B ∈ B(B+), on which the covariance operator C acts diagonally.

Further recall that ϕ is constant on B+. By symmetry and uniqueness of the minimiser, we see
that ζ0 has to be constant not only in each small block B, but in each B+, i.e., ζ

0 ∈ X+(B+). In the
following lemma, the block B+ is fixed and ϕ and ζ0 are both in X+(B+) so that we may identify
them with variables in R

n.

Lemma 3.8. Let |ϕ| > h+. Then |ϕ+ ζ0| > h+(1−O(g1/2)).

Proof. As discussed above, we regard ∇V and C∇V both as block vectors indexed by B ∈ B(B+).
For ϕ′ constant on B+, the blocks of ∇V (B+, ϕ

′) are equal and C acts by multiplying each of these
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blocks by the same constant O(ϑ2L2j). Hence C∇V (B+, ϕ
′) is a block vector with all blocks equal

to O(ϑ2L2j)∇V (B,ϕ′) where B is any of the block in B(B+). We denote by |C∇V (B+, ϕ
′)|∞ the

value in any of these blocks. Now (3.27) implies that, for ϕ′ constant on B+ with |ϕ′| 6 h+,

M := sup
|ϕ′|6h+

|C∇V (B+, ϕ
′)|∞

6 ϑ2L2j
(

gh3+(1 +O(g1/2)) + νh+ +O(L−djh−1
+ g3/4)

)

6 ϑ2h+

(

gL2jh2+(1 +O(g1/2)) + L2jν +O(L−2jh−2
+ g3/4)

)

6 O(ϑ2g1/2h+). (3.42)

To prove the claim, we may assume that |ϕ + ζ0| 6 h+ since otherwise the claim holds trivially.
Then |ζ0| 6 M = O(ϑ2g1/2h+) by (3.41) and (3.42). We conclude from this that |ϕ + ζ0| > h+ or
|ζ0| = O(ϑ2g1/2h+). Thus |ϕ+ ζ0| > h+ ∧ (|ϕ| −O(ϑ2g1/2h+)) > h+(1−O(ϑ2g1/2)).

In the following lemma, ζ ∈ X(B+) is the fluctuation field under the measure with expectation
〈·〉Hϕ . Thus ζ is constant in any small block B, but unlike the minimiser ζ0 the field ζ is not constant
in B+.

Lemma 3.9. For any t > 1, with ℓ = L−j as in (3.10),

∀x ∈ B+, PHϕ(|ζx − ζ0| > 3ϑℓt) 6 2e−t
2/4. (3.43)

Proof. By changing variables, it suffices to study the measure with action H(ζ) = Hϕ(ζ + ζ
0), whose

unique minimiser is ζ = 0, and clearly H has the same Hessian as Hϕ. From the information
that the minimiser of H is 0, we obtain a bound on the random variable ζ as follows. Using that
HessH >

1
2C

−1 as quadratic forms and that Cxx 6 ϑ2ℓ2 for all x ∈ Λ by definition, the Brascamp–
Lieb inequality (A.5) for the measure 〈·〉H with density proportional to e−H implies

〈es(ζx−EH (ζx))〉H 6 es
2Cxx 6 es

2ϑ2ℓ2 . (3.44)

By Markov’s inequality therefore

PH(|ζx − 〈ζx〉H | > ϑℓt) 6 2e−t
2/4. (3.45)

To estimate the mean 〈ζ〉H , we integrate by parts to get

|B+|ϑ2ℓ2
∫

e−H >
∑

x∈B+

Cxx

∫

e−H =

∫

(∇, Cζ) e−H =

∫

(ζ, C∇H(ζ)) e−H >
1

2

∫

(ζ, ζ) e−H

(3.46)
where the integral is over X(B+) and ∇ is the gradient on X(B+), and where we used that, by
(3.40),

(ζ, C∇H(ζ)) =

∫ 1

0
(ζ, C1/2 HessH(tζ)C1/2ζ) dt >

1

2
(ζ, ζ). (3.47)

Since E(ζ, ζ) = |B+|〈ζ2x〉H by symmetry, therefore

〈ζ2x〉H 6 2ϑ2ℓ2, |〈ζx〉H | 6
√
2ϑℓ. (3.48)

Finally, combining (3.48) and (3.45)

PH(|ζx| > 3ϑℓt) 6 PH(|ζx − 〈ζx〉H | > ϑℓt) 6 2e−t
2/4, (3.49)

which is the claim.
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Next we use the following estimate on HessV+(B+).

Lemma 3.10. Let ϕ, ϕ̇ ∈ X+(B+). Then

ϕ̇HessV+(B+, ϕ)ϕ̇ >

〈

ϕ̇
HessV (B+, ϕ+ ζ)

id + C1/2Hess V (B+, ϕ+ ζ)C1/2
ϕ̇

〉

Hϕ

(3.50)

where HessV+(B+) is taken in X+(B+) and HessV (B+) is taken in X(B+).

Note that Hess V (B+, ϕ+ζ) are both diagonal matrices indexed by B ∈ B+, with constant entries
on each block B. In fact, C is proportional to the identity matrix on X(B+).

Proof. We freeze the block spin field ϕ ∈ X+(B+) and recall that the fluctuation field ζ ∈ X(B+)
is distributed with expectation 〈·〉Hϕ . We abbreviate Hess V = HessV (ϕ + ζ) = HessV (B+, ϕ + ζ)
throughout the proof. Applying the Brascamp–Lieb inequality (A.4) to the measure 〈·〉Hϕ gives

VarHϕ(∇V (ϕ+ ζ) · ϕ̇) 6 〈ϕ̇HessV (ϕ+ ζ)(C−1 +HessV (ϕ+ ζ))−1 HessV (ϕ+ ζ)ϕ̇〉Hϕ . (3.51)

Inserting this into (3.38), the above can be written as

ϕ̇Hess V+(ϕ)ϕ̇ >

〈

ϕ̇
(

Hess V −HessV (C−1 +HessV )−1 Hess V
)

ϕ̇
〉

Hϕ
. (3.52)

Since Hess V and C are both (block) diagonal matrices, the term inside the expectation can be
written as

HessV ( id + C1/2Hess V C1/2)−1. (3.53)

This completes the proof.

For ϕ ∈ X(B+), let Λ(ϕ) be the largest constant such that L2(j+1)HessV (B+, ϕ) > Λ(ϕ) as
quadratic forms on X(B+). From (3.39) it follows that Λ(ϕ) > −1

2 uniformly in ϕ ∈ X(B+). Then
(3.50) implies that for ϕ̇ ∈ X+(B+),

ϕ̇Hess V+(B+, ϕ)ϕ̇ > L−2(j+1)

〈

ϕ̇
L2(j+1)Hess V (B+, ϕ+ ζ)

id + C1/2 HessV (B+, ϕ+ ζ)C1/2
ϕ̇

〉

Hϕ

> L−2(j+1)

〈

Λ(ϕ+ ζ)

1 + L−2ϑ2Λ(ϕ+ ζ)

〉

Hϕ

(ϕ̇, ϕ̇), (3.54)

where the second inequality uses that t/(1 + at) is increasing in t > −1/a and that C 6 ϑ2L2jQ.

The next lemma completes the proof of Proposition 3.7.

Lemma 3.11. For ϕ ∈ X+(B+) with |ϕ| > h+, we have

〈

Λ(ϕ+ ζ)

1 + L−2ϑ2Λ(ϕ+ ζ)

〉

Hϕ

> ε−O(ϑ2ε2). (3.55)

Proof. On the event minx |ϕ + ζx| > 1
2h+ we have Λ(ϕ + ζ) > ε > 0 by (3.30), and since t/(1 + at)

is increasing for t > 0 therefore

Λ(ϕ+ ζ)

1 + L−2ϑ2Λ(ϕ+ ζ)
>

ε

1 + L−2ϑ2ε
> ε−O(ϑ2ε2). (3.56)
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By Lemma 3.9, the probability that |ζx−ζ0| > 1
4h+ is bounded by 2e−(h+/(12ϑℓ))2/4 6 2e−c (ϑg)

−1/2
for

any point x ∈ B+ (since ϑ 6 1). Using that ζ is constant on the small blocks B and taking a union
bound over the Ld blocks B ∈ B(B+) we get that maxx |ζx − ζ0| > 1

4h+ with probability at most

2Lde−c(ϑg)
−1/2

. Since |ϕ+ζ0| > h+(1−O(g1/2)) > 3
4h+ by Lemma 3.8, together with the assumption

|ϕ| > h+, we conclude that minx |ϕ + ζx| > 1
2h+ with probability at least 1 − 2Lde−c(ϑg)

−1/2
. Thus

(3.56) holds with at least this probability.
On the event that (3.56) does not hold, we still have the bound Λ(ϕ+ζ) > −1

2 by (3.39). Thus the

contribution of this event to the expectation (3.55) is bounded by −O(Lde−c (ϑg)
−1/2

) = −O(ϑ2ε4),
where we used that εj > cϑjgj by Lemma 3.5. In summary,

〈

Λ(ϕ+ ζ)

1 + Λ(ϕ+ ζ)

〉

Hϕ

> (ε−O(ϑ2ε2))(1 −O(ϑ2ε4))−O(ϑ2ε4) > ε−O(ϑ2ε2). (3.57)

This implies the claim.

3.4. Proof of Theorem 1.1. We now use Corollary 3.3 and Theorem 3.4 to verify the assumptions
of Corollaries 2.2–2.3 and in doing so deduce Theorem 1.1. By (2.3), the covariances in the decom-
position of (−∆H +m2)−1 are given by

Cj = λjQj , with λj = L2j

{

O(1 +m2L2(j−1))−2 (j < N)

O(1 +m2L2(N−1))−1 (j = N).
(3.58)

We recall that ϑj = 2(j−jm)+ . Corollary 3.3 implies

1

|B| Hess(Vj(B) ◦ iB) > (νj +O(ϑjL
−2jg

5/4
j )) idn uniformly in |ϕ| 6 hj . (3.59)

The right-hand side is less than 0 by Theorem 3.1. Thus, by Theorem 3.4, the same estimate holds
for |ϕ| > hj and therefore for all ϕ. In summary, and since the above estimates hold for all blocks,
and using (3.7),

C
1/2
j HessVj(ϕ)C

1/2
j > L2j (νj +O(ϑjL

−2jg
5/4
j ))Qj uniformly in ϕ ∈ Xj . (3.60)

Thus Assumption (A1) holds with

εj = (−L2jνj +O(ϑjg
5/4
j )). (3.61)

Lemma 3.12. There exists a constant δ > 0 such that for all j ∈ N,

− 2

j
∑

k=0

L2kνk 6 δ
n+ 2

n+ 8
log gj +O(1),

∞
∑

k=0

((L2kνk)
2 + ϑkg

5/4
k ) = O(g

1/4
0 ). (3.62)

The elementary proof requires some notation from [9]; we therefore postpone it to Appendix B.

Proof of Theorem 1.1. We apply Corollary 2.2. By (3.60), Assumption (A1) holds for all j 6 N ,
and Assumptions (A2) and (A3) follow automatically from the hierarchical structure. Therefore, by
(2.22), the |ϕ|4 measure satisfies a Brascamp–Lieb inequality with quadratic form

D0 6

N
∑

j=0

δjCj , where δj = exp

(

2

j
∑

k=1

εk +O(ε2k)

)

. (3.63)
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We abbreviate γ = (n+ 2)/(n + 8). Using g−1
j = O(g−1

jm
) which holds by (3.16), and using (3.62),

exp

(

2

j
∑

k=1

εk +O(ε2k)

)

= O(g−δγjm
). (3.64)

We then use that g−1
jm

= O(logm−1) by (3.16), to show that (3.64) is a logarithmic correction of

order (− logm)δγ . Thus the dominant contribution in (3.63) is given by

N−1
∑

j=1

(1 +m2L2(j−1))−2L2j + (1 +m2L2(N−1))−1L2N = O(m−2), (3.65)

where we recall that m2 ∼ Ct(− log t)−γ as t ↓ 0 by (3.15). In summary, we conclude that D0 is
bounded as a quadratic form from above by

O(m−2)(logm−1)δγ = O(t−1)(− log t)(1+δ)γ . (3.66)

Replacing by 1 + δ by δ, this implies the lower bound for the spectral gap claimed in (1.11). The
upper bound for the spectral gap follows immediately from (3.17).

4 Hierarchical Sine-Gordon and Discrete Gaussian models

In this section, we apply Corollaries 2.2–2.3 to the hierarchical versions of the Sine-Gordon and the
Discrete Gaussian models. This boils down to checking that Assumption (A1) is satisfied along the
renormalisation group flow of both models. Throughout this section d = 2.

4.1. Proof of Theorem 1.2. We start by defining the renormalisation group for the hierarchical
Sine-Gordon model, essentially in the set-up of [16, Chapter 3]. By definition, with ε = βL−2N , the
Sine-Gordon model has energy

H(ϕ) =
β

2
(ϕ, (−∆H + L−2NQN )ϕ) +

∑

x∈Λ
V0(ϕx), (4.1)

where the potential V0 is even and 2π-periodic. We decompose the covariance of the Gaussian part
as

(−β∆H + βL−2NQN )
−1 =

N
∑

j=1

β−1L2(j−1)Pj + β−1L2NQN =

N
∑

j=0

Cj (4.2)

with

Cj = λj(β)Qj , λ0(β) =
1

β
, λj(β) =

σ

β
L2j (0 < j 6 N), σ = 1− L−2. (4.3)

Relative to this decomposition, the renormalised potential is defined as in Section 2.2. Due to the
hierarchical structure of this decomposition, the renormalised potential takes the form

Vj(ϕ) =
∑

B∈Bj
Vj(B,ϕ), (4.4)

where Vj(B,ϕ) only depends on ϕ|B . As in Section 3.1, we restrict the domain of Vj(B) to Xj(B),
i.e., the constant fields on B. The final potential obtained as VN+1 in (2.14) will instead be denoted
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by VN,N since it is indexed by the final block Λ ∈ BN , i.e., VN,N (ϕ) = VN,N (ΛN , ϕ), and ϕ can be
seen as an external field. Then each Vj(B) can be identified with a 2π-periodic function on R (and
analogously for VN,N ). For any such function F : S1 → R, we use the norm

‖F‖ =
∑

q∈Z
w(q)|F̂ (q)|, w(q) = (1 + |q|)2, (4.5)

where our convention for the Fourier coefficients of F is F̂ (q) = (2π)−1
∫ 2π
0 F (ϕ)eiqϕ dϕ. We write

‖Vj‖ = ‖Vj(B)‖ = ‖Vj(B) ◦ iB‖, V̂j(0) = V̂j(B, 0) (4.6)

for an arbitrary B ∈ Bj (the definition is independent of B). Except for the weight w(q), the norm
(4.5) is the one used in [16,48].

Proposition 4.1. Let j < N . Assume that ‖Vj − V̂j(0)‖ is sufficiently small. Then the renormalised
potential satisfies

‖Vj+1 − V̂j+1(0)‖ 6 L2e−σ/2β(‖Vj − V̂j(0)‖ +O(‖Vj − V̂j(0)‖)2). (4.7)

Moreover, for the last step j = N ,

‖VN,N − V̂N,N (0)‖ 6 ‖VN − V̂N (0)‖ +O(‖VN − V̂N (0)‖)2. (4.8)

The derivation of this proposition is postponed to Section 4.2. We now state consequences of this
proposition and prove Theorem 1.2 using these.

Corollary 4.2. For every β < σ/(4 log L) and κ < L2e−σ/2β < 1, for all V0 − V̂0 sufficiently small,

‖Vj − V̂j(0)‖ 6 κj‖V0 − V̂0(0)‖ for j 6 N , (4.9)

and
‖VN,N − V̂N,N (0)‖ 6 2κN‖V0 − V̂0(0)‖. (4.10)

Proof. Fix η > 0 small and set κ = L2e−(1−η)σ/2β < 1. The bound (4.7) implies that for ‖V0− V̂0(0)‖
sufficiently small depending on η, β, η,

‖Vj+1 − V̂j+1(0)‖ 6 L2e−(1−η)σ/2‖Vj − V̂j(0)‖ = κ‖Vj − V̂j(0)‖. (4.11)

Then (4.9) follows by iterating this bound, and (4.10) follows from this and (4.8).

Corollary 4.3. Let β < σ/(4 log L) and let ε = βL−2N . Then the variance of F =
∑

x∈ΛN ϕx under
the Gibbs measure µ defined in (1.2) is given by

Varµ(F ) =
|ΛN |
ε

(1−O(κN )). (4.12)

Proof. Throughout the following proof, we denote by C = (−β∆H+εQN )
−1 the full covariance of the

hierarchical Gaussian free field. By completion of the square, and using that (−β∆H+εQN )1
¯
ε−1 = 1

¯
,

− 1

2
(ϕ, (−β∆H+εQN )ϕ)+t(ϕ, 1

¯
) = −1

2
(ϕ−t1

¯
ε−1, (−β∆H+εQN )(ϕ−t1

¯
ε−1))+

1

2
t2ε−1(1

¯
, 1
¯
). (4.13)

With F (ϕ) =
∑

x ϕx, we get by translating the measure by tε−11
¯
that

Γ(t) = logEC(e
tF (ϕ)e−V (ϕ)) =

1

2
t2ε−1(1

¯
, 1
¯
) + logEC(e

−V (ϕ+tε−11
¯
)) =

|ΛN |t2
2ε

− VN,N (tε
−11

¯
). (4.14)
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By Corollary 4.2 and the fact that the norm controls the second derivatives,

|V ′′
N,N (0)| = |(VN,N − V̂N,N (0))

′′| 6 ‖VN,N − V̂N,N (0)‖ 6 2κN‖V0 − V̂0(0)‖, (4.15)

where V ′′
N,N is the second derivative of the function VN,N (ΛN ) ◦ iΛN : R → R. Finally, and using that

∂2

∂t2
VN,N (tε

−11
¯
) = V ′′

N,N (tε
−11

¯
)ε−2 as well as that ε = βL−2N ,

Varµ(F ) =
∂2Γ(0)

∂t2
=

|ΛN |
ε

−
V ′′
N,N (0)

ε2
=

|ΛN |
ε

(

1−O

(

κN

ε|ΛN |

))

=
|ΛN |
ε

(1−O(κN )). (4.16)

This completes the proof.

Proof of Theorem 1.2. We start by proving the lower bound on the spectral gap by applying Corol-
lary 2.2. Thanks to the hierarchical structure, the spins are constant in the blocks at any given scale
j, and Assumptions (A2) and (A3) always hold. Assumption (A1) follows from Corollary 4.2 which
implies that for j 6 N

(Vj(B) ◦ iB)′′(ϕ) > −
∑

q

q2|V̂j(q)| = −‖Vj − V̂j(0)‖ > −κj‖V0 − V̂0(0)‖. (4.17)

This implies the bound (3.5) with

s =
1

|Bj |
κj‖V0 − V̂0(0)‖ = κj‖V0 − V̂0(0)‖ L−2j. (4.18)

The equivalent of (3.7) is

C
1/2
j (HessXj Vj)C

1/2
j > −sL2jQj. (4.19)

Therefore Assumption (A1) in (2.16) holds with εj = sL2j = κj‖V0 − V̂0(0)‖. With δj defined as in
(2.22), it follows that

N
∑

j=0

δjCj 6 exp





N
∑

j=0

O(κj)‖V0 − V̂0(0)‖





N
∑

j=0

Cj

6 (1 +O(‖V0 − V̂0(0)‖))(−β∆H + εQN )
−1

6
O(1)

ε
idΛN . (4.20)

Applying Corollary 2.2, we get that the measure µ satisfies a Brascamp-Lieb inequality with matrix

D0 6
O(1)

ε
idΛN . (4.21)

This implies immediately the asserted lower bound on the spectral gap, i.e., γN > cε.

Finally, the upper bound on the spectral gap follows readily from Corollary 4.3. Choosing as test
function F =

∑

x∈ΛN ϕx, we have Eµ(∇F,∇F ) = |ΛN | and (4.12) implies

Eµ(∇F,∇F )
Varµ(F )

= ε(1 +O(
1

εL2N
)) = O(ε). (4.22)

This completes the proof.
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4.2. Proof of Proposition 4.1. The proof of Proposition 4.1 follows as in [16, Chapter 3], with small
modifications. Throughout Section 4.2, the full covariance matrix (−β∆H + εQN )

−1 does not play
a role and we write C = Cj for a fixed scale j. More generally, we drop the scale index j and write
+ in place of j + 1. We write B+ for a fixed block in B+ and B for the blocks in B(B+).

We need the following properties of the norm (4.5). Since w(p+ q) 6 w(p)w(q), i.e.,

(1 + |p+ q|)2 = 1 + p2 + q2 + 2|p+ q|+ 2pq

6 1 + p2 + q2 + 2|p+ q|+ 4|pq|+ 2|pq|(|p|+ |q|) = (1 + |p|)2(1 + |q|)2, (4.23)

the norm (4.5) satisfies the product property

‖FG‖ =
∑

q,p

w(q)|F̂ (q − p)||Ĝ(p)| 6
∑

q,p

w(q − p)w(p)|F̂ (q − p)||Ĝ(p)| = ‖F‖‖G‖. (4.24)

As a consequence, for any F : S1 → R with ‖F‖ small enough,

‖e−F − 1‖ 6 ‖F‖ +O(‖F‖2), (4.25)

‖ log(1 + F )‖ 6 ‖F‖ +O(‖F‖2). (4.26)

Lemma 4.4. For F : S1 → R with F̂ (0) = 0 and ‖F‖ <∞, and for x ∈ Λ,

‖EC (F (·+ ζx)) ‖ 6 e−σ/(2β)‖F‖. (4.27)

Proof. By (2.3), under the expectation EC , each ζx is a Gaussian random variable with variance σ/β.
Therefore

EC(e
iqζx) = e−σq

2/(2β). (4.28)

This gives

EC(F (ϕ+ ζx)) = EC

[

∑

q

F̂ (q)eiq(ϕ+ζx)
]

=
∑

q

e−σq
2/(2β)F̂ (q)eiqϕ. (4.29)

Since by assumption F̂ (0) = 0, we obtain

‖EC(F (· + ζx))‖ 6
∑

q

e−σq
2/(2β)w(q)|F̂ (q)| 6 e−σ/(2β)

∑

q

w(q)|F̂ (q)| = e−σ/(2β)‖F‖ (4.30)

as claimed.

Proof of Proposition 4.1. We may assume that V̂ (0) = 0. We fix B+ ∈ B+ and use B for the blocks
in B(B+). By definition of the hierarchical model, the Gaussian field ζ with covariance C = Cj is
constant in any block B ∈ Bj and we thus write ζB for ζx with x ∈ B. We then start from

e−V+(B+,ϕ) = EC





∏

B∈B(B+)

e−V (ϕ+ζB)



 = EC





∏

B∈B(B+)

(1 + e−V (ϕ+ζB) − 1)





=
∑

X⊂B+

EC





∏

B∈B(X)

(e−V (ϕ+ζB) − 1)



 , (4.31)

where X ⊂ B+ denotes that X is a union of blocks B ∈ B(B+). The term with |X| = 0 is simply 1.
By (4.27) and (4.25), the terms with |X| = 1 are bounded by

∥

∥

∥

∥

∥

∥

∑

B∈B(B+)

EC

(

e−V (ϕ+ζB) − 1
)

∥

∥

∥

∥

∥

∥

6 |B(B+)|e−σ/(2β)(‖V ‖+O(‖V ‖2)). (4.32)
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By (4.27), using that the ζB are independent for different blocks B and the product property of the
norm, the terms with |X| > 1 give
∥

∥

∥

∥

∥

∥

∑

|X|>1

EC





∏

B∈B(X)

(e−V (ϕ+ζB) − 1)





∥

∥

∥

∥

∥

∥

6
∑

|X|>1

∏

B∈B(X)

e−σ/(2β)‖(e−V (ϕ+ζB) − 1)‖

6
∑

|X|>1

(e−σ/(2β)(‖V ‖+O(‖V ‖2)))|X| = O(e−σ/(2β)‖V ‖2).

(4.33)

In summary, for ‖V ‖ small enough, we get
∥

∥

∥

∥

∥

∥

EC





∏

B∈B(B+)

e−V (ϕ+ζB)



− 1

∥

∥

∥

∥

∥

∥

6 |B(B+)|e−σ/(2β)(‖V ‖+O(‖V ‖2))

= L2e−σ/(2β)(‖V ‖+O(‖V ‖2)). (4.34)

Finally, by (4.26),

‖V+‖ =

∥

∥

∥

∥

∥

∥

log



1 + EC





∏

B∈B(B+)

e−V (ϕ+ζB)



− 1





∥

∥

∥

∥

∥

∥

6 L2e−σ/(2β)(‖V ‖+O(‖V ‖2)), (4.35)

as needed.

4.3. Proof of Theorem 1.3. We will now reduce the result for the Discrete Gaussian model to that
for the Sine-Gordon model. For this, we carry out an initial renormalisation group step by hand,
resulting in an effective Sine-Gordon potential for the Discrete Gaussian model. This strategy for
the Discrete Gaussian model (and more general models) goes back to [32].

First, recall that the covariance of the hierarchical GFF can be written as

(−β∆+ εQN )
−1 = C0 + · · ·+ CN = C0 + C>1, (4.36)

where C0 = 1
βQ0 and where Q0 is simply the identity matrix on R

Λ. Therefore, by the convolution
property of Gaussian measures,

e−
1
2
(σ,(−β∆H+εQN )σ) ∝

∫

RΛ

e−
1
2
(ϕ,C−1

>1
ϕ)e−

β
2
(ϕ−σ,ϕ−σ) dϕ ∝ EC>1

(e−
β
2
(ϕ−σ,ϕ−σ)), (4.37)

where A ∝ B denotes that A/B is independent of σ, and where the Gaussian expectation applies to
the field ϕ. We define the effective single-site potential V (ψ) for ψ ∈ R by

e−V (ψ) =
∑

n∈2πZ
e−β(n−ψ)

2/2. (4.38)

The potential V is 2π-periodic as in the Sine-Gordon model. This is where the 2π-periodicity of the
Discrete Gaussian Model is convenient. For ψ ∈ R, we also define a probability measure µψ on 2πZ
by

µψ(n) = eV (ψ)e−β(n−ψ)
2/2 for n ∈ 2πZ. (4.39)

For ϕ ∈ R
Λ, we further set µϕ =

∏

x∈Λ µϕx with µϕx as in (4.39) with ψ = ϕx. With this notation,
in summary, we have the representation

∑

σ∈(2πZ)Λ
F (σ) e−

1
2
(σ,(−β∆H+εQN )σ) ∝ EC>1

(e−V (ϕ)
Eµϕ(F (σ))). (4.40)
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Denote by µr(dϕ) the probability measure on R
Λ of the Sine-Gordon model with potential V (ϕ)

defined by (4.38) with C>0 replaced by C>1.

Eµ(F ) = Eµr(Eµϕ(F )). (4.41)

In the next two lemmas, we verify that V satisfies the conditions of Theorem 1.2 provided β is
sufficiently small, and that the probability measure µψ satisfies a spectral gap inequality on 2πZ,
with constant uniform in ψ. It is clear from the definition (4.38) that V is 2π-periodic.

Lemma 4.5. For β > 0 small enough, V is smooth with ‖V − V̂ (0)‖ = O(e−1/(2β)).

Proof. The function F = e−V is 2π-periodic, and subtracting a constant from V , we can normalise
F such that F̂ (0) = 1. Note that subtraction of a constant does not change V − V̂ (0). The Fourier
coefficients of F are then given by

F̂ (q) =
1

2π

∫ 2π

0
F (ψ)e−iqψ dψ =

C

2π

∫

R

e−βψ
2/2e−iqψ dψ = e−q

2/(2β), (4.42)

where the constant C and the last equality are due to the normalisation F̂ (0) = 1. It follows that

‖F − 1‖ =
∑

q 6=0

(1 + q2)e−q
2/(2β) = O(e−1/(2β)). (4.43)

By (4.26), it then also follows that

‖V ‖ = ‖ log F‖ = ‖ log(1 + (F − 1))‖ = ‖F − 1‖+O(‖F − 1‖2) = O(e−1/(2β)). (4.44)

Since ‖V − V̂ (0)‖ 6 ‖V ‖, this clearly implies the claim.

Corollary 4.6. For β > 0 sufficiently small, the measure µr has inverse spectral gap O(1/ε).

Proof. The proof is essentially the same as that of Theorem 1.2. The only difference compared to
Theorem 1.2 is that we replaced C>0 by C>1 which does not change the conclusion. For small β, the
assumption on V is satisfied thanks to Lemma 4.5.

The following lemma can be proved, e.g., using the path method for spectral gap inequalities; we
postpone the elementary proof to Appendix C.

Lemma 4.7. For any β > 0, there exists a constant Cβ such that the measure µψ on 2πZ has a
spectral gap uniformly in ψ ∈ R,

Varµψ (F (n)) 6 CβEµψ

(

(F (n + 2π)− F (n))2 + (F (n − 2π)− F (n))2
)

. (4.45)

With the above ingredients, the proof can now be completed as follows.

Proof of Theorem 1.3. We start with the proof of the lower bound on the spectral gap. By (4.41),
the variance of a function F : (2πZ)Λ → R under the Discrete Gaussian measure can be written as

Varµ(F ) = Eµr(Varµϕ(F )) + Varµr(G), where G(ϕ) = Eµϕ(F ). (4.46)

By Corollary 4.6, the measure µr has an inverse spectral gap bounded by O(1/ε). By Lemma 4.7
and the tensorisation principle for spectral gaps, the product measure µϕ =

∏

x∈Λ µϕx has a spectral
gap uniformly bounded by Cβ. It follows that

Varµ(F ) 6 CβD(F ) +O(
1

ε
)
∑

x∈Λ
Eµr(|∇ϕxG|2), (4.47)
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where the Dirichlet form introduced in (1.16) has been denoted by

D(F ) =
1

2(2π)2

∑

x∈Λ
Eµ

(

(F (σx+)− F (σ))2 + (F (σx−)− F (σ))2
)

. (4.48)

We also set

Dx,µϕ(F ) =
1

2(2π)2
Eµϕ

(

(F (σx+)− F (σ))2 + (F (σx−)− F (σ))2
)

. (4.49)

Then the second term on the right-hand side is bounded as follows. Since with respect to the measure
µϕ for fixed ϕ, the σx are independent, we have

|∇ϕxG(ϕ)|2 = β2(Covµϕ(F (σ), σx))
2
6 β2Eµϕ(Covµϕx (F (σ), σx))

2) 6 C2
βDx,µϕ(F ) (4.50)

where we used the following inequality, which follows from Varµϕx (σx) 6 Cβ and (4.45):

(Covµϕx (F (σ), σx))
2
6 (Varµϕx (F ))(Varµϕx (σx)) 6 C2

βDx,µϕ(F ). (4.51)

Using that D(F ) =
∑

x∈Λ Eµr(Dx,µϕ(F )), in summary, we conclude that

Varµ(F ) 6 Cβ

(

1 + CβO(
1

ε
)
)

D(F ) (4.52)

and therefore that the inverse spectral gap obeys 1/γ = O(1/ε).
For the matching upper bound on the spectral gap, we use the test function F =

∑

x∈Λ σx,
analogously to the Sine-Gordon case. For any ψ ∈ R and t ∈ R,

Eµψ(e
tσ) = eV (ψ)

∑

n∈2πZ
e−β(n−ψ)

2/2+nt = eV (ψ)−V (ψ+t/β)+t2/(2β)+tψ . (4.53)

Let u =
∑

y[C>1]xy (which is independent of x). It follows that

eΓ(t) = Eµ(e
tF ) = EµrEµϕ(e

tF ) = et
2|ΛN |/(2β)EC>1

(e−
∑
x V (ϕx+t/β)+t

∑
x ϕx)

EC>1
(e−V (ϕ))

= et
2|ΛN |(1/β+u)/2EC>1

(e−
∑
x V (ϕx+t/β+tu))

EC>1
(e−V (ϕ))

. (4.54)

Since
∑

y[C0]xy = [C0]xx = 1/β, note that 1/β+u =
∑

y

∑N
j=0[Cj ]xy =

∑

y(−β∆H + εQN )
−1
xy = ε−1.

As in the proof of Corollary 4.3, it follows that

Varµ(F ) =
|ΛN |
ε

− V ′′
N (0)

ε2
=

|ΛN |
ε

(1 +O(
κN

εL2N
)) =

|ΛN |
ε

(1 +O(κN )). (4.55)

Since D(F ) = |ΛN |, this completes the proof of γ 6 ε(1 + O(κN )) and therefore the proof of the
theorem.

A Estimates for log-concave measures

Let X be a finite-dimensional vector space with inner product (·, ·) and Lebesgue measure m. Choos-
ing an orthonormal basis, we may identify X with R

k for some k. Using this identification or the
inner product structure directly, the gradient, Laplacian, and Hessian of a function F : X → R are
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defined. Assume that H : X → R satisfies HessH > c id uniformly for a constant c > 0. Let µ
be the probability measure on X with density proportional to e−H with respect to m. Let L be
the (positive) self-adjoint generator of the Langevin dynamics leaving µ invariant, i.e., for smooth
F : X → R,

LF (ζ) = −∆F (ζ) + (∇H(ζ),∇F (ζ)), (A.1)

where ∇ and ∆ are the gradient and Laplacian on X.
In Sections 2 and 3, we make use of the Helffer–Sjöstrand representation and the Brascamp–Lieb

inequality. Define the operator L (Witten Laplacian) on D ⊗X ⊂ L2(µ)⊗X by

L = L⊗ id + HessH , (A.2)

where D ⊂ L2(µ) is the domain on which the operator L is self-adjoint. Then one has the Helffer-
Sjöstrand representation [40] (see also [39]) for the covariance of two random variables F,G : X → R.

Theorem A.1 (Helffer–Sjöstrand representation). For sufficiently smooth F,G : X → R,

Covµ(F,G) = Eµ(∇F,L−1∇G). (A.3)

In particular, one can easily obtain the Brascamp–Lieb inequality [14] from this representation.

Theorem A.2 (Brascamp–Lieb inequality). For sufficiently nice F : X → R,

Varµ(F ) 6 Eµ(∇F, (HessH)−1∇F ). (A.4)

In particular, if HessH(ϕ) > Q uniformly in ϕ ∈ X, then for any f ∈ X,

logEµ(e
(f,ζ)−Eµ(f,ζ)) 6

1

2
(f,Q−1f). (A.5)

B Proof of Theorem 3.1 and of Lemmas 3.5 and 3.12

In this appendix, we translate the results from [9] to assume the form stated in Theorem 3.1, and
we proof two elementary lemmas for the sequences (εj) and (µj).

Proof of Theorem 3.1. First, since our constants are allowed to depend on L and since we are only
considering derivatives of finite order, the constants ℓ0 and k0 that appear in the definitions of the
versions of ℓj and hj in [9] are insignificant for our estimates here and we therefore drop them.

The critical point νc = νc(g) is chosen as in [9, Theorem 4.2.1]. Moreover, given t = ν−νc(g) > 0
and g = g0 > 0 small, the mass parameter m2 > 0 and ν0 = ν −m2 are determined as in the proof
of [9, Theorem 4.2.1]. In [9], the renormalisation group flow is defined in terms of the decomposition
of (−∆H +m2)−1 in terms of the orthogonal projections Pj as in (2.2), namely as

(−∆H +m2)−1 =

N
∑

j=1

λ̃jPj +
1

m2
QN =

N
∑

j=1

C̃j + ĈN , λ̃j =
L2(j−1)

1 + L2(j−1)m2
, (B.1)

where we here write C̃j = λ̃jPj for the covariances denoted by Cj in [9] to distinguish them from the
covariances Cj = λjQj that we primarily use in this paper. In terms of these, we also have

(−∆H +m2)−1 =

N
∑

j=0

λjQj . (B.2)
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To translate between the two decompositions, note that
∑k

j=0 λjQj =
∑k

j=1 λ̃jPj + λ̃j+1Qj, i.e.,

k
∑

j=0

Cj =
k
∑

j=1

C̃j + λ̃j+1Qj. (B.3)

In [9, Theorem 6.2.1], it is shown that there is a sequence (g̃j , ν̃j , ũj) and a sequence of functions
K̃j , with g̃0 = g0 = g, ν̃0 = ν0, ũ0 = 0 and K̃0 = 0, and with estimates as stated in that proposition,
such that

EC̃1+···+C̃j (e
−V0(Λ,ϕ+ζ)) = e−ũj |Λ|

∏

B∈Bj
(e−Ṽj(B,ϕ) + K̃j(B,ϕ)), (B.4)

where again we use tildes to refer to the quantities as defined in [9]. Therefore, using the relation
between the two decompositions (Cj) and (C̃j), our effective potential Vj as defined in (3.2) in terms
of the decomposition (Cj) is given by

e−Vj(ϕ) =
∏

B∈Bj
e−Vj(B,ϕ) = e−ũj |Λ|Eλ̃j+1Qj





∏

B∈Bj
(e−Ṽj(B,ϕ) + K̃j(B,ϕ))



 . (B.5)

Differently from the usual renormalisation group steps, the expectation on the right-hand side does
not involve any reblocking, i.e., the size of the blocks is the same on both sides of the equality. This
is the same situation as in the last renormalisation group step in [9, Proposition 6.2.2]. In [9], the
last renormalisation group step is only applied at the last scale, but it we can here apply it at any
scale. More precisely, by [9, Proposition 6.2.2 and Remark 10.7.2] with the covariance Ĉ replaced by
Ĉ = λ̃j+1Qj and the scale N replaced by j, we obtain

e−Vj(ϕ) = e−ûj |Λ|
∏

B

(

e−V̂j(B,ϕ)(1 + Ŵ (B,ϕ)) + K̂j(B,ϕ)
)

, (B.6)

as in (3.11). Moreover, the bounds on the T∞(h)-norm and the T0(ℓ)-norm of K̂ stated in [9,
Proposition 6.2.2 and Remark 10.7.2] directly translate directly to the estimates (3.13) and (3.14).

Finally, (3.15) is a consequence of [9, Corollary 6.2.2], together with the definition of νc(g) below [9,
(6.2.24)] and [9, Theorem 4.2.1] for the asymptotics of m2 = 1/χ.

Finally, we prove the elementary estimates for the sequences εj and µj stated in Lemmas 3.5 and
3.12.

Proof of Lemma 3.5. By decreasing εj to 1
5g

1/2
j if necessary, we can assume that εj+1 = εj − γjε

2
j

with γj = O(ϑ2j). To obtain an lower bound on the sequence (εj), we may also increase the γj and

assume that γj = γϑ2j for some γ = O(1). The solution to this recursion behaves as

εj ≍
ε0

1 + ε0
∑

k6j γk
≍ ε0

1 + ε0γ(j ∧ jm)
. (B.7)

This follows, e.g., from [9, Proposition 6.1.3 and (6.1.9)]. Likewise, the sequence gj obeys

gj ≍
g0

1 + g0β00(j ∧ jm)
. (B.8)

Therefore
ε−1
j ≍ g

−1/2
0 + γ(j ∧ jm) 6 g−1

0 + γ(j ∧ jm) ≍ g−1
j (B.9)

as needed.
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Proof of Lemma 3.12. We recall the definition ϑj = 2−(j−jm)+ and set µj = L2jνj. By [9, Proposi-
tion 8.3.1], the sequence µj satisfies µj = O(ϑjgj) and

µj+1 = L2((1 − γβjgj)µj + ηjgj) +O(ϑjg
2
j ), (B.10)

where ηj = O(1). Let η>j =
∑∞

k=j L
−2(k−j)ηk and µ̂j = µj + η>jgj . Then µ̂j = O(gj) and

µ̂j+1 = L2((1 − γβjgj)µj + ηjgj) +





∞
∑

k=j+1

L−2(k−j−1)ηk



 gj +O(ϑjg
2
j )

= L2



(1− γβjgj)µj +



ηj +
∞
∑

k=j+1

L−2(k−j)ηk



 gj



+O(ϑjg
2
j )

= L2



(1− γβjgj)µj +





∞
∑

k=j

L−2(k−j)ηk



 gj



+O(ϑjg
2
j )

= L2(1− γβjgj)µ̂j +O(ϑjg
2
j ). (B.11)

Iterating this equation together with the boundedness of µ̂j implies

µ̂j = L−2µ̂j+1 +O(ϑjg
2
j ) =

∞
∑

l=j

L−2(l−j)O(ϑlg
2
l ) = O(ϑjg

2
j ). (B.12)

We will repeatedly use that (see for example [9, Exercise 6.1.4])

∞
∑

k=0

ϑkg
2
k = O(g0). (B.13)

Hence

−
j
∑

k=0

µk = −
j
∑

k=0

µ̂k +

j
∑

k=0

η>kgk =

∞
∑

k=0

η>kgk +O(g0). (B.14)

We now bound the sum on the last right-hand side. By definition and rearranging sums,

∞
∑

k=0

η>kgk =

∞
∑

k=0

∞
∑

l=k

L−2(l−k)ηlgk

=

∞
∑

k=0

∞
∑

l=k

L−2(l−k)ηlgl +
∞
∑

k=0

∞
∑

l=k

L−2(l−k)ηl

l−1
∑

m=k

(gm − gm+1)

6

∞
∑

l=0

(1− L−2)−1ηlgl +
∞
∑

k=0

∞
∑

l=k

L−2(l−k)ηl

l−1
∑

m=k

(βmg
2
m +O(g3m)). (B.15)

The last sum can be rearranged and bounded as

∞
∑

m=0

m
∑

k=0

∞
∑

l=m+1

L−2(l−k)ηl(βmg
2
m +O(g3m)) =

∞
∑

m=0

O(L2m)O(L−2m)O(ϑmg
2
m) = O(g0). (B.16)
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By [9, (5.3.10) and (5.3.7)], there exists a constant δ independent of n such that (1 − L−2)−1ηl 6
δn+2
n+8βl. Therefore

∞
∑

l=0

(1− L−2)−1ηlgl 6 δ
n + 2

n + 8

∞
∑

l=0

βlgl +O(g0) 6 δ
n + 2

n + 8
| log gjm |+O(1), (B.17)

where the last inequality again follows from [9, Exercise 6.1.4]. This concludes the proof of the first
inequality in (3.62). The second inequality is immediate from µj = O(ϑjgj) and [9, Exercise 6.1.4].

C Spectral gap inequality for single-spin Discrete Gaussian measure

In this appendix, we prove Lemma 4.7. Thus we prove that for any β > 0, there exists a constant
Cβ such that the measure µψ on Z defined in (4.39) has a spectral gap uniformly in ψ ∈ R,

Varµψ (F (n)) 6 CβEµψ

(

(F (n + 2π)− F (n))2 + (F (n − 2π)− F (n))2
)

. (C.1)

Proof. It is enough to consider ψ ∈ [0, 2π]. To simplify notation, we assume in this proof that µψ is
supported on Z up to rescaling n by a factor 2π, i.e.,

µψ(n) = eV (ψ)e−2π2β(n− ψ
2π

)2 . (C.2)

We are going to apply the path method to evaluate the gap [43]. Thus we write

Varµψ(F (n)) =
1

2

∑

n,m∈Z
µψ(n)µψ(m)(F (n) − F (m))2

=
∑

n<m

µψ(n)µψ(m)

(

m−1
∑

i=n

F (i+ 1)− F (i)

)2

6
∑

i∈Z
(F (i+ 1)− F (i))2

∑

n6i
m>i+1

µψ(n)µψ(m) (m− n), (C.3)

where we used the Cauchy–Schwarz inequality in the last inequality and Fubini to change the order
of the summations. The Dirichlet form in (4.45) can be rewritten as

Dµψ(F ) := Eµψ

(

(F (n+ 1)− F (n))2 + (F (n − 1)− F (n))2
)

=
∑

n∈Z
(µψ(n) + µψ(n+ 1)) (F (n + 1)− F (n))2. (C.4)

Thus we deduce from (C.3) that

Varµψ(F (n)) 6 max
i∈Z







∑

n6i
m>i+1

µψ(n)µψ(m) (m− n)

µψ(i) + µψ(i+ 1)






Dµψ(F ). (C.5)

For i > 0, the maximum can be bounded by

∑

n6i
m>i+1

µψ(n)µψ(m)(m− n)

µψ(i) + µψ(i+ 1)
6

∑

m>i+1

µψ(m)

µψ(i)

(

m+
∑

n

µψ(n)|n|
)

6
∑

j>1

µψ(i+ j)

µψ(i)
(i+ j + cβ), (C.6)
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where we used that cβ =
∑

n µψ(n)|n| is a constant. From (C.2), we see that the following bound
holds uniformly in ψ ∈ [0, 2π]:

∀j > 1,
µψ(i+ j)

µψ(i)
= e−4π2β(i− ψ

2π
)je−2π2βj2

6 e−4π2β(i−1)e−2π2βj2 . (C.7)

Together, the previous two inequalities imply that the maximum over i > 0 in (C.5) is bounded. The
case i < 0 can be controlled in the same way. This completes the proof of Lemma 4.7.
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