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Abstract

Functional Distributional Semantics: Learning Linguistically
Informed Representations from a Precisely Annotated Corpus

The aim of distributional semantics is to design computational techniques that can automatically
learn the meanings of words from a body of text. The twin challenges are: how do we represent
meaning, and how do we learn these representations? The current state of the art is to represent
meanings as vectors – but vectors do not correspond to any traditional notion of meaning. In
particular, there is no way to talk about truth, a crucial concept in logic and formal semantics.

In this thesis, I develop a framework for distributional semantics which answers this chal-
lenge. The meaning of a word is not represented as a vector, but as a function, mapping entities
(objects in the world) to probabilities of truth (the probability that the word is true of the entity).
Such a function can be interpreted both in the machine learning sense of a classifier, and in the
formal semantic sense of a truth-conditional function. This simultaneously allows both the use
of machine learning techniques to exploit large datasets, and also the use of formal semantic
techniques to manipulate the learnt representations. I define a probabilistic graphical model,
which incorporates a probabilistic generalisation of model theory (allowing a strong connection
with formal semantics), and which generates semantic dependency graphs (allowing it to be
trained on a corpus). This graphical model provides a natural way to model logical inference,
semantic composition, and context-dependent meanings, where Bayesian inference plays a cru-
cial role. I demonstrate the feasibility of this approach by training a model on WikiWoods, a
parsed version of the English Wikipedia, and evaluating it on three tasks. The results indicate
that the model can learn information not captured by vector space models.
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Chapter 1

Between Linguistics and Machine
Learning

This thesis is about meaning – how to represent it, and how to learn it. The ultimate aim is to
develop a framework which is both compatible with formal linguistic theory, and empirically
testable using real-world data. My motivations are twofold: to shed light on what it means to
know a language, and to push forward the limits of machine learning.

From the linguistic point of view, if we are to take lexical semantics seriously – that is,
to have a theory that can model the meanings of words, including all their subtle connota-
tions – then we cannot hope to write down all the details by hand. Traditional techniques are
time-consuming, and variations of meaning difficult to pin down. Data-driven techniques are
necessary to move from an abstract semantic theory to a fleshed-out model of a real language.
Furthermore, an explicit computational model does more than just allow us to test the theory –
as we will see, using probabilistic techniques can provide new insights on old problems.

From the machine learning point of view, a learning algorithm requires an objective. In
the case of language, what should the objective be? In this thesis, I will not focus on one
specific task – after all, people use language as a general purpose tool to communicate and to
store knowledge, even in completely new domains. The objective, then, is to learn semantic
representations that are generally useful, rather than tied to a specific task. However, without an
end task in mind, the next question is: what semantic representations are we aiming to learn?
As a guide, we can look to linguistics, and aim to learn structures that have proven useful in
formal models of language.

In short, linguistics clarifies the goal, and machine learning provides the tools.
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1.1 Synopsis

1.1.1 Core of the Thesis

In this thesis, I focus on distributional semantics, which has the goal of learning the meanings
of words from a corpus. The basic idea is that the contexts in which a word appears give us
information about its meaning.

How can formal semantics guide us in building a distributional semantic model? For this
thesis, the most important guiding idea is that the meaning of a word should be represented
by a truth-conditional function – a mapping from entities (objects in the world) to truth values
(either true or false). From a Bayesian point of view, this suggests representing the meaning of
a word as a function from entities to probabilities of truth. For example, the function for the
word cup would return high probabilities for typical cups, middling values for entities near the
boundary of the concept (such as mugs, glasses, and bowls), and low values for other objects. I
call such a function a semantic function. Although such a function might at first seem esoteric
to a machine learning audience, it will seem quite familiar if viewed as a binary classifier.

How can we learn such functions? The second guiding idea is to use semantic dependency

graphs as representations for the meanings of sentences. Compared to other sentence represen-
tations used in formal semantics, they are more convenient for machine learning models – in
particular, for probabilistic graphical models, which also use graph structures.

Semantic functions and semantic dependency graphs thus provide a link between formal
semantics and machine learning. The model architecture is informed by semantic theory, but
the model parameters are fully trained.

This thesis should be of interest to linguists: firstly, I give a probabilistic generalisation of
model theory, and I show how this provides a novel mechanism for modelling context depen-

dence; secondly, I show how a probabilistic model structure can be learnt using corpus data,
which allows semantic theories to be tested on a larger scale.

This thesis should also be of interest to machine learning researchers: firstly, I empirically
demonstrate that for distributional semantics, a functional model can perform better than a
vector space model, particularly on difficult datasets; secondly, I explain how a functional model
is logically interpretable, an important advantage compared to vector space models.

The core ideas in this thesis have been published in a series of papers (Emerson and Copes-
take, 2016, 2017a,b).

1.1.2 Outline of the Thesis

The remainder of this chapter introduces distributional semantics and model-theoretic seman-
tics, two prominent approaches to semantics which I build on in this thesis. In recent years, dis-
tributional semantics has proven much more popular in the fields of computational linguistics
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and natural language processing (NLP). While there have been repeated calls to arms to bring
more linguistics into computational linguistics (for example: Spärck-Jones, 2007b; Church,
2011; Kay, 2014; Smith, 2017), and while there is a rich and active literature on integrating dis-
tributional and model-theoretic approaches (for an overview, see: Boleda and Herbelot, 2017),
there remain many open problems. This chapter sets the scene for the rest of the thesis.

In Chapter 2, I discuss the goals of semantics, outlining a number of challenges that any
theory of semantics should aim to deal with. To evaluate how well current theories address these
challenges, I survey existing work in distributional semantics and model-theoretic semantics.
This chapter motivates the framework developed in the rest of the thesis.

In Chapter 3, I introduce the framework. I begin by looking at model structures in model-
theoretic semantics, and I propose a probabilistic generalisation of a model structure in §3.3.
This generalisation lays the groundwork for the two core ideas discussed in §1.1.1 above. First,
I define semantic functions in §3.4, as part of a probabilistic model structure. Second, I define
a probabilistic graphical model for model structures in §3.5, which is structured using semantic
dependency graphs and semantic functions. I apply this graphical model to distributional se-
mantics in §3.6, which gives the framework of Functional Distributional Semantics. I conclude
in §3.7 by looking at this framework in light of the goals given in Chapter 2.

In Chapter 4, I explain how the logical structure of the framework is useful. I first show,
in §4.1, how Bayesian inference can provide an account of context-dependent meanings, main-
taining the intuition behind linguistic accounts, but using a precisely defined mathematical
mechanism. I then show, in §4.5, how Bayesian inference can be used to perform logical infer-
ence, and I prove an equivalence with traditional syllogistic logic.

In Chapter 5, I give an implementation of the framework, using a combination of Restricted
Boltzmann Machines and feedforward neural networks. The model architecture is described
in §5.1, while the rest of the chapter is dedicated to how to train the model. The main challenge
is the large number of latent variables: when training a model on text alone, we do not observe
the entities themselves, but only their textual descriptions. This means that, for every observed
content word, there is an unobserved entity that the word describes. To make training tractable,
I have adapted two approximate inference techniques: a Markov Chain Monte Carlo method is
described in §5.3; and a Variational Inference method is described in §5.4. These approximate
inference techniques are crucial in making tractable the logical inference calculations proposed
in Chapter 4.

In Chapter 6, I test my framework, training a model on WikiWoods (a parsed version of the
English Wikipedia), and giving experimental results on three tasks: measuring lexical similarity,
measuring similarity in context, and finally an inference task involving composition of relative
clauses. The results demonstrate that my framework can improve performance compared to a
vector space model.

In Chapter 7, I extend the above approach to deal with multiple quantifiers, allowing us to
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handle arbitrary propositions. This is an important strength compared to current distributional
semantic models. Furthermore, while traditional logics deal well with quantifiers like every and
some, that have clear truth conditions, they struggle to model vague quantifiers like many, as
well as so-called generic sentences. In §7.4, I discuss how a probabilistic approach can provide
a more natural account of vague quantifiers and generics.

Finally, in Chapter 8, I reflect on the achievements of the thesis, and give an outlook on
future work – because the framework developed in this thesis is interpretable in linguistic terms
and in logical terms, there is a clear and plausible path from this work to more general models
of language.

1.2 Distributional Semantics

The aim of distributional semantics is to learn the meanings of linguistic expressions from a
large corpus of text. The core idea, known as the distributional hypothesis, is that the contexts
in which an expression appears give us information about its meaning. The hypothesis is often
stated more narrowly, to say that similar words will appear in similar contexts – but in this thesis
I will be interested in semantics beyond similarity. Fig. 1.1 illustrates the kind of information
we might hope to learn.1

Why should we want to study distributional semantics? For a machine learning researcher,
there is a very short answer: training a model requires data, and textual data is cheap, so we
should try to use it.

For a linguist, the distributional hypothesis provides a methodology for studying language.
The idea has roots in American structuralism (Harris, 1954) and British lexicology (Firth, 1951,
1957)2, but it was not until the advent of modern computing and the availability of large
machine-readable language resources that it began to be used in practice. In a notable early
work, Spärck-Jones (1964) represented the meaning of a word as a boolean vector (based on
the entries in a thesaurus), with similarity defined in terms of vector overlap.

As McNally (2017) and Lenci (2008, 2018) have argued, distributional representations can
be used as surrogates for conceptual representations – but crucially, they can be calculated con-
cretely. Used in this way, distributional data allows us to develop and test linguistic theories. Of
course, distributional data cannot be enough to learn a full model of meaning, because it does
not include grounded, non-linguistic data, such as sensory perception and motor control. How-
ever, it is necessary for a full model of the language of literate speakers, as a large proportion of
L1 vocabulary learning comes from reading new words in normal text (Nagy et al., 1987; Miller
and Charles, 1991). A distributional semantic model is not a complete model of meaning, but it
is a good place to start.

1 Examples were obtained under the terms of the British National Corpus End User Licence. For further
information, see: http://www.natcorp.ox.ac.uk

2 Firth used the term “collocational” rather than “distributional”.
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... of anticipating being hurt by another horse especially if some other rider comes ...
... was simply beaten by a better horse at the distance on the day ...

... can infer from these studies that horses reared with other horses in a ...
... studies that horses reared with other horses in a free and enriched environment ...

... people saying “Is that all your horse gets to eat?” in amazement. The ...
... and a cache of cattle and horse bones, while from Normangate Field a ...

... Bachelor’s Button was a sterling good horse, especially at Ascot, but he was ...
... the same way as a domestic horse that it may be stabled with ...

... Attachment in 1790 – that is, one horse or two cows for each £4 ...
... grey hair as coarse as a horse ’s tail straying from her mob-cap ...

Figure 1.1: Ten instances of horse in the British National Corpus, with a window of six words
either side. From these, we might learn that horses are animals used in racing and agriculture.
Learning such information automatically is the goal of distributional semantics.

1.2.1 Vector Space Models

The most popular approaches to distributional semantics represent the meaning of a word as a
vector – in other words, as an array of numerical values. The idea that meaning varies con-
tinuously along a number of dimensions has roots in certain schools of psychology (Osgood,
1952), but it is with the rise of distributional semantics, discussed in §1.2 above, that vector
space models have become widespread (for an overview, see: Erk, 2012; Clark, 2015).

One method to build distributional vectors is a count approach, where we count the number
of times words appear in different contexts. A simple type of context uses a window of words
– for each instance of a target word, we observe N words before and N words after the target,
as illustrated in Fig. 1.1 for N = 6. Each word observed in the window defines a context. In the
above example, important context words would include: rider, reared, cattle, Ascot, stabled,
tail. Contexts can also be defined in other ways, for example on the basis of syntactic structure.
The choice of context is important, allowing vectors to capture either paradigmatic or syntag-
matic relations, as discussed by Sahlgren (2006). Once the counts have been calculated across
the whole corpus, we can process these counts in some way, such as calculating the pointwise
mutual information (PMI), as proposed by Turney (2001), building on earlier work that used
PMI to measure word association (Church and Hanks, 1990). There are many alternative ways
to process the counts, and overviews of techniques are given by Turney and Pantel (2010) and
Lapesa and Evert (2014).

An alternative is an embedding approach, where we define vectors as part of a machine
learning model and optimise these vectors to perform some task. The vectors are typically
part of a neural network, such as Mikolov et al. (2013)’s Skip-gram model, where the task
is to predict the words in each window. Alternatively, they can be trained using probabilistic
generative models, such as proposed by Ó Séaghdha and Korhonen (2014).
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There are strong links between count and embedding approaches. For example, Levy and
Goldberg (2014) prove that Mikolov et al.’s embedding model produces an approximate factori-
sation of a count-based PMI matrix. Leveraging this relationship, Levy et al. (2015a) optimise
count models using techniques developed for embedding models. In a similar vein, Cotterell
et al. (2017) prove that Mikolov et al.’s model performs exponential-family principal component
analysis (EPCA) on a count matrix.

Vector space models have also been influential in other areas of NLP, such as to represent
queries and documents in Information Retrieval (Salton, 1979). (For a history of this idea, see:
Dubin, 2004; for a general history of IR, which situates the vector space model in a larger
context, see: Spärck-Jones, 2007a.)

While vector space models have proven useful in a variety of tasks, vectors do not naturally
impose the structure necessary to model various aspects of meaning, as I will argue in Chapter 2.

1.2.2 A Note on Terminology: Numerical Vectors and Algebraic Vectors

The term vector is ambiguous. In computer science, it refers to a linear3 array. This would be
referred to in mathematics as a tuple. What are often referred to in NLP as feature vectors or
embedding vectors could be equally described as arrays.

In the mathematical sense, a vector space (over the real numbers) is a set with a specific
kind of algebraic structure: vectors can be added to each other, and multiplied by real numbers;
vector addition forms an abelian group; multiplication by real numbers is distributive over vec-
tor addition; and these operations are compatible with the usual addition and multiplication of
real numbers. The study of vector spaces is known as linear algebra.

The algebraic vector space axioms would be violated by many feature vectors in NLP. For
example, for any vector v, the vector space will also include −v, but many feature vectors and
embeddings are assumed to be non-negative. However, this should not necessarily be seen as
a problem – many useful numerical operations, such as elementwise multiplication of arrays,
are not natural algebraic operations on a vector space. Indeed, Dubin (2004)’s account of the
history of the vector space model in information retrieval can also be read as a cautionary tale,
warning against the assumption that numerical arrays must be algebraic vectors.

A common motivation for using arrays is that we can define a notion of distance (or its
inverse, similarity). Mathematically, such a space would be called a metric space.4 In the
absence of an established term for “element of a metric space”, I will use the term “vector” in
the sense of a numerical array where the notion of distance is important.5 This is consistent

3 Also known as “one-dimensional”, where there is a second clash in terminology, since the mathematical
“dimension” would be the number of entries, referred to in computer science as the “length” of the array.

4 Cosine similarity does not induce a metric, but rather a “pseudometric”, since it is insensitive to the magnitude
of a vector. However, it does induce a true metric on the set of unit vectors.

5 An alternative term might be “point”, although that is used more generally for topological spaces. It is not
common in the NLP literature, perhaps because terms like “word point” would not be particularly evocative.
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with existing work, even where it is not explicitly acknowledged. For example, Support Vector
Machines (SVMs) don’t require algebraic structure for the input vectors, but rather a notion of
distance, induced by the kernel function6 (for the modern formulation of SVMs, see: Cortes and
Vapnik, 1995).

The most popular distributional semantic models are vector space models. This ubiquity has
led some authors to use the term distributional to refer to vector space models in general, rather
than to models trained on corpus data. I will only use the term to refer to corpus-based models,
which is the sense introduced by Harris. This can be contrasted with the term distributed,
which typically refers to vector space models trained as part of a neural network, where the
meaning is intuitively “distributed” across all dimensions. The dimensions in such a model
can only be interpreted in the context of the network (unlike count-based vector models, where
the dimensions correspond to contexts). Finally, the term embedding is often used to refer to
distributed vector representations – each object of interest is mapped to (“embedded in”) the
vector space.

One approach to semantics which does exploit the algebraic notion of a vector space is the
type-driven tensorial framework proposed by Coecke et al. (2010) and Baroni et al. (2014),
where linear algebra plays a crucial role. This framework will be discussed in §2.5.3.

1.3 Model-Theoretic Semantics

A standard approach to formal semantics is model theory (for expositions, see: Cann, 1993;
Allan, 2001; Kamp and Reyle, 2013). The popularity of model theory is due to its precisely
defined notion of truth, and to its compatibility with first order logic and λ-calculus. This
allows us to derive the meanings of complex expressions by composing the meanings of their
parts, and allows us to evaluate the truth or falsehood of sentences. Model theory was formally
defined by Tarski and Vaught (1956),7 further developed by Montague (1973), and popularised
by Partee (1975) and Dowty et al. (1981).

The basic idea is that linguistic expressions acquire meaning via interpretation in a model
structure.8 Each model structure includes a set of individuals (or entities) – intuitively, these
represent objects or people in the world. The meaning of a content word is called a predicate,
formalised as a function mapping from individuals to truth values – either truth or falsehood
(also referred to as falsity). More precisely, an n-place predicate maps each n-tuple of indi-

6 More precisely, a positive definite kernel is equivalent to an inner product in a feature space – this is known as
the Moore-Aronszajn Theorem (Aronszajn, 1950). Although kernel methods require the feature space to be a vector
space (in fact, a “reproducing kernel Hilbert space”), there is no such requirement on the input space. Furthermore,
the mapping from the input space to the feature space does not need to cover the feature space, and so the algebraic
structure of feature space does not induce algebraic structure on the input space. However, distances in the feature
space induce distances in the input space (technically, a “pseudometric”, since input vectors may be mapped to the
same feature vector) – given a kernel K, we can define distances as d(x, y) =

√
K(x, x)− 2K(x, y) + K(y, y).

7 For an overview, see: Hodges, 2014.
8 I use the term “model structure” rather than just “model” or “structure”, to avoid the ambiguity in both terms.
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viduals to a truth value. For example, the meaning of dog can be represented as a one-place
predicate, that maps an individual to truth if the individual is a dog, and to falsehood other-
wise. The meaning of chase can be represented as a two-place predicate, that maps a pair of
individuals (x, y) to truth if x chases y, and to falsehood otherwise.

Alternatively, an n-place predicate can be formalised as an extension (or denotation) – the
set of n-tuples of individuals for which the predicate is true. Note that for both of the above
formalisations (truth-conditional functions and extensions), the interpretation of a predicate is
dependent on a model structure. The difference between the two will be explored in §3.2.

At its simplest, a model-theoretic representation for a sentence includes a set of variables
and a set of predicates taking variables as arguments. For example, we can represent the sen-
tence a dog chased a cat, with two variables and three predicates: dog(x), cat(y), chase(x, y).9

We also need some way to combine the truth values for each of these predicates into a single
truth value for the whole sentence. In the above case, we can simply use the logical and opera-
tor, ∧. Finally, we need some way to match the variables to the individuals in a model structure,
which is called quantification. The two simplest quantifiers are the universal quantifier ∀ (we
need to match the variable against every individual) and the existential quantifier ∃ (we need
to find a single individual for the variable). In the above example, both x and y can be existen-
tially quantified. We can then represent the meaning of a sentence using a logical proposition,
where all variables are quantified – given a model structure, a proposition can be evaluated to
give a truth value. The meaning of the above example could be represented by the proposi-
tion ∃x∃y dog(x) ∧ cat(y) ∧ chase(x, y). This is true when the model structure includes two
individuals, where one is a dog, the other is a cat, and the first chases the second.

Many extensions of model theory have been proposed, and a full review would be beyond
the scope of this thesis. I will focus on the extensional fragment of language, in other words
sentences directly asserting facts. I will not cover imperatives, questions, modals, performa-
tives, attitude reports and so on, but I should note that much of the model-theoretic literature is
compatible with my approach. Three extensions of model theory will be of particular impor-
tance in this thesis, and will be discussed in the following subsections.

1.3.1 Neo-Davidsonian Event Semantics

In the above, I described how the meaning of chase can be represented as a two-place predicate,
which holds between pairs of individuals. However, it is often useful to be able to directly refer
to events – in this case, the event of chasing.10 For example, to model the semantics of a dog

chased a cat yesterday, it’s not enough to say that the dog and cat existed yesterday – we need

9 For ease of exposition, I am assuming here that each word corresponds to a single predicate, but in general
there may be lexical ambiguity, which will be discussed in §2.2.2.

10 Following Bach (1986), some authors distinguish “events”, “processes” and “states”, as kinds of “eventual-
ities”. Maienborn (2005) further distinguishes “Davidsonian eventualities” and “Kimian states”. I will not make
such distinctions in this thesis, and use the term “event” in the wider sense.

20



to say that the chasing happened yesterday.
A neo-Davidsonian approach to event semantics (Davidson, 1967; Parsons, 1990) deals with

this by treating events as individuals. Verbal predicates are one-place relations, which can be
true of event individuals. Adverbials like yesterday can then take the event individual as an
argument. The participants of an event are indicated by two-place relations, linking the event
to the participant. For example, the above sentence could be represented with three individuals
and five relations: dog(x), chase(y), cat(z), ARG1(y, x), ARG2(y, z), yesterday(y). Here, the
ARG1 and ARG2 relations indicate the participants of the chasing event.

I will refer to ARG relations as semantic roles. In this thesis, I take these relations to
be generic, shared across the whole lexicon – if the verb were changed in the above example
(say from chased to saw), the ARG roles in the semantic representation would not change. An
alternative is to use predicate-specific roles (for example: Pollard and Sag, 1994, pp. 28–29) –
in the above example, ARG1 and ARG2 would be replaced by CHASER and CHASED. However,
such roles can be straightforwardly generated from the predicate and the ARG role, so such an
approach does not provide any additional representational power. Another alternative is to use
an intermediate set of roles, as done in FrameNet (Baker et al., 1998) – in the above example,
ARG1 and ARG2 would be replaced by THEME and COTHEME, where these roles generalise
across a class of predicates (the “cotheme frame”, comprised of predicates that indicate motion
of two objects). However, Dowty (1991) argues that there is no small set of roles which could be
used with a consistent semantic interpretation. This view is defended by Copestake (2009), and
is the approach taken by the DELPH-IN11 consortium – in particular, this includes the English
Resource Grammar (ERG) (Flickinger, 2000, 2011), which was used to produce the WikiWoods
corpus (Flickinger et al., 2010; Solberg, 2012), used in this thesis.

The line of reasoning that led us to associate event individuals with verbs can be extended
to adjectives, adverbs, and prepositions. For example, the dog ran surprisingly quickly does not
mean that the running was surprising, but rather that the speed was surprising. We can model
this by associating an event with quickly. Taking this line of reasoning to its conclusion, every
predicate applies to a separate individual, and individuals are linked by semantic roles. Viewing
the meaning of a sentence as a logical proposition, this means that every predicate is associated
with a unique variable, called its intrinsic variable.12

1.3.2 Situation Semantics

As stated above, the truth of a sentence can only be evaluated relative to a model structure.
An important question is then: what does a model structure represent? It is often taken to
represent a possible world – that is, everything in the universe, either as it actually is, or as it

11 http://www.delph-in.net
12 This idea was introduced by Oepen and Lønning (2006), using the term “distinguished variable”. Copestake

(2009) uses the term “characteristic variable”. The term “intrinsic variable” was later agreed on as a neutral com-
promise; see: http://moin.delph-in.net/ErgSemantics/Basics#Intrinsic_Arguments
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could be imagined to be. However, Barwise and Etchemendy (1987)13 argue that if we treat
natural language as describing the entire world, we will derive the wrong truth conditions – for
example, if someone observes a card game and utters Claire has the three of clubs, it doesn’t
matter if there is another Claire elsewhere in the world who has the three of clubs; rather, it
only matters if, in the current game, someone called Claire has the three of clubs. Barwise and
Etchemendy conclude that the truth of a sentence is not evaluated against the entire world, but
rather a small part of the world, called a situation.14 This is a somewhat informal notion, since
it may not always be clear exactly how a situation is delimited. Furthermore, sizes of situations
vary enormously – for instance, the situations studied by astronomers and cellular biologists.
The important point is that sentences generally do not describe the entire world.

A detailed framework in which sentences are about situations was proposed by Barwise and
Perry (1983). However, as discussed by Stojanovic (2012), the term “situation semantics” now
refers to a large class of semantic frameworks which are often formally quite different from
Barwise and Perry’s original proposal (for an overview of developments, see: Devlin, 2006;
Kratzer, 2017).

As a simple approach in the spirit of situation semantics, we can take a situation to formally
consist of a small number of related individuals, where situations may overlap with one another.
Combining this view with neo-Davidsonian event semantics, described in §1.3.1 above, we
can take a situation to consist of a set of individuals, including event individuals, along with
semantic roles that relate the individuals to one another. Predicates can be true or false of
individuals, and sentences can be true or false of situations.

1.3.3 Dependency Minimal Recursion Semantics

So far, I have represented meanings using predicate-argument structures. However, there are
two natural questions that we can ask, following the twin motivations given at the start of this
chapter. The first question is scientific: do such representations capture the range of meanings
expressed in natural language? The second question is practical: are such representations easy
to work with?

To make the first question more precise – our semantic representations should be expressive
enough that utterances with different meanings can be given different representations, but not
so expressive that we are forced to have many possible representations of each utterance. For
example, it should be clear that a dog chased a cat and a cat chased a dog mean different things
and so should be represented differently. On the other hand, our semantic representions should
not force us to specify unexpressed details, such as how long the chase lasted, or how far apart
the animals were – our representations should be underspecified with respect to such details.

13 I have adapted the example they give on pages 121–122. See also pages 9–12, 28–30, 171–172.
14 Barwise and Etchemendy call this situation-specific notion of truth “Austinian truth”, crediting Austin (1950).

While Austin does use truth in this way, no explicit comparison is made with possible-world semantics.
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∀x picture(x)→ ∃z∃y tell(y) ∧ story(z) ∧ ARG1(y, x) ∧ ARG2(y, z)

(a) First-order logical proposition (for the most likely scope reading).

l1 : every(x, h1, h2), h1 QEQ l2

l2 : picture(x)

l3 : tell(y, x, z)

l4 : a(z, h3, h4), h3 QEQ l5

l5 : story(z)

(b) MRS representation, underspecifying scope.

every picture tell story a
ARG1/NEQ ARG2/NEQRSTR/QEQ RSTR/QEQ

(c) DMRS representation, equivalent to the MRS representation above.

Figure 1.2: Comparison of semantic representations for the sentence every picture tells a story.
For ease of exposition, I have suppressed details such as tense and number. In MRS, these are
treated as properties of a variable; in DMRS, they are treated as properties of a node.

Predicate-argument structures naturally deal with these particular issues, but what about other
issues?

In the above examples, we expressed the semantics using a set of relations, without any or-
der between the relations. However, in more complicated utterances, some relations may need
to take scope over others. For example, Kim knows it didn’t rain and Kim doesn’t know it rained

should be represented differently – in the first case, the negation scopes over rain but not over
know, but in the second case, the negation scopes over both. One of the motivations for devel-
oping Minimal Recursion Semantics (MRS) (Copestake et al., 2005) was to use the minimal
amount of structure to encode scope. If a sentence allows multiple scope readings, these are
underspecified – for example, a sentence with multiple quantifiers has different readings de-
pending on the relative scope of the quantifiers, but it can be given a single MRS representation.

For example, Fig. 1.2a expresses the most likely scope reading of every picture tells a story,
while the MRS in Fig. 1.2b does not determine the scope. Instead it simply constrains the scope,
in the form of the two QEQ constraints. Scope will not play an important role in this thesis, and
so I will postpose further explanation and discussion until Chapter 7 (in particular §7.2). The
important point to note is that MRS aims to provide logical representations that encode all
structural semantic distinctions expressed in natural language – nothing more and nothing less.

To achieve this aim, MRS introduces additional structure beyond the relations and variables
we saw before. The aim of Dependency Minimal Recursion Semantics (DMRS) (Copestake,
2009) is to make the resulting structures easier to work with, which answers the second ques-
tion posed above. With neo-Davidsonian event semantics (see §1.3.1), there is a one-to-one
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mapping between predicates and their intrinsic variables. As suggested by Oepen and Lønning
(2006), this allows us to have a variable-free semantic representation, where we do not need to
distinguish variables and predicates – whenever we need to refer to a variable, we can refer to
its corresponding predicate instead.

DMRS represents semantics using a dependency graph, consisting of a set of nodes, and
a set of links (or dependencies)15 from one node to another. An example is shown in Fig. 1.2c,
which is equivalent to the MRS in Fig. 1.2b. Each predicate (along with its intrinsic variable) is
represented as a node. Each semantic role is represented as a link. In addition, each quantifier
is represented as a node, with a RSTR link to the node corresponding to the quantified variable.
The underspecified scopal constraints used in MRS can be represented as secondary labels on
the links (such as /QEQ and /NEQ). As with MRS, I will postpone further discussion until §7.2.
In fact, since I do not need scope in most of this thesis, I will use a simplified version of DMRS,
where I drop these secondary labels. This is akin to other simplified MRS-based dependency
structures such as Elementary Dependency Structures (EDS) (Oepen and Lønning, 2006). For
now, the important point is that the full DMRS is equivalent to MRS, which has a well-defined
model-theoretic interpretation.

Identifying variables and predicates reduces the number of parts in a semantic representa-
tion, but DMRS gives us more than just that. Graphs are a convenient kind of structure, and
many efficient graph-based algorithms exist. It is no coincidence that dependency graphs have
become popular in NLP, with a variety of dependency graph formalisms. Indeed, comparison
between dependency formalisms is an active area of research (for example: Oepen et al., 2016;
Kuhlmann and Oepen, 2016). Unlike syntactic dependencies, such as Universal Dependencies
(de Marneffe et al., 2014), DMRS abstracts over semantically equivalent expressions, such as
dogs chase cats and cats are chased by dogs.16 Furthermore, unlike other types of semantic
dependencies, including Prague Dependencies (Hajičová, 1998; Bejček et al., 2013), Abstract
Meaning Representations (Banarescu et al., 2013), and Universal Conceptual Cognitive Anno-
tation (Abend and Rappoport, 2013), DMRS is interconvertible with MRS, which can be given
a direct logical interpretation, as mentioned above.

Finally, MRS has been integrated with the ERG, a broad-coverage grammar of English,17

which makes it useful in practice. Annotating a corpus with the aid of a grammar leads to higher
inter-annotator agreement than directly annotating semantics (Bender et al., 2015), which in turn
improves the performance of parsers trained on such corpora (Buys and Blunsom, 2017; Chen
et al., 2018). Accurate parsers can then be used to automatically annotate large amounts of data,
enabling experiments like those reported in this thesis.

15 The term “arc” is also used by some authors. Within graph theory, the term “edge” is more common.
16 More precisely, we can distinguish active and passive voice in terms of their information structure, but I will

not deal with that in this thesis (for how to represent information structure in MRS, see: Song, 2017).
17 Information on the semantic analyses in the ERG is available online, in the documentation produced by

Flickinger et al. (2014): http://www.delph-in.net/esd
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Chapter 2

Modelling Meaning in Distributional
Semantics and Model-Theoretic Semantics

As stated in Chapter 1, this thesis is about meaning, so it will be helpful to first clarify what I
intend to cover. How should “meaning” be isolated as an object of study?

Koller (2016) contrasts “top-down” and “bottom-up” approaches to semantics. A top-down
approach begins with an overarching goal, and tries to build a theory to reach that goal. A
bottom-up approach begins with existing techniques, and tries to extend them where possible.
Koller observes that model-theoretic semantics is largely top-down, but distributional semantics
is largely bottom-up, concluding that “truth-conditional semantics hasn’t reached its goal, but
at least we knew what the goal was”. In contrast, they point out the difficulty in evaluating a
bottom-up theory, if there is no goal in mind – “Bottom-up theories are intrinsically unfalsifi-
able... We won’t know where distributional semantics is going until it has a top-down element.”

Koller proposes task-based goals for distributional semantics, but this raises a problem –
even if we successfully build a model for one task, can we be confident that our model will
generalise to another task? In order to develop a model that we could expect to work generally,
I will instead take a more long-term perspective. I take the top-down goal to be to characterise
the meanings of all utterances in a language.1 To make this goal more precise, in the following
sections I will elaborate on several aspects of meaning which could be considered crucial. I
will readily admit that this is an ambitious goal, and I do not claim to reach it in this thesis.
Nonetheless, by making the goal explicit, we can assess whether we are heading in the right
direction, and we can assess what still needs to be done.

To reach the above goal, what would a semantic model need to have? Many linguists have

1 To put it another way, we could see the ultimate task-based goal as the task of general-purpose communication
with people. In principle, we might try to construct a series of increasingly difficult tasks which build up to this
ultimate goal, where the solution for one task is useful for solving the following task. To be more difficult, each
task would have to introduce a new challenge compared to the previous ones. Designing such a series of tasks
would require identifying important challenges, in a similar way to the overview given in this chapter.
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weighed in on this question. For example, Lewis (1970) asserted, “Semantics with no treatment
of truth conditions is not semantics.” Here, Lewis articulates a necessary requirement of any
theory of semantics: it needs to be able to deal with truth conditions. In other words, it needs
the notions of truth and falsehood, and it needs to characterise when a statement is true or false.2

In the following sections, I discuss a number of challenges which any theory of seman-
tics would need to deal with, and review work in distributional semantics and model-theoretic
semantics that aims to answer these challenges.

2.1 Meaning and the World

Language is always about something. In this section, I discuss challenges in connecting a
semantic theory to things in the world.

2.1.1 Grounding

As Harnad (1990) discusses, if the meanings of words are defined only in terms of other words,
these definitions are circular. One goal for a semantic theory is to explain how language re-
lates to the world, including sensory perception and motor control – this process of connecting
language to the world is called grounding.3 This includes connecting abstract concepts to the
world, although such connections are necessarily more indirect (for further discussion, see:
Blondin-Massé et al., 2008; Pecher et al., 2011; Pulvermüller, 2013; Barsalou et al., 2018).

A model-theoretic approach might seem easily grounded, since each individual in a model
structure could be a real-world individual. However, the details of how this should be done is
not usually articulated in formal semantic accounts – to truly understand a predicate, we need to
know its extension in any possible model structure, but if we are presented with a new situation
containing a new set of individuals, how do we decide what the extensions are? This is not a
trivial task, and should not be brushed aside.

As Harnad points out, a symbolic approach (which would include model theory) could be
combined with a neural network architecture. So, could distributional vectors be connected to
the world? On its own, a vector does say anything about how it was produced or how it should
be interpreted. However, a purely distributional model is not grounded, as it is constructed only
using textual information, which has no direct link with the physical world.

2 In quoting Lewis, I am not committing to their account of truth using possible worlds. Here, I mean to separate
semantic problems from proposed solutions to those problems. There are certainly alternative views of truth, such
as Brandom (2000)’s inferentialism, where truth is secondary to inference, and Barwise and Perry (1983)’s relation
theory of meaning, where truth is secondary to correlations between situations.

3 A stronger form of the symbol grounding problem considers how an agent could autonomously establish a
connection between symbols and the world – in other words, how it could recognise that a symbol is about the
world, without already knowing that it is (Steels, 2008; Taddeo and Floridi, 2005, 2007). Here, I discuss a weaker
form of the problem – I assume that an agent can already recognise something as being a linguistic signal, about
the world, and the challenge is knowing the details of how to match the signal to the world.
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In principle, there are several ways we could try to ground a distributional semantic model.
The simplest way is to train a distributional model as normal, then combine it with a grounded
model. For example, Bruni et al. (2011) concatenate distributional vectors and image feature
vectors – viewing vectors as arrays, we append one to the other, giving a longer array. This
approach has also been applied to other senses. For example, Kiela et al. (2015) use olfactory
information, and Kiela and Clark (2017) use both visual and auditory information. However,
while there is grounded information in the sensory dimensions, concatenation leaves the distri-
butional dimensions ungrounded, because we cannot relate them to the world. It is tempting
to respond to this criticism by looking for correlations between the distributional and sensory
features. For example, Bruni et al. (2014) perform singular value decomposition (SVD) on con-
catenated vectors, and Silberer and Lapata (2014) train an autoencoder on concatenated vectors.
However, there is no guarantee that every distributional feature will correlate with sensory fea-
tures. Distributional features without correlations will remain ungrounded. Indeed, in the above
works, distributional vectors were found to be more useful than sensory vectors, at least when
evaluating on similarity datasets. This suggests that there might be more information in the
distributional vectors than the sensory vectors, which means it would not be possible to ground
all dimensions by directly finding correlations – at the very least, it would be necessary to come
up with more sophisticated ways to relate distributional features to sensory features.

A second approach is to train distributional vectors as normal, and then to interpret them via
a mapping to grounded representations. For example, Lazaridou et al. (2014) and Bulat et al.
(2016) learn a mapping from distributional vectors to visual vectors (and vice versa). However,
grounding by interpretation runs into the same problem as grounding by correlation – there is
no guarantee that every dimension can be directly interpreted in this way. As mentioned above,
this is a serious problem if there is more distributional information than sensory information.

In a similar vein, Mitchell et al. (2008) map distributional vectors to fMRI scans of hu-
man brain activity, and Făgărăşan (2015) map distributional vectors to “feature norms” (McRae
et al., 2005), which are manually produced lists of properties (for example, the feature norm for
apple includes the property is edible). While these are potentially interesting ways to interpret
distributional vectors, both map to ungrounded spaces – given an fMRI scan, we need to under-
stand how brain activations are grounded, and given a property expressed in natural language,
we need to understand how that linguistic expression is grounded.

Finally, a third approach is joint learning from both distributional and grounded data – we
define a single model, whose parameters are learnt based on both sources of data. For example,
Feng and Lapata (2010) train a Latent Dirichlet Allocation (LDA) model (Blei et al., 2003) for
both words and “visual words” (clusters of visual features). Lazaridou et al. (2015) use a Skip-
gram model (Mikolov et al., 2013) to jointly predict both words and images (more precisely, to
predict vector representations of images, which were produced using a pre-trained convolutional
net). Kiros et al. (2014) embed both text and images in a single space, training a recurrent
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net to process captions, and a convolutional net to process images. Unlike pure distributional
models, which look for patterns in the co-occurrence of words, these joint models will prefer
co-occurrence patterns that match the sensory data. For this reason, I believe joint learning is
the right approach to ground distributional data – we can connect our semantic representations
to grounded data from the outset, rather than trying to make such connections after the fact.

However, we need to make sure that all distributional features are grounded. For example,
with Feng and Lapata’s LDA model, there is nothing stopping some topics from almost entirely
generating words rather than “visual words”. Similarly, with Lazaridou et al.’s joint Skip-gram
model, there is nothing stopping some embeddings from almost entirely predicting words rather
than images. Conversely, we also need to make sure that we fully make use of distributional
data, rather than discarding patterns that are difficult to ground. For example, Kiros et al.’s joint
embedding model aims to embed sentences in a way that is useful for matching them to images.
It is not obvious how this approach could be extended so that we can learn sensible embeddings
for sentences that cannot be easily depicted in an image. This leads us to the following question
– how should a joint architecture be designed, so that we can fully learn from distributional
data, but while also ensuring that the semantic representations are fully grounded?

In the following section, I discuss how words relate to the world. Clarifying this relation-
ship should help us to design architectures which we can reasonably expect to produce fully
grounded representations.

2.1.2 Concepts and Referents

How do meanings relate to the world? The model-theoretic answer is that we can describe the
world in terms of individuals, and we can represent meaning in terms of extensions (sets of
individuals). Situation semantics (discussed in §1.3.2) further clarifies that an utterance relates
to a situation, rather than the entire world. The challenge, as mentioned at the start of §2.1.1
above, is to be able to relate an utterance to a new situation, where the individuals have not
previously been observed. One goal for a semantic theory is to have representations that are not
directly expressed in terms of extensions, so that we can generalise to new situations.

To achieve this, we need to distinguish a concept (roughly speaking, the meaning of a word)
from a referent (an individual in the concept’s extension).4 The importance of this distinction
has been noted for some time (for example: Ogden and Richards, 1923).5 Following Murphy

4 In the psychological literature, the term “category” refers to a set of individuals (for example: Smith and
Medin, 1981; Murphy, 2002). For a category corresponding to some concept, this is synonymous with “extension”.

5 This may remind some readers of the work of Frege (1892) or Peirce (1867), but I do not want to make the
same distinction here. Frege distinguishes Sinn (“sense”) and Bedeutung (“reference”). However, the Sinn of a
linguistic expression is not fully formalised, and it is described as independent of any person’s mind, a claim which
I do not want to make. Meanwhile, the Bedeutung of a sentence is taken to be a truth value, rather than a situation
(see §1.3.2 and Barwise and Perry, 1983, pp. 22–26). Peirce proposes a triadic structure of signs, and distinguishes
“interpretants” and “objects”. However, the interpretant is itself a sign, which leads to an infinite chain of signs, as
Peirce acknowledged. This is aesthetically curious, but of little practical use.
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(2002, pp. 4–5), I use the term “concept” without committing to a particular theory of concepts.
There is no quick fix for an extensional model theory. Some accounts contrast extensions

with some notion of intension. For example, we might define an intension to be the set of
properties common to all members of a extension (for example: Arnauld and Nicole, 1662;
Jones, 1911).6 This is sometimes called the classical theory of concepts (for example: Murphy,
2002; Margolis and Laurence, 2011). Representing a concept by a set of properties allows
us to deal with new situations, because a new individual can be classified on the basis of its
properties. However, Wittgenstein (1953, §66–71) argues against such a view of meaning, using
the German word Spiel (“game” or “play”) as an example – there is no set of necessary and
sufficient conditions that characterises all types of Spiel. For example, compare chess, solitaire,
tennis, and children kicking a ball against a wall. Rather than a common set of properties, we
can observe a family resemblance between these different types of Spiel. Furthermore, Rosch
(1975, 1978) experimentally demonstrated typicality effects which suggest that concepts are
not structured as sets of necessary properties – some referents are seen as being more typical
examples of a concept than other referents. For example, experimental participants judged
oranges and apples to be more typical examples of fruit than avocadoes and pumpkins. So,
while representing a concept as a set of properties may allow generalisation to new individuals,
it is too simplistic a model.

Carnap (1947) defined an intension to be a function from possible worlds to extensions. This
avoids the above problem, because for any possible world, the intension gives us the extension
in that world. However, representing a concept by such a function just moves the problem
further on. How do we explicitly represent such a function? Since there are infinitely many
possible worlds, it would be psychologically impossible to enumerate an extension for each
possible world, so we need a finite representation of the function. This unfortunately takes us
back to our original problem – how do we determine an extension for each possible world?

The above definitions of “intension” do not solve the problem of how to determine exten-
sions in new situations. However, given the philosophical and psychological arguments that the
structure of concepts is complicated, perhaps it would be unreasonable to expect a purely formal
solution to the problem. If concepts have too many details to write down by hand, we may need
machine learning techniques to fill in the details. In this light, distributional semantics seems
like a promising approach to constructing conceptual representations, as mentioned in §1.2.

However, even supposing we can construct grounded vectors, as discussed in §2.1.1 above,
there is still the question of how to relate such a concept vector to individuals in the world. One
option is to embed both concepts and individuals in the same vector space. In this case, we need
some way to decide how close the vectors need to be, before we say that the individual is part
of the concept’s extension. A second option is to embed concepts and individuals in distinct
vector spaces. In this case, we need some way to relate the two vector spaces. In both cases, we

6 Arnauld and Nicole use the terms “compréhension” and “étendue”, instead of “intension” and “extension”.
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need additional structure beyond vectors.

One solution to this problem is to represent a concept, not by a point, but by a region – a
subset of the space, with a well-defined boundary. Individuals embedded inside the region are
part of the extension, and individuals embedded outside the region are not. However, without
any constraints on possible regions, knowing that one point is inside the region would tell us
nothing about any other point being inside or outside. This would make it difficult to generalise,
and hence difficult to learn such a concept. Learning will be further discussed in §2.4, but for
now we can note that some kind of constraint is necessary. Gärdenfors (2000, 2014) argues
in favour of a specific constraint, that a concept should be modelled as a convex region – any
straight line between two points in the region will lie entirely inside the region. Given examples
of a concept, the convexity assumption would allow us to generalise to points between the
examples (the simplex spanning those examples).

Building on this idea, McMahan and Stone (2015) learn representations of colour terms,
which are grounded in a well-understood perceptual space. To allow uncertainty, they model
the meaning of a colour term as a distribution over convex regions. To make such distributions
tractable, they assume cuboidal regions, where the faces are independently distributed. This
work shows the feasibility of representing meaning in this way, but it may be challenging to
scale up their model to larger domains, where suitable representations of individuals may not
be known. For distributional semantics, we do not observe individuals at all.

Rather than representing a concept as a region, an alternative approach is to represent a
concept as a binary classifier – a function that maps each possible input into one of two classes.
In this case, the inputs represent individuals, and one class is the concept, while the other class is
everything else. This approach ties in with a view of concepts as abilities, as proposed in some
schools of philosophy (for example: Dummett, 1976, 1978; Kenny, 2010), and some schools of
cognitive science (for example: Murphy, 2002, pp. 1–3, 134–138; Zentall et al., 2002).

Within NLP, some authors have also suggested representing concepts as classifiers. Larsson
(2013) represents the meaning of a perceptual concept as a classifier of perceptual input, in
the framework of Type Theory with Records (see §2.5.4). Schlangen et al. (2016) train image
classifiers using captioned images, and Zarrieß and Schlangen (2017a,b) build on this, using dis-
tributional similarity scores to help train such classifiers, by generalising one label of an image
to other similar labels. However, these approaches do not learn distributional representations.

Both of the above approaches to representing concepts (as regions and as classifiers) al-
low us to model how concepts relate to individuals, including how to determine the concept’s
extension in a new situation. Links between the two approaches will be explored in §3.4.1.

Such representations have seen little use in distributional semantics. However, Erk (2009a,b)
learns distributional representations in the form of regions. They start with normal word vec-
tors, then use these to produce context-specific vectors (see §2.3.3 below), then use these to
learn regions of vector space. However, as such a model requires pre-trained vectors, some
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information may have already been lost in constructing these vectors. To avoid losing informa-
tion, it would be preferable to learn semantic representations directly. This would also make it
easier to implement joint learning, as argued for in §2.1.1 above.

2.2 Lexical Meaning

Language is made up of words.7 Every speaker of a language will presumably have some kind
of mental lexicon, that contains the meaning of every word they know. In this section, I discuss
challenges in representing the meanings of individual words.

2.2.1 Vagueness

In many cases, individuals can fall along a continuum without a sharp cutoff between a pred-
icate being true or false. For example, we can place colours (in human perception) in a three-
dimensional space of hue, saturation, and brightness.8 We can smoothly change between two
colours (say, pink and red), but there is not an exact point where we switch from one term to the
other. This is called vagueness (or gradedness) – predicates have borderline cases where truth
values are unclear. One goal for a semantic theory is to account for this.

Vagueness is the basis of the Sorites Paradox (for an overview, see: Hyde and Raffman,
2018). Suppose we have one point along a continuum where a predicate is true, and another
point where it is false (for example, one shade of colour that is red, and one that is not red).
Suppose further, that if two points on the continuum are sufficiently close, they are indiscrim-
inable – the difference is not perceptible, so the predicate must take the same truth values for
those two points. This leads to a paradox, since we can find a sequence of points, where each is
indiscriminable with the next, but the predicate is true at the start of the sequence, and false at
the end. A good account of vagueness should avoid this paradox.

Vagueness has also found experimental support For example, Labov (1973) investigated the
boundaries between concepts like cup, mug, and bowl, asking participants to name drawings of
objects in different contexts of use. For typical instances of a concept (such as a typical cup,
being used to drink coffee), the term was consistently applied; meanwhile, for objects that were
intermediate between two concepts (for example, an object that’s wide for a cup but narrow for
a bowl), terms were used inconsistently. For these borderline cases, a single person may even
make different judgements at different times (McCloskey and Glucksberg, 1978).

There is a large literature on extending model theory to account for vagueness (for an
overview, see: Sutton, 2013, chapter 1; Van Deemter, 2010). A direct approach is to use fuzzy

7 I use “word” in a pre-theoretic way, to avoid clunkier terms like “lexical item” or “listeme”. I am not com-
mitting to a precise definition, which may be problematic (Haspelmath, 2011) and unnecessary (Emerson and
Copestake, 2015). In any case, it is not important for this thesis, which is about semantics, not syntax.

8 As argued by Saunders and Van Brakel (1997), this is a simplification of how colour terms are actually used.
Nonetheless, even this simplified model of colour presents us with an interesting modelling challenge.
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truth values, as proposed by Zadeh (1965, 1975) – truth values are no longer binary, but rather
values in the range [0, 1], where 0 represents definitely being false, 1 represents definitely being
true, and intermediate values represent a range of borderline cases. Fuzzy logic has not seen
much use within computational linguistics. One exception is Bergmair (2010), who introduced
the framework of Monte Carlo Semantics, using fuzzy truth values to allow graded inferences.

Alternatively, we can stick to binary truth values (truth and falsehood), but represent uncer-
tainty about a truth value as a probability. Sutton (2017) contrasts two places where we can put
this uncertainty. One option is to say that the meaning of each lexical item is a non-vague pred-
icate, but any speaker is uncertain about what this meaning is. For example, a speaker would
believe that red corresponds to a precise range of colours, but would be uncertain about which
range of colours this is. The other option is to say that predicates are inherently vague, so that
they assign a probability of truth to each individual. For example, a speaker could be certain
about the meaning of red, but remain uncertain about whether a particular colour should be con-
sidered red – there is simply variation in how the term is used. Lassiter (2011) and Fernández
and Larsson (2014) take the former approach, while Sutton (2015, 2017) takes the latter. Both
approaches can model vagueness, and avoid the Sorites Paradox.

At the level of a single predicate, there is not much to decide between fuzzy and probabilistic
accounts. However, we will see in §2.3.2 that they behave rather differently at the level of
sentences. I will further discuss the two kinds of probability (and non-probabilistic notions of
uncertainty) in §3.4.2, after presenting my framework.

Uncertainty has also been incorporated into distributional vector space models. Vilnis and
McCallum (2015) extend Mikolov et al.’s Skip-gram model to allow uncertainty, by represent-
ing meanings as Gaussian distributions over vectors. Barkan (2017) incorporate uncertainty into
Skip-gram using Bayesian inference – rather than viewing learning as optimising word vectors,
they view learning as finding the posterior distribution over word vectors, given the observed
data. They approximate this posterior as a Gaussian distribution (in order to keep calculations
tractable), so both of these approaches produce the same kinds of object. Balkır (2014), working
within the type-driven tensorial framework (see §2.5.3), uses the quantum mechanical notion of
a “mixed state” to naturally model uncertainty in a tensor. For example, this approach replaces
vectors by matrices.

While these approaches represent uncertainty, it is challenging to use them to represent
vagueness, which was defined above in terms of truth values. This basic problem is this: a
distribution allows us to generate instances of a concept, but how can we go in the other direc-
tion, to recognise instances of a concept? It is tempting to classify a point using the probability
density at that point – we might say that points with higher probability density are more likely
to be classified as instances of the concept. However, if we compare a more general term (like
red) with a more specific term (like scarlet), we run into a problem – a more general term will
have its probability mass spread more thinly, and hence have a lower probability density than

32



the more specific term, even if both terms could be considered true. I argued in §2.1.2 that we
need to represent predicates as regions of space or as classifiers, and while a distribution over a
space might at first sight look like a region of space, it is a different kind of object. The contrast
between the two will be discussed in more detail in Chapter 3.

2.2.2 Polysemy

The meaning of a word can often be broken up into a number of different uses, each called a
sense. When these senses are related, they are called polysemous, and the phenomenon is called
polysemy. For example, school can refer to a physical building, or to an institution composed
of the staff and students. However, these two senses are related, since a school building is used
by a school institution. This can be contrasted with homonyms, which are unrelated senses.
For example, school can also refer to a group of fish, with identical spelling and pronunciation
to the education sense(s). However, the fish sense and education sense(s) are not connected (and
in fact have different etymologies). All of the above senses of school are also lexicalised – they
are established uses of the word, which a proficient speaker would presumably have committed
to memory, rather than inferring them from the context. In contrast, suppose a speaker sees a
number of planes, flying in a way that reminds them of a school of fish. If the speaker referred
to the planes as a “school of planes”, a listener might understand the phrase in context, even
if they had never anticipated such a use of the term “school”. I will discuss context-dependent
meaning in §2.3.3, and in this section I will focus on lexicalised meaning. For a semantic theory
that aims to capture all lexicalised meanings (which includes conventional metaphors), one goal
is to model how a word can have a range of polysemous senses.

In model theory, one solution is to define a separate predicate for each sense, so that each
sense has different truth conditions. However, deciding on a discrete set of senses is difficult,
and practical efforts at compiling dictionaries have not provided a solution. Indeed, the lex-
icographer Sue Atkins bluntly stated, “I don’t believe in word senses”.9 Although the sense
of a word varies across individual usages, there are many ways that we could divide usages
into a discrete set of senses, a point which has been made by a number of authors (for example:
Spärck-Jones, 1964; Kilgarriff, 1997, 2007; Hanks, 2000; Erk, 2010). To quantify this intuition,
Erk et al. (2009, 2013) asked annotators to judge the similarity between dictionary senses, as
well as the similarity between individual usages. The similarity judgements suggest that usages
cannot always be neatly clustered into discrete senses, implying that word senses do not have
clear boundaries between each other. A good lexical semantic theory should therefore be able
to capture variation in meaning without resorting to finite sense inventories.

Alternatively, we could represent all of the polysemous senses together as a single predicate.
Indeed, Ruhl (1989) argues that even highly frequent terms with many apparent senses, such as
bear and hit, can be assigned a single underspecified meaning, with the apparent diversity of

9 Kilgarriff (1997) and Hanks (2000) both quote Atkins.
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senses explainable from the context. They conclude that we should initially assume that each
word has a single sense, and resort to multiple senses only when we fail to identify a single
sense. The challenge would then be, firstly, to accurately represent such meanings without
overgeneralising to cases where they wouldn’t be used, and secondly, to model how meanings
become specialised in context, revealing different facets. The latter half of this challenge will
be further discussed in §2.3.3 below.

In vector space models, we have a similar problem. Standard approaches to distibutional
semantics produce a single vector that encodes all observed occurrences of the word, which
combines all senses into a single vector. An alternative is to use multiple vectors to repre-
sent different senses (for example: Schütze, 1998; Rapp, 2004), but this falls prey to the same
criticism raised against model-theoretic semantics above.

However, I have already argued in the above sections that we should move away from vector
space models that represent each word as a single point. As discussed in §2.2.1 above, some
previous work has instead replaced points with distributions, and these approaches have also
been applied to modelling word senses. For example, Athiwaratkun and Wilson (2017) use a
mixture of Gaussians, extending Vilnis and McCallum’s model described in §2.2.1 above, to
allow multiple senses. However, a mixture of a Gaussians ultimately models a fixed number of
senses (one for each Gaussian), and so this also falls prey to the above criticism of finite sense
inventories. In principle, modelling a word as a distribution could be done in a way that avoids
this criticism, but this would require moving beyond finite mixture models. In the type-driven
tensorial framework (see §2.5.3), Piedeleu et al. (2015) use mixed quantum states, similarly to
Balkır’s approach discussed in §2.2.1 above. Although they only propose using this approach
for homonymy, it seems plausible that it could be extended to polysemy as well, although care
would be needed to avoid finite sense inventories.

If a word is represented by a region of space, or by a classifier, we don’t have the problem
of finite sense inventories, since we can continuously vary between nearby points. I will discuss
how polysemy can be modelled under this approach in §3.7.2, after introducing my framework.

2.2.3 Hyponymy

The above two sections (§2.2.1 and §2.2.2) discussed representing the meaning of a single word.
However, words do not exist on their own, and one goal for semantic theory is to describe
relations between them. A classic relation is hyponymy,10 which describes when one item (the
hyperonym) has a more general meaning than another (the hyponym).11 Words that share a
hyperonym are called co-hyponyms.

In model theory, hyponymy can be defined straightforwardly – a predicate P is a hyponym

10 This is also referred to as “lexical entailment”, making a link with logic (see §2.3.2).
11 An alternative term for “hyperonym” is “hypernym”. This is unfortunate, since “hypernym” and “hyponym”

sound the same in my dialect.
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of another predicateQ, if the extension of P is a strict subset of the extension ofQ. This directly
formalises the idea that P has a more specific meaning than Q.

In distributional semantics, hyponymy is more challenging. Given two vectors, it is not
clear how to say if one is more general than the other. Nonetheless, there have been proposals
to measure hyponymy of vectors. These are generally based on the Distributional Inclusion
Hypothesis, which states that a hyperonym occurs in all the contexts of its hyponyms (for
example: Weeds et al., 2004; Geffet and Dagan, 2005). For vectors produced using the count
method, we might say that a vector with more nonzero entries is more general, as that term
has appeared in more varied contexts. Several hyponymy measures have been proposed based
on this intuition. For example, Kotlerman et al. (2009, 2010) define the “balAPinc” measure,
which combines a measure of feature overlap with a measure based on information retrieval.
Herbelot and Ganesalingam (2013) view a word vector as defining a distribution over contexts,
and propose using Kullback-Leibler (KL) divergence to determine hyponymy. Rei (2013) gives
an overview of hyponymy measures, and proposes a weighted cosine measure, which proved
effective for hyponym generation.

For embedding vectors, it is not obvious that such measures can be used, as the dimensions
do not directly correspond to contexts. Nonetheless, the dimensions can be viewed as combina-
tions of contexts (as discussed in §1.2.1). Indeed, Rei and Briscoe (2014) empirically finds that
embedding vectors perform almost as well as count vectors.

However, the Distributional Inclusion Hypothesis can be questioned. Following the Gricean
Maxim of Quantity (Grice, 1967), a speaker is likely to choose an expression with a degree
of generality appropriate for the context, and hence hyponyms are unlikely to appear in the
same contexts as more general terms. Rimell (2014) points out that some contexts are highly
specific. For example, lion is a hyponym of animal, so we would predict the contexts of lion

to also appear as contexts of animal. However, while mane is a likely context of lion, it is not
a likely context of animal. To avoid this problem, Rimell uses a notion of topic coherence to
determine hyponymy, showing that the contexts of a general term minus those of a hyponym
are still coherent, while the converse is not true.

Even in recent shared tasks on hyponym detection (Bordea et al., 2016; Camacho-Collados
et al., 2018), many systems make use of pattern matching, following Hearst (1992). For exam-
ple, after observing a string of the form X such as Y, we might infer that Y is a hyponym of X. In
the above shared tasks, the best performing systems did not rely solely on distributional vectors,
but used pattern matching as well. This illustrates the difficulty in determining hyponymy from
distributional vectors alone.

If we move away from count vectors, there are other options. One option is to build the
hyponymy relation into the definition of the space. For example, we might say that vectors
closer to the origin are more general. Vendrov et al. (2016) use non-negative vectors, where
one vector is a hyponym of another if it has a larger value in every dimension. They train a
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model on WordNet (Fellbaum, 1998), which contains a hierarchy of hyponymy relations. Li
et al. (2017) extend this, employing joint learning on both WordNet and raw text. However,
for a hierarchy like WordNet, there are exponentially more words lower in the hierarchy. This
cannot be embedded in Euclidean space without words lower in the hierarchy being increasingly
close together. To avoid this problem, Nickel and Kiela (2017) propose using hyperbolic space,
where the volume of space increases exponentially as we move away from the origin. They
train a model on WordNet, trying to place hyponyms close to their hyperonyms. In principle,
hyperbolic embeddings could be trained on text as well, but to my knowledge this has not
been tried. However, this approach does not generalise to non-tree hierarchies – for example,
WordNet gives bass as a hyponym of singer, voice, melody, pitch, and instrument. Requiring
that bass is represented close to all its hyperonyms would force them all to be close as well,
which we do not want, as they are in very different parts of the WordNet hierarchy (including
both physical and abstract entities).

If hyponymy is not built into the space, we can view hyponymy classification as a super-
vised learning task. For example, Weeds et al. (2014) train an SVM to classify if a pair of words
exhibit hyponymy or co-hyponymy. Rei et al. (2018) train a neural network to predict hypo-
nymy, using the HyperLex dataset (Vulić et al., 2017). While such approaches might be useful
for downstream tasks, or useful as a way to evaluate the quality of semantic representations,
a supervised method cannot explain how people learn hyponymy relations in an unsupervised
way. Furthermore, this effectively treats hyponymy as an opaque relationship between feature
vectors. This makes it difficult to analyse why one vector is classified as a hyponym of another,
and makes it unclear whether the trained classifier will generalise to new domains. Indeed, Levy
et al. (2015b) found that such classifiers mainly learn which words are common hyperonyms.

If we move away from representing words as vectors, it can be easier to define hyponymy.
As discussed by Erk (2009a,b) and Gärdenfors (2014, §6.4), modelling meaning as a region
of space provides a natural definition – P is a hyponym of Q if the region for P is contained
in the region for Q. Modelling meaning as a probability distribution also allows a notion of
hyponymy, although it is slightly harder to define than for regions, because a distribution over a
smaller region also assigns more probability mass to that region. Vilnis and McCallum (2015)
propose using KL-divergence to measure hyponymy. Athiwaratkun and Wilson (2018) build
on this, using a thresholded version of KL-divergence, and training on WordNet. Balkır (2014)
proposes using a quantum mechanical version of KL-divergence, in the type-driven tensorial
framework (see §2.5.3). This has been extended to phrases and sentences (Balkır et al., 2015;
Sadrzadeh et al., 2018).

A region-based approach to hyponymy is ultimately the approach taken in this thesis. Not
only does it give a simple definition, but representing a concept as a region is also motivated
for other reasons, discussed elsewhere in this chapter. I will further discuss hyponymy using
regions in §3.7.2, after I have introduced my own framework.
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2.3 Sentence Meaning

In the previous section, I discussed meaning at the level of individual words. I now turn to
challenges in representing meaning at the level of sentences.12

2.3.1 Compositionality

A notable feature of language is that it is productive – a fluent speaker of a language can easily
understand a sentence they have never heard before, as long as they know each of the words in
the sentence. This means that one goal for a semantic theory is to be able to derive the meaning
of a sentence from its parts, so that it can generalise to new combinations of words. This is
known as compositionality.

Compositionality should not be confused with disambiguation – words often have multi-
ple senses (as discussed in §2.2.2 above), and when two expressions are composed to form a
larger expression, they also mutually disambiguate one another. For example, the word school is
ambiguous between its educational and group-of-fish senses, but it is disambiguated once com-
bined with words like building or fish. Kartsaklis et al. (2013) discuss how composition and
disambiguation have often been conflated in the distributional semantics literature. The focus
in this section is on deriving semantic representations for larger expressions. Disambiguation
can be seen as a kind of context dependence, which I discuss in §2.3.3 below.

A strength of model theory is that compositional mechanisms have been developed that can
deal with a wide range of constructions. The classic approach is to use λ-calculus, although
alternatives exist, including a composition algebra for Minimal Recursion Semantics (Copes-
take et al., 2001; Copestake, 2007). Importantly, these compositional mechanisms are tightly
constrained, which means that relatively simple composition rules can derive the semantics for
complex sentences. Furthermore, this compositional process results in logical representations,
as will be discussed in §2.3.2 below.

Distributional semantic models generally learn meanings for individual words. Supposing
this can be done well, we have the challenge of how to compose representations of words, to
construct representations of larger phrases. Vector spaces are not equipped with compositional
operations that correspond to compositional operations in formal semantics. One option is to
assume that the meanings of phrases should also be represented as vectors. Then, our first
decision is whether phrases use the same space as for words.

If we use the same vector space for words and phrases, the challenge is then to find a com-
position function that maps a pair of vectors to a new vector. Mitchell and Lapata (2008, 2010)
compare a variety of such functions, but they find that componentwise multiplication is in fact as

12 Just as with “word”, I use “sentence” in a pre-theoretic way. For some languages, such as Thai, sentence
boundaries are not indicated in the standard orthography (for discussion, see: Aroonmanakun, 2007). Even for a
language like English, sentence segmentation is not trivial (for discussion, see: Palmer, 2000).
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good as or better than the other functions they consider,13 despite being commutative, and hence
insensitive to word order. The unexpected effectiveness of componentwise multiplication has
been replicated in a number of other studies (for example: Baroni and Zamparelli, 2010; Blacoe
and Lapata, 2012; Rimell et al., 2016). However, it is unclear how to adapt multiplication so
that word order is taken into account, and Polajnar et al. (2014b) demonstrate that performance
degrades with sentence length.

Alternatively, we can try to use a sentence vector space which is distinct from the word
vector space. To do this, we need some way to define a sentence space, and this is generally
done by taking a task-based perspective – words are combined into sentence representations,
which provide useful features for solving some task. For example, a recurrent neural network
(RNN) processes text one token at a time, updating a hidden state vector at each token. The final
hidden state can be seen as a representation of the whole sequence. To make the composition
more linguistically informed, the recurrent steps in the RNN can also be defined to follow a tree
structure, rather than linear order (for example: Socher et al., 2010, 2012). The parameters in
the RNN can be optimised either for a particular supervised task, such as machine translation
(for example: Cho et al., 2014), or for an unsupervised objective to model the input, as in an
autoencoder (for example: Hermann and Blunsom, 2013). However, as argued at the beginning
of this chapter, if we take a task-based perspective, it is difficult to know if the approach will
generalise. Even if the network successfully learns to encode as a vector all the semantics
relevant for a particular task, we may not be confident that the same neural architecture will
work for another task.

Rather than representing all words as vectors, the type-driven tensorial framework represents
words as tensors (see §2.5.3). This framework is naturally compositional, as the tensors are
defined so that tensor contraction matches predicate-argument structure. In this framework,
there is one vector space for nouns and another for sentences. Polajnar et al. (2015) explore
distributional sentence spaces, where dimensions are defined by co-occurrences, just as for
standard distributional vectors. This corresponds to the first approach above, where the same
vector space is used for words and phrases. In principle, the task-based approach could also be
applied to this framework, but I am not aware of any work that has done this.

However, a weakness with all of these approaches is that they map sentences to a fixed finite-
dimensional space. As Mooney (2014) put it, “You can’t cram the meaning of a whole %&!$#
sentence into a single $&!#* vector!” More precisely, as we increase sentence length, the
number of possible sentences with distinct meanings increases exponentially – simple examples
can be constructed with coordination or relative clauses, such as the dog chased the cat, and the

mouse saw the cat which scared the dog, and so on. For general-purpose semantics, each of
these meanings should be kept distinct, which leaves us two choices. If distinct meanings are to

13 Ganesalingam and Herbelot (2013) give a mathematical analysis of Mitchell and Lapata’s composition func-
tions, explaining the poor performance of tensor products and circular convolution.
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be kept a certain distance apart from one another, then the magnitudes of sentence vectors need
to increase exponentially with sentence length, so that the meanings can be distinguished.14

Alternatively, if we allow distinct meanings to be arbitrarily close to one another, then we need
to record each vector component to many significant digits in order to accurately represent the
meaning. In this case, the fine-grained structure of the space is important for meaning. However,
small changes to model parameters would cause drastic changes to this fine-grained structure.
Although both of the above approaches are possible in theory,15 I do not know of any work that
has explored either in practice. Without doing this, we are forced to view sentence vectors as
the output of lossy compression.16

Although it may be useful in many situations to compress information, I do not believe that
a semantic theory should force composition to involve compression. Full and detailed semantic
representations should also have their place. This is particularly important if we would like
the theory to have continuing relevance at a discourse level. It would be absurd to represent, as
vectors of comparable size, both a five-word sentence and the entirety of the English Wikipedia.
However, this leaves open the question of how we should represent sentence meaning. In the
following section, I will turn to logic as a guide for constructing sentence representations.

2.3.2 Logic

Sentences can be used to express complex thoughts, and build chains of reasoning. Logic
formalises this, and one goal for a semantic theory is to support the logical notions of truth,
discussed in §1.3, and entailment, which holds when one proposition follows from another. In
model-theoretic semantics, entailment is defined in terms of truth – given that one proposition
is true, we can ask whether another proposition must also be true. In contrast, proof-theoretic
semantics takes entailment to be the primary notion (for example: Brandom, 2000) – a propo-
sition is only true relative to some set of propositions which a speaker is already committed to.
Under either view, the process of deciding if an entailment holds is called inference.17

One of the strengths of model theory is its logical foundation, allowing us to evaluate the
truth of a proposition in a model structure. However, the choice of logic varies between model-
theoretic approaches. I argued in §2.2.1 above, that probabilities of truth and fuzzy truth values
allow natural accounts of vagueness, and it is indeed possible to construct corresponding logics.

In probability logic, propositions have probabilities of being true or false, and there is a joint
distribution for the truth values of all propositions (for expositions, see: Adams, 1998; Demey

14 This argument can be formalised information-theoretically. Consider sending a message as an D-dimensional
vector, though a noisy channel. If there is an upper bound K to the magnitude of the vector, then the channel has
a finite channel capacity. The capacity scales as KD, which is only polynomial as a function of K.

15 If cosine similarity is used, vector magnitudes are ignored, so only the second approach is possible.
16 This conclusion has been drawn before (for example: Goodfellow et al., 2016, p. 370), but I believe my

argument is novel, and makes the statement more precise.
17 Icard (2014) breaks this down further, separating what entailments hold, how an entailment can be inferred,

and why an agent would infer one entailment rather than another.
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et al., 2013). In fuzzy logic, propositions have fuzzy truth values, and classical logical operators
(such as: ∧, ∨, ¬) are replaced with fuzzy versions (for expositions, see: Hájek, 1998; Cintula
et al., 2017). Fuzzy operators act directly on truth values – for example, given the fuzzy truth
values of propositions p and q, we can calculate the fuzzy truth value of the disjunction p ∨ q.
In contrast, in probability logic, given probabilities of truth for p and q, we cannot calculate
the probability of truth for p ∨ q, unless we know the joint distribution. A problem with the
fuzzy approach, observed by Fine (1975), comes when we consider propositions like p ∨ ¬p.
Intuitively, this should be true regardless of what p is, but fuzzy logic can give a truth value
below 1. This makes fuzzy logic less appealing (or at least, harder to interpret). However,
Hájek et al. (1995) prove that fuzzy logic can provide upper and lower bounds on probabilities.

In computational linguistics, there are a couple of relatively well-developed frameworks for
probabilistic semantics, which will be discussed in §2.5.4. Although they can take advantage of
work on probabilistic logic, they do not provide a methodology for distributional semantics.

For current approaches to distributional semantics, logic is a challenge, as vector spaces do
not inherently have any logical structure. For the task called recognising textual entailment
(RTE), state-of-the-art models implicitly take a proof-theoretic approach, by framing entailment
as a classification task – given a pair of sentences, called the premise and hypothesis, the task is
to decide whether the premise entails the hypothesis, contradicts it, or neither. Datasets include
SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018). A variety of neural network
architectures have been applied to this task, achieving relatively high performance (for example:
Yin et al., 2016; Rocktäschel et al., 2016; Wang and Jiang, 2016; Cheng et al., 2016). However,
it is difficult to analyse direct approaches that do not use an explicit logic. In fact, although
performance appears high, Gururangan et al. (2018) suggest that this may be due to artifacts
from the annotation process. They find that, only looking at the hypothesis and not the premise,
a simple model can achieve 67% on SNLI and 53% on MultiNLI, which is much higher than
the majority class baseline (34% and 35%, respectively). This suggests that performance on
such datasets may be an overestimate of the ability of neural models to perform inference.

If we want to explicitly represent logical structure, there are a few options. One is to build a
hybrid system, which combines a vector space with a logic. For example, Herbelot and Vecchi
(2015) aim to give logical interpretations to vectors. They consider a number of properties (such
as: is edible, has a handle, made of wood), and for each, they learn a mapping from vectors to
values in the range [0, 1], where 0 means the property applies to no instances of the concept, and
1 means it applies to all instances. For example, for the property is edible, we want to predict a
high value for the plum vector, and a low value for the tricycle vector. This is an interesting way
to probe what information is available in distributional vectors, but it is unclear how it could be
generalised to deal with individuals (rather than the entire extension of a concept), or to deal
with complex logical propositions, (rather than atomic properties).

Garrette et al. (2011) and Beltagy et al. (2016) incorporate a vector space model into a
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Markov Logic Network (Richardson and Domingos, 2006), a kind of probability logic. If two
predicates have high distributional similarity, they add a probabilistic inference rule saying that,
if one predicate is true of an individual, the other predicate is likely to also be true. The higher
the similarity score, the stronger the inference rule. This approach allows us to use distributional
vectors in a well-defined logical model, but it assumes we can interpret similarity in terms of
inference (an assumption explored by Erk (2016) and discussed in §2.5.2). As argued in §2.1
above, pre-trained vectors may have already lost information, so it would be preferable to learn
logical representations directly.

Lewis and Steedman (2013) use distributional information to cluster predicates. For exam-
ple, author and write could be considered to encode the same underlying predicate, since if x
is the author of y, then x wrote y (and vice versa). Using corpus data, they cluster predicates
that are observed to hold of the same pairs of individuals – for example, author(Rowling, Harry

Potter) and write(Rowling, Harry Potter). This uses distributional information directly, rather
than pre-trained vectors. Although Lewis and Steedman use a classical logic with the underly-
ing predicates (one for each cluster), we could in principle use a similar approach to produce
weighted inference rules in the style of Garrette et al.. However, this approach needs to be
generalised so that it can learn from arbitrary sentences, and not just from named entities.

A second option is to define a vector space with a logical interpretation. Copestake and
Herbelot (2012) propose a vector space where dimensions correspond to logical expressions
being true of an individual in a situation. This allows a direct connection with formal logic and
model theory. However, for this approach to enjoy good logical properties, we must generalise
from an actual distribution (based on observed utterances) to an ideal distribution (based on
truth of logical expressions). I am not aware of work that has implemented such a system.

Grefenstette (2013) gives a logical interpretation to the type-driven tensorial framework
(see §2.5.3), using the sentence space to model truth values, and the noun space to model
a domain of N individuals. However, they prove quantifiers have nonlinear behaviour,18 so
cannot be expressed using tensor contraction. This restricts the class of logics compatible with
the framework, ruling out standard model-theoretic semantics.

Finally, a third option is to use logical representations instead of vectors. For example,
Andreas et al. (2016a,b) represent meaning as a neural network, rather than as an input to a
network. These networks can be composed, following a logical form, and trained on a super-
vised task. However, to my knowledge, a logical approach has not been tried in distributional
semantics. This thesis is an attempt to do that.

18 Their proof assumes that universally quantifying over a predicate with empty extension should be treated as
trivially true. However, the same conclusion holds for predicates with non-empty extension. For example, consider
the predicates, cat, dog, and animal, and consider two individuals, where one is a cat and an animal (but not a dog),
and the other is a dog and an animal (but not a cat). Assuming all cats are cats is true, and all cats are dogs
is false, and assuming the universal quantifier is a third-order tensor, we can derive that all cats are animals is a
superposition of true and false. This is because the predicate for animal is a superposition of cat and dog.
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2.3.3 Context Dependence

The flipside of compositionality is context dependence – the meaning of an expression often
seems to depend on what other words it occurs with. For example, a small elephant is not a
small animal, but a large ant is – the interpretations of small and large depend on the nouns
they modify. Even the same expression can seem to have different meanings depending on the
situation in which it is used. For example, the size of a large animal may be quite different
when buying a pet and when visiting the zoo. One goal for a semantic theory is to model how
meaning depends on linguistic context and on extralinguistic context.

Following Recanati (2012), I use standing meaning to refer to the context-independent
meaning of a linguistic expression, and occasion meaning to refer to the context-dependent
meaning of an expression in a particular occasion of use.19 However, it is important to note
that every usage occurs in some context (for discussion, see: Searle, 1980; Elman, 2009), so a
standing meaning must be seen as an abstraction across usages, rather than a usage in a “null”
context. A speaker who knows a word knows its standing meaning, but whenever they use or
hear the word, it will have an occasion meaning.

In model theory, meanings are defined in terms of extensions, but we have just seen how
small doesn’t have a fixed extension (for discussion of adjectives, see: Lahav, 1989, 1993;
Blutner, 1998; McNally, 2016a). One solution is to represent such terms as functions from
extensions to extensions (for example: Parsons, 1970; Kamp and Partee, 1995), so that small

maps the set of mice to the set of small mice, and so on. Another solution is to make such terms
indexical – that is, they are functions from a context to an occasion meaning (for example:
Kaplan, 1979, 1989; Recanati, 2012). Both of these approaches avoid the problem, but as with
the definition of “intension” that we saw in §2.1.2, these push the problem further down the
road, since they invoke more complicated objects without detailing how to represent them. It
would be implausible to represent such functions by enumerating an extension for each possible
argument, so we are still left with the question of how to determine an extension given a context.

An alternative is to represent a standing meaning as a probability distribution over exten-
sions, so that Bayesian inference gives us a concrete way to calculate an occasion meaning.
Such an approach has been successfully applied to cases such as large and small (Lassiter and
Goodman, 2015; Goodman and Frank, 2016). However, this has only been tested on small
hand-written models, and for higher-dimensional spaces, such distributions become challeng-
ing to represent and learn.

Faced with challenging real-world examples of context dependence, McNally (2016b) con-
cludes that traditional model-theoretic approaches leave out too much of lexical semantics, and

19 This adapts Quine (1960), who contrasts “standing sentences” and “occasion sentences”. The truth of an
occasion sentence depends on some preceding “stimulus” (which we might take to be a situation), while the truth
of a standing sentence does not. I am interested here in breaking apart the meaning of an occasion sentence in terms
of its occasion meaning (which depends on a stimulus) and its standing meaning (which does not). If standing
sentences exist, they can be seen as degenerate occasion sentences, where the occasion meaning is constant.
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suggests that distributional semantics might fill the gap. As we have seen, standard distribu-
tional approaches produce a single vector for each word. One approach to treat such a vector
as a standing meaning, and modify it to produce occasion meanings (for an overview, see: Dinu
et al., 2012). For example, Erk and Padó (2008) and Thater et al. (2011) modify vectors accord-
ing to syntactic dependencies. Erk and Padó (2010) build a context-specific vector based on the
most similar contexts in a corpus. However, it is an open question how such approaches could
be generalised to allow other kinds of context, including extralinguistic context.

Dinu and Lapata (2010) interpret a vector as a probability distribution over a set of latent
senses, where each component is the probability of a particular sense. We can then find the
contextualised meaning by conditioning this distribution on the context. A probabilistic ap-
proach can be more easily generalised to other kinds of context, because probabilistic models
can be defined in a modular way, and probability theory gives us tools for combining sources of
information – we could condition a distribution on both linguistic and extralinguistic context.
However, Dinu and Lapata’s approach ultimately relies on a finite number of senses, which we
want to avoid, as discussed in §2.2.2 above.

An alternative to modifying distributional vectors is to define a probabilistic generative
model, so that occasion meanings are generated based on standing meanings. For example,
Lui et al. (2012)’s “per-lemma” model uses Latent Dirichlet Allocation (LDA) (Blei et al.,
2003). An occasion meaning is a distribution over context words, and a standing meaning is a
prior over occasion meanings. Occasion meanings vary continuously (as mixtures of “topics”,
each topic being a word distribution). A separate model is trained for each target word. Chang
et al. (2014) add another generative layer, allowing them to train a single model across all target
words. A standing meaning is a distribution over senses (particular to a target word), which
are distributions over topics (common to all target words), which are distributions over context
words. We first draw from the distribution over senses, then draw topics and words. However,
in this model, a single sense chosen in each context, which means we have a finite sense in-
ventory. In principle, the above approaches could be combined, so that occasion meanings are
sense mixtures (allowing them to vary continuously), but topics are shared (allowing words to
be trained together). I am not aware if this has been tried.

Skip-gram can also be interpreted as a generative model, generating context words based
on a target word. While we can see a word vector as a standing meaning, no part of the model
can be seen as an occasion meaning. Bražinskas et al. (2018) add another generative layer, first
generating a latent vector based on the target word, and then generating context words based on
the latent vector. We can see a latent vector as an occasion meaning, and a word’s distribution
over latent vectors as a standing meaning.

As well as being easier to generalise to other kinds of context, probabilistic models have
one further advantage. In approaches that modify vectors, occasion and standing meanings are
represented as the same type of object (a vector). Even Herbelot (2015), who explicitly con-

43



trasts individuals and kinds, embeds both in the same space. In contrast, probabilistic generative
models represent them as different types of object. This captures the fact that a standing mean-
ing is an abstraction across usages. In this thesis, I aim to combine the sound theoretical basis
of models like Lassiter and Goodman’s with the robustness of models like Bražinskas et al.’s.

2.4 Learning Meaning

In the above sections (§2.1–2.3), I considered goals for a semantic theory, in terms of how to
represent meanings. One final goal is to be able to learn (or train) such representations based
on observed data. We might add a further goal to make the semantic model psychologically
plausible, but I will not have much to say in this thesis about how people actually learn. The
focus in this section is to consider whether models expressive enough to capture semantics are
can also be implemented and used in practice. Models can usually be analysed in terms of
their parameters (or weights), independent values that must be set based on the data.20 The
parameters should be set so that the model can generalise to new data, rather than only describe
the data it was trained on. Difficulties can come from the number of parameters, or from the
computational cost of determining their values.

Work on model theory mostly focuses on formal properties, without proposing a machine
learning model. One way to link model theory to machine learning is to explicitly define a
model structure. For example, Young et al. (2014) use a set of images to stand for situations.
Each image is annotated with a set of captions, which can be taken to be true for that image.
They use rewrite rules to produce simplified captions, many of which are true for multiple im-
ages. They define the “visual denotation” of a caption to be the set of images it describes.
To generalise to new images, it is necessary to train an image processing model (for example:
Vinyals et al., 2015; Xu et al., 2015). However, this dataset only includes captions at the level
of the whole image. Some datasets go further, and annotate individuals in an image (for ex-
ample: Escalante et al., 2010; Lin et al., 2014), or even spatial relations between individuals
(for example: Hürlimann and Bos, 2016). While such datasets are certainly useful, it would be
difficult to annotate a dataset at the level of detail often seen in model theory. Furthermore, for
abstract concepts, it is difficult to even say what kind of annotated dataset would be useful. For
a model-theoretic machine learning model to scale to cover an entire language, I believe that
model structures must be learnt, rather than explicitly annotated.

Distributional semantics is firmly rooted in data-driven approaches. Vector-based models
are efficient to learn, and one way they have been made even more efficient is to share param-
eters between words, which reduces the total number of parameters. This is called sharing
statistical strength. One example is singular value decomposition (SVD, often called Latent

20 I do not mean to ignore nonparametric models – for example, HDP (Teh et al., 2006) is a nonparametric
version of LDA, where the number of topics is not fixed. However, a technical discussion of nonparametric models
would be out of place here. For an introduction, see: Gershman and Blei, 2012.
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Semantic Analysis when applied to co-occurrence vectors: Deerwester et al., 1990; Landauer
and Dumais, 1997) – latent dimensions are shared across the vocabulary, and word meanings
are represented in terms of a small number of latent dimensions, rather than a large number
of context dimensions. As mentioned in §1.2.1, Skip-gram can also be seen as performing
dimensionality reduction.

However, if we move beyond vector space models, learning may become more difficult.
Representing meaning as a higher-order tensor is challenging, because of the number of pa-
rameters. For an N -dimensional vector space, a K-order tensor has NK parameters. This is
particularly relevant for the type-driven tensorial framework (see §2.5.3). For some function
words that would seem to need high-order tensors, it is possible to give analyses so that tensors
do not need to be learnt – for example, Sadrzadeh et al. (2013) analyse relative pronouns using
Frobenius algebras. However, this approach cannot be applied to content words. For example,
ditransitive verbs like give are represented as fourth-order tensors. There has been some work
towards alleviating this problem, such as forcing tensors to be of low rank (Fried et al., 2015),
using a matrix for each argument separately (Paperno et al., 2014), or using a matrix applied
to the elementwise product of the arguments (Polajnar et al., 2014a). Using low-rank tensors
introduces a tradeoff between expressiveness and dimensionality, while using matrices loses
interactions between arguments.

Work on representing meaning as a probability distribution generally constrains the family
of distributions, in order to reduce the number of parameters and allow efficient learning. Vilnis
and McCallum (2015), Barkan (2017), and Bražinskas et al. (2018) use Gaussian distributions
(see §2.2.1 and §2.3.3), but restrict the covariance matrices to be diagonal. This means that,
for an N -dimensional space, each distribution can be represented by 2N parameters (N for the
mean, and N for the diagonal covariances). Using a larger family of distributions allows a more
expressive model, but makes learning more challening. Athiwaratkun and Wilson (2017) use a
Gaussian mixture model, to capture word senses. ForK senses, each with diagonal covariances,
the number of parameters scales as NK, which is still manageable. In principle, we can push
the limits of these models by considering increasingly flexible families of distributions.

Expressive probabilistic models often include unobserved random variables associated with
each data point. For example, topic models like LDA associate a topic with each token.
Bražinskas et al.’s model associates a context vector for each usage of a target word. These
are called latent variables, and they make learning more challenging, since exact calculations
of probabilities require summing over all possible values for each latent variable. In practice,
approximate techniques must be used, such as Gibbs sampling or variational inference, which
will be the topics of §5.3 and §5.4. One important benefit of such models is that they allow
words to share statistical strength, because many words can use latent variables with the same
value. Wang et al. (2017) show that an LDA model provides a promising approach to learning
a distributional representation from a single example (one-shot learning).
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Representing meaning as a region has not been much explored in distributional semantics.
As discussed in §2.1.2, Erk (2009a,b) learns regions, but based on pre-trained word vectors. In
principle, it would be possible to directly learn regions, in a similar way to the above approaches
that learn distributions. As with distributions, there would be a similar tradeoff between expres-
siveness and number of parameters.

Finally, there are a few options discussed in the previous sections which have not been
applied to distributional semantics. Representing meaning using a probabilistic logic has been
proposed (see §2.3.2 and §2.5.4), but existing work has focused on hand-written models in small
domains. Representing meaning as a classifier has been proposed and implemented (see §2.1.2),
but not for learning distributional representations. Representing meaning as an ideal distribution
of true propositions has been proposed (see §2.3.2), but not implemented. For all three of the
above approaches, learning such representations from distributional data is a challenge, because
much of the structure is latent – logical structure in the first case, referents in the second case,
and truth values in the third. This thesis takes a step towards making such learning feasible.

2.5 Existing Frameworks

In the final section of this chapter, I will look at a few general approaches to semantics, in the
light of the goals discussed above. After all, if there already is a framework that does what we
need, this thesis would not be necessary.

2.5.1 Extensions of Vector Space Models

In every section above, we saw examples of vector space models being extended to deal with
different goals. A sensible question is then, can’t we just combine these extensions?

The trouble is that these various extensions take vector space models in different directions,
and it’s often not at all clear how to combine them. Introducing one kind of structure to a vector
space model can be incompatible with another kind of structure. For example, one proposal
for hyponymy is to use a distribution over a vector space (see §2.2.3), and one proposal for
compositionality is to use a recurrent neural net (see §2.3.1). How should an RNN process a
sequence of distributions? One option would be to sample a vector for each token, run the RNN
over these vectors, and repeat this for a number of samples. Another option would be to input
the parameters of the word distributions directly to the RNN. I am not aware of work exploring
either of these options (or any other).

I should be clear – I am not arguing that it’s impossible to combine the various approaches
discussed in this chapter. However, doing this is not at all obvious, and I believe that the
burden of proof is on showing that it can be done, rather than showing that it can’t be done.
In this thesis, I have tried to bring together various lines of thought into one coherent model.
Alternative proposals would be welcome.
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2.5.2 Hybrid Approaches

Faced with the above difficulty of combining different types of model, an alternative response
is to keep different parts distinct, and build a hybrid model. We saw this most clearly in §2.3.2,
combining a distributional approach with a logical approach. Lewis and Steedman (2013) use
distributional information to cluster predicates, and then perform classical logic on clustered
predicates. Beltagy et al. (2016) use distributional vectors to calculate similarity, and then
add weighted inference rules to a Markov Logic Network. In both cases, the distributional
component of the model can be calculated on its own, and then fed into a logical system.

However, the components of a hybrid system are not completely distinct. Even if we can
calculate the distributional component on its own, we can still ask what contribution it makes
to the rest of the system, and whether we could improve this contribution. Erk (2016) examines
what distributional vectors bring to Beltagy et al.’s system, and argues that distributional simi-
larity (for a suitably tuned vector space model) gives us similarity in terms of property overlap
between individuals. For example, if we know that the vectors for alligator and crocodile are
similar, then the individuals in their extensions are likely to share many properties. If property
overlap is what we hope to get from distributional semantics, then it seems sensible to aim for
this directly, rather than trying to find which kind of co-occurrence it correlates best with.

The downside of directly aiming for richer representations (such as representations that
include properties of individuals) is that they can be harder to learn, as discussed in §2.4. In this
thesis, I take a step towards making this feasible.

2.5.3 The Type-Driven Tensorial Framework

Coecke et al. (2010) and Baroni et al. (2014) introduce a framework for compositional distri-
butional semantics, which I have referred to as the type-driven tensorial framework (for a short
introduction with simple notation, see: Maillard et al., 2014). As mentioned in the introduction,
in §1.2.2, this framework makes use of the algebraic notion of a vector space, and draws tech-
niques from linear algebra. Each lexical item has a semantic type, and a corresponding syntactic
type in a Categorial Grammar (for an introduction, see: Steedman and Baldridge, 2011). For
the semantic types, nouns are represented in one vector space, and sentences are represented
in a second vector space. Other types are represented as higher-order tensors, where tensor
contraction (a generalisation of matrix multiplication) corresponds to argument structure. For
example, an intransitive verb is a second-order tensor (a matrix), mapping a noun to a sentence;
a transitive verb is a third-order tensor, mapping two nouns to a sentence; an adjective is a
second-order tensor (a matrix), mapping a noun to a noun; and so on.

This framework is an impressive attempt to build a practical distributional model that keeps
long-term top-down goals in mind, and as a result, I have discussed it in most of the previous
sections. The missing sections are §2.1, on how meanings relate to the world (a challenge for
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all distributional approaches), and §2.3.3, on context dependence (there is a mechanism for
composing representations, but this does not use information from any surrounding context).

Clark et al. (2016) give an overview of developments, and highlight three key challenges –
how to choose a sentence space, how to learn high-order tensors, and how to represent closed-
class words. I believe all three of these are serious. I already argued against sentence vectors
in §2.3.1. As for learning high-order tensors, not only is this already a challenge, but several
of the suggested extensions propose using mixed states, which would double the order of the
tensor, and hence square the number of parameters – for a ditransitive verb like give, such a
mixed state would require an 8th-order tensor. Finally, for closed class words, we saw in §2.3.2
that quantifiers seem to have nonlinear behaviour. Hedges and Sadrzadeh (2017) provide an
alternative account which can deal with quantifiers, but this comes at the expense of using a
vector space whose dimensions correspond to sets of individuals, so we have 2N dimensions for
a model structure containing N individuals.

Krishnamurthy and Mitchell (2013) sketch how a type-driven approach could use operations
beyond tensor contraction, but I am not aware of this work being followed up. Successors to
the type-driven tensorial framework may have to move away from tensors, and the resulting
framework may end up looking quite different. Semantics is sadly too nonlinear.

2.5.4 Probabilistic Semantics

A semantic theory that uses probabilistic logic would seem able to meet the challenges of both
lexical semantics (see §2.2) and sentence-level semantics (see §2.3), and there are already ex-
isting frameworks for probabilistic semantics.

Goodman and Lassiter (2015) use probabilistic programs to represent both world knowledge
(a program can generate a distribution over situations) and linguistic knowledge (a program can
generate truth values for utterances in given situations). They present several hand-written pro-
grams to show how the two can interact. Each word’s meaning is represented by a program, and
these can be composed to produce a representation of a sentence. This is a powerful framework,
but without constraints on what programs are allowed, learning such a model distributionally
would be challenging.

Cooper et al. (2015) introduce a probabilistic version of Type Theory with Records (TTR)
(Cooper, 2005). In this framework, the basic notions are situations and types. In classical TTR,
situations are either instances of a type or not, while in probabilistic TTR, judgements of a
situation being of a certain type are made probabilistically. Cooper et al. show how probabilistic
types for complex expressions can be constructed compositionally, and they present a hand-
written grammar in this framework. Although they do discuss learning, they assume access to
a much richer input than simply corpus data.

While I agree with much of what is presented in both of these frameworks, they do not
provide a clear starting point for distributional semantics.
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Chapter 3

Formal Framework of Functional
Distributional Semantics

In this chapter, I show how model theory can be recast in a probabilistic setting. The aim is to
define a family of probability distributions that capture classical model structures as a special
case, while also allowing structured representations of the kind used in machine learning. I use
this probabilistic generalisation of model theory to define a probabilistic graphical model for
distributional semantics, where semantic dependency graphs provide an important link between
formal semantics and machine learning. The framework developed in this chapter forms a basis
for the rest of the thesis.

3.1 Summary of Classical Model Theory

Before presenting my framework, it will be helpful to summarise classical (non-probabilistic)
model theory, as presented in §1.3, as well as the challenges discussed in Chapter 2. A model
structure represents a situation. It contains individuals (including event individuals), as well as
semantic roles (ARG1, ARG2, ARG3, ARG4) from one individual to another.1

The meanings of content words (concepts) are represented as predicates. Each predicate
takes a truth value (truth or falsehood) for each individual. A predicate can be formalised either
as a truth-conditional function (a mapping from individuals to truth values) or as an extension
(the set of individuals for which the predicate is true).

1 By making semantic roles part of a situation, I make the simplifying assumption that the structure of a
situation is isomorphic to the structure of a semantic dependency graph. In many cases, this is unproblematic,
and the ARG1 and ARG2 roles can be seen as roughly corresponding to Dowty (1991)’s notions of “proto-agent”
and “proto-patient”. However, in the general case, the assumption might not hold. For example, if we compare
Mary sold a book to John, and John bought a book from Mary, we have two descriptions of the same situation, but
with different role labels: for sell, Mary is the ARG1 and John the ARG3; while for buy, John is the ARG1 and Mary
the ARG3. A more accurate theory would need to distinguish situation structure from semantic dependencies, but
for distributional semantics, the assumption of isomorphism is good enough.
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The meanings of sentences are represented as logical propositions, which take a truth value
for each situation. Each predicate in a proposition has a unique intrinsic argument, which is
a variable ranging over individuals. Each variable must be quantified, so that the proposition
can take a truth value. Such propositions can be represented as semantic dependency graphs
(DMRS graphs).

As we saw in the last chapter, the strengths of this approach are in logic and composition-
ality. The main challenge that we need to address is how to determine truth values in a new
situation. Enumerating individuals does not generalise, and the classical theory of concepts has
empirical problems. Furthermore, this should be done in a way that allows a natural account of
vagueness and polysemy, and allows representations to be learnt from observed data.

3.2 Individuals and Pixies

If individuals are atomic elements, without any further structure, then extensions and truth-
conditional functions are almost identical. An extension is a subset of the individuals in the
model structure, while a truth-conditional function is the indicator function for this subset:
individuals in the extension are mapped to 1, and other individuals to 0. Converting between
these two representations is trivial. A simple example is given in Fig. 3.1, where there are
several individuals (and no semantic roles, for simplicity).2 The extension for the predicate for
pepper is a subset of the individuals, as indicated in Fig. 3.2. Its truth-conditional function maps
these individuals to truth, and maps the other individuals to falsehood.

However, if individuals are structured objects, extensions and truth-conditional functions
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Figure 3.1: A simple model structure, with 14 individuals and no semantic roles. Subscripts are
used to distinguish individuals with identical features, but are otherwise not meaningful. The
position of each individual is arbitrary.

2 The images used in figures in this chapter are modified versions of images available on Openclipart on a
Creative Commons Zero 1.0 Public Domain License:
https://openclipart.org/detail/229817/bell-pepper,
https://openclipart.org/detail/229814/cucumber,
https://openclipart.org/detail/229825/carrot
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Figure 3.2: The orange line indicates the extension of the pepper predicate, for the individuals
in Fig. 3.1. As the position of each individual is arbitrary, they have been re-arranged for clarity
for this predicate.
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Figure 3.3: A simple two-dimensional semantic space. Pixies that correspond to at least one
individual in Fig. 3.2 are indicated. Unlike Fig. 3.2, the position of each pixie in this space
indicates its features. The orange line is the decision boundary for the pepper predicate.

may have rather different representations. To represent the structure of individuals, I will use
a semantic space,3 where each point in the space represents a possible individual, including
information about its features. I will use the term pixie to refer to a point in the semantic space,
as it is intuitively a “pixel” of the space.4 Each individual has a pixie representation. Two
individuals which have exactly the same features will correspond to the same pixie. Conversely,
many pixies may not correspond to any individual. It is important to note that a semantic space
can be defined at different levels of granularity – a coarse-grained space (with few dimensions)
will force more individuals to have the same or similar pixies, while a fine-grained space (with
more dimenions) will allow more individuals to be distinguished. While more fine-grained
spaces are more expressive, they may also make learning more challenging.

3 Gärdenfors (2000, 2014) uses the term “conceptual space”.
4 In Emerson and Copestake 2016, the term “entity” was overloaded to refer to both individuals and pixies.
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An example is given in Fig. 3.3, which embeds the individuals of Fig. 3.2 into a two-
dimensional space. Except for the purple pepper individual, each individual shares a pixie
with at least one other. Conversely, much of the space (such as the top right corner) does not
correspond to any individuals. Each dimension can be thought of as a feature, and in this space,
dimensions 1 and 2 roughly correspond to colour and shape, respectively. However, I should
stress that, in the general case, the dimensions of a semantic space do not need to correspond
to any natural language expressions. We will use a semantic space to define the meaning of
predicates, and not the other way round.

To represent the pepper predicate as an extension, we need to enumerate the set of ten
individuals shown in Fig. 3.2. However, as a truth-conditional function, it can be represented
much more simply, by referring to the semantic space, as shown in Fig. 3.3 – it is true given a
low value of dimension 2, and false given a high value of dimension 2. Not only is this a more
succinct representation, but it also generalises to new situations, because it refers to pixies,
rather than individuals. As long as new individuals can be embedded in the semantic space, we
can apply this truth-conditional function.

3.3 Probabilistic Model Structures

The above discussion assumed complete knowledge, both of the situation, and of the truth val-
ues. Each of these assumptions can be relaxed, using probability theory to represent uncertainty.

As discussed in §2.2.1, predicates are often vague, with uncertain truth values. For example,
perhaps we shouldn’t be so bold as to assume that the purple vegetable in Fig. 3.2 would defi-
nitely be classified as a pepper. For a speaker who has never seen or heard of such a thing, they
might not be certain how to classify it. For instance, what if it is actually an unrelated species?
This is illustrated in Fig. 3.4, where the extension of the predicate is uncertain. We can capture
this by representing the pepper predicate as a probabilistic truth-conditional function – rather
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Figure 3.4: A vague model structure. The pepper predicate has an uncertain truth value for the
purple individual.
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Figure 3.5: A probabilistic version of the model structure in Fig. 3.4. For simplicity, only eight
pixies from the semantic space are shown.
Solid bars: the truth-conditional function for pepper is replaced by a function from pixies to
probabilities of truth. Pepper pixies with atypical colours have intermediate probabilities.
Shaded bars: the set of individuals is replaced by a distribution over pixies. Pixies correspond-
ing to more individuals have higher probabilities. The blue pepper pixie and red cucumber pixie
correspond to no individuals, so have probabilities of 0.

than mapping each pixie to a certain truth value, it maps each pixie to a value in the range [0, 1],
representing the probability of truth. This is illustrated by the solid bars in Fig. 3.5. As well
as the six pixies that correspond to individuals in Fig. 3.4, two additional pixies are shown, to
illustrate how truth values can be assigned to new individuals.

As well as being uncertain about truth values, a speaker may also be uncertain about the
situation.5 To formalise this under a classical model-theoretic approach, we could consider a
set of possible situations. However, some possible situations could be much more likely than
others, so it is natural to consider a distribution over situations, rather than simply a set. It
would be difficult to depict a distribution over situations of a similar size to the one in Fig. 3.2,
so for ease of illustration, we can consider simpler situations, consisting of single individuals.
In particular, we can consider the 14 sub-situations of Fig. 3.2 containing a single individual. A
distribution over these situations is illustrated by the shaded bars in Fig. 3.5.6

From the formal linguistic point of view, a distribution over situations might seem irrelevant
to the notion of truth. However, as argued in §2.4, one goal for a semantic theory is for it to be
learnable. When learning a semantic model, we do not know in advance what situations should
be included. Intuitively, as a learner discovers what kinds of situations exist, they update their
semantic model appropriately. For common pixies, it is important to get classifications right,
but for rare pixies, it doesn’t matter much. Having a distribution over situations allows a learner
to distinguish situations which are important from those which are not.

5 This could be uncertainty about the details of a particular situation, or uncertainty about a situation randomly
sampled from the world. Probability theory can encompass any level of uncertainty, and a hierarchical model can
be used distinguish them, if desired (for discussion, see: Lassiter, 2017).

6 As with the distinction between individuals and pixies, we can distinguish between situations as collections of
individuals and as collections of pixies. Each individual-situation has a corresponding pixie-situation, and a pixie-
situation is an equivalence class of individual-situations for a given semantic space. The distribution in Fig. 3.5 is
over pixie-situations, with higher values for those corresponding to more individual-situations.
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Figure 3.6: An example of Bayesian inference. We are interested in: an individual X , repre-
sented by some pixie x ∈ X ; and the truth value T of the pepper predicate for that individual.
Solid bars: the semantic function P (T => |X=x) represents a speaker’s belief about whether
each pixie x can be considered to be a pepper.
Black shaded bars: the prior P(X = x) represents the speaker’s belief about an individual,
based on their world knowledge. It encodes how much they expect to observe an individual
with particular features.
Orange shaded bars: the posterior P (X=x |T =>) represents their belief about an individ-
ual, if they know the pepper predicate is true of it. The probability mass is split between the
pepper pixies, but skewed towards typical colours, and excluding colours believed impossible.

3.4 Semantic Functions

I will refer to a probabilistic truth-conditional function as a semantic function. In machine
learning terms, we can also view such a function as a binary classifier, as discussed in §2.1.2.
For example, the semantic function for pepper is a classifier separating pepper pixies from
non-pepper pixies. In this section, I will discuss benefits of this approach.

To formalise the discussion in the previous section, we can consider a joint distribution
over situations and truth values. To begin with, we can consider the simple situations shown
in Fig. 3.5, which only contain a single individual. So, we have two random variables: a vari-
able X , representing the features of the individual, whose value is a pixie x in the semantic
space X ; and a variable T , representing the truth value for the pepper predicate for that indi-
vidual, whose value is either > (truth) or ⊥ (falsehood). A semantic function t is a conditional

distribution over truth values, given a pixie. We can write this as shown in (3.1). Note that,
while the semantic function takes values in a range, there are still only two truth values (truth
and falsehood). This is in common with probability logic, rather than fuzzy logic.

t(x) = P (T => |X=x) (3.1)

While a semantic function does not represent a distribution over pixies, it can be used to
define one, if we have a prior distribution P(X = x). We can then apply Bayes’ Rule, as
shown in (3.2). In contrast with existing work that represents lexical meaning as a probability
distribution (see §2.2.1), this means that we can combine a semantic function with domain
knowledge or contextual knowledge encoded in the prior P(X = x). If lexical meaning is
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represented as a distribution, other kinds of knowledge cannot be combined in such a natural
way.

P (X=x |T =>) ∝ P (T => |X=x)P(X=x) (3.2)

Fig. 3.6 gives an example of Bayesian inference. The division between P(X = x) and
P (T => |X=x) can be seen as a division between world knowledge and conceptual knowl-
edge. The two are not completely independent, since there is a joint distribution over the two
random variables, but this can still be a useful distinction. As purple and blue are atypical
colours for a pepper, a speaker might be less willing to label such a vegetable a pepper, but not
completely unwilling to do so – this conceptual knowledge belongs to the semantic function for
the predicate. In contrast, after observing a large number of peppers, we might conclude that
blue peppers do not exist, and purple peppers are rare, while green, yellow, and red peppers are
common – this world knowledge belongs to the probability distribution over pixies.

This example also shows a clear contrast between a semantic function on a space and a distri-
bution over the space. As peppers come in many colours, the semantic function P (T => |X=x)

should take a high value for any of these colours. In contrast, to define a probability distribu-
tion P (X=x |T =>) over pepper pixies, we must split probability mass7 between different
colours, which means we only have a small probability of each. The value of a distribution at a
point depends on the size of the space, but the value of a semantic function does not. The two
represent different things. A distribution over a semantic space represents uncertainty about the
features of an individual, for which there is a correct but unknown answer. A semantic function
represents an underspecified concept, where many individuals with different features could be
equally regarded as instances of the concept.

Representing lexical meaning as a semantic function rather than a distribution places an
emphasis on classification, rather than generation. This would suggest that a speaker might be
able to classify instances of a concept without being able to generate instances. Rather than
speculating about blue peppers, we can also turn to empirical evidence that people learn to
classify without learning to generate (for example: Nickerson and Adams, 1979; Jones, 1990;
Lawson, 2006; Blake et al., 2015). In a striking set of experiments, Wong et al. (2018) inves-
tigated knowledge of two forms of lowercase g: the looptail 〈g〉, and the opentail 〈g〉. Both
forms are common in printed English, so we would expect English speakers to have acquired
both. However, only opentail 〈g〉 is common in handwriting. In Wong et al.’s first experiment,
38 participants were interviewed about lowercase letter forms, but only 1 could write loop-
tail 〈g〉 correctly. In their second experiment, 16 participants were given a text written with
looptail 〈g〉, and asked to find all words containing the letter g. The text was then removed,
and the participants were asked to write the letter form they had just read. Half wrote an open-

7 In fact, as colours lie in a continuous space, a distribution over pixies would be better represented with
a probability density function rather than with a probability mass function. The value of a probability density
function at a point would further depend on the parametrisation of the space, while the value of a semantic function
would not. Fig. 3.6 uses a finite number of pixies, rather than a continuous space, for ease of illustration.
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Figure 3.7: Wong et al. (2018) presented participants with four letter forms resembling loop-
tail 〈g〉, and asked them to choose the correct one. The proportion of participants choosing each
variant is shown underneath it. The first variant is the correct looptail 〈g〉.

tail 〈g〉, and only 1 wrote looptail 〈g〉 correctly. In their final experiment, 44 participants were
asked to identify the correct form of looptail 〈g〉 from a set of distractors, as shown in Fig. 3.7.
However, only 28% were correct, and 56% made the same wrong decision, choosing the letter
form with the tail reversed.

Wong et al.’s results illustrate the difference between classification and generation. Despite
a perfect ability to classify looptail 〈g〉 when reading, participants struggled to generate it when
writing. The results of the third experiment are particularly telling, because most participants
preferred the tail-reversed form, despite it not existing in real text. However, we can explain
this in terms of a distribution over pixies (letter forms) and a semantic function for the letter g.
Three of the forms are previously unseen pixies, but all four forms have relevant features for
the letter g. The most popular form has its “ear” at the top right, evoking looptail 〈g〉, while its
reversed tail has a connecting stroke on the right, evoking opentail 〈g〉. To be proficient at read-
ing, it is sufficient to classify observed letter forms correctly (including classifying looptail 〈g〉
as g), but it is not necessary to learn an accurate distribution over letter forms. In other words,
it is sufficient to learn semantic functions which are accurate on observed pixies, but it is not
necessary to learn an accurate distribution over pixies. While a speaker may learn to generate
some concepts, it is simplest to model a concept just as a semantic function – this can be rep-
resented more simply than a distribution over pixies, it can account for the above experimental
results, and it gives us a direct connection with logic and formal semantics.

In the following two subsections, I will examine semantic functions in more detail, first
contrasting them with regions of space, and then considering what kind of uncertainty the prob-
abilities represent. A reader who is comfortable with the above definition of semantic functions,
and who would like to see how they can be used for distributional semantics, can safely skip
these subsections, jumping straight to §3.5.

3.4.1 Regions of Semantic Space

In §2.1, I concluded that two sensible ways to represent a concept are as a region of space and
as a binary classifier. In this section, I will explain how they are two views of the same thing.
The additional detail that can now be added, based on the discussion in this chapter, is that we
are considering a semantic space, where each point is a pixie (rather than an individual).
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For any region of space, we can define a non-probabilistic binary classifier, which classifies
all pixies in the region as instances of the concept, and all pixies outside the region as not. Con-
versely, for any non-probabilistic binary classifier,8 we can define a region of space composed of
all pixies that are classified as instances of the concept. For example, a support vector machine
(SVM) is a non-probabilistic classifier – on one side of the decision boundary (the “inside”),
pixies are classified as instances of the concept, while on the other side (the “outside”), pixies
are classified as not.

Once we introduce uncertainty, the correspondence becomes subtler, because a distribution
over regions is more general than a semantic function (a probabilistic binary classifier). Intu-
itively, knowing about regions of space is global information, but knowing about truth values
for particular pixies is local information. Given a distribution over regions, knowing about truth
values in one part of the space can tell us about truth values in another distant part of the space.

More precisely, given a pixie-valued random variable X , and a region-valued random vari-
able A, we can define a binary random variable T to be true when X ∈ A and false otherwise.
This means that we can define a semantic function based on a distribution over regions, by
summing (or integrating) over the distribution: t(x) =

∑
a3x P(A=a).

Conversely, if we know the conditional distribution for T given X , this does not tell us
the distribution for A. This is easiest to see if we consider a separate truth value Tx for each
pixie x. A semantic function t fixes the marginal distributions of these random variables as
P(Tx=>) = t(x), but it does not fix their joint distribution. If we know the joint distribution,
then we can define the region to be the pixies whose truth value is true: A = {x∈X |Tx=>}.
Given a semantic function, there are many ways that we could define a joint distribution, and
hence a distribution over regions. One extreme would be to sample the truth values indepen-
dently for each pixie. The other extreme would be to sample a threshold value K uniformly
from [0, 1], and choose truth when the semantic function’s value is above the threshold. This
would give the region A = {x∈X | f(x)>K}.

These two options introduce different amounts of covariance between different pixies. The
first extreme (independently sampling truth values) has no covariance at all – indeed, we may
not even want to use the term “region”, as it would almost certainly not have a clear bound-
ary. The other extreme (sampling a threshold) maximises covariance – for any pair of pixies,
their truth values have the maximum probability of agreement. By allowing different levels of
covariance between these two extremes, we can define different distributions over regions.9 It
may be desirable to have high covariance between nearby points, but low covariance between
distant points. For example, it would seem incoherent to classify one reddish-orange shade as
red, but a slightly redder shade as not red. However, a classification of a reddish-orange shade

8 I assume that the classifier is a constant function except at the decision boundary.
9 This is reminiscent of Gaussian processes (for an exposition, see: Rasmussen and Williams, 2006), which

can be defined in terms of a mean function and covariance function. A semantic function can be seen as a mean
function, which additionally needs a covariance function in order to define a distribution over regions.
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would not seem to affect a classification of a reddish-purple shade.

Parametrising a distribution over regions in terms of a semantic function plus covariance
would provide a natural way to capture this kind of local coherence of truth values. Furthermore,
it also provides a more efficient parametrisation than directly trying to represent a distribution
over regions – a semantic function is a map from an N -dimensional semantic space to the
interval [0, 1], but a distribution over regions (represented by their boundaries) is a map from
the (N−1)-dimensional sphere to the N -dimensional semantic space, which is a much harder
function to represent and to learn. The covariance function is more complicated than a semantic
function, being a map from a pair of pixies, rather than a single pixie, but it could plausibly be
hard-coded (exploiting the geometry of the space), or shared across predicates.

Finally, it is worth considering how constraints on regions look, when converted to into
constraints on semantic functions. As discussed in §2.1.2, Gärdenfors (2000, 2014) proposes
representing meanings as convex regions. We could convert this into a constraint on semantic
functions by saying that for any threshold k, the semantic function defines a convex region
(following the high-covariance distribution over regions given above). Many simple kinds of
probabilistic classifier would satisfy this constraint – for example, one layer neural networks
(including sigmoid functions and radial basis functions) define convex regions.

However, we can question whether concepts should be represented as convex regions. If
convexity is defined on a perceptual space, then the claim is empirically false – even in the low-
dimensional space of colour, McMahan and Stone (2015) find expressions like greenish whose
meanings are nonconvex, and Kay et al. (1997) similarly describe how some languages have
terms which could be glossed as “peripheral red”. Sidestepping such objections, Gärdenfors
(2014, §2.5) describes how “higher-level” dimensions can be defined in terms of more basic
ones, and suggests that the convexity requirement can apply in an abstract space defined by
such higher-level dimensions. A concept that is non-convex in a perceptual space might be
convex in some abstract space. However, without some constraint on how we can define abstract
dimensions, this obliterates the convexity requirement, because for any region, we can define
an abstract space in which that region becomes convex. So, the convexity requirement also
requires a constraint on defining abstract dimensions. This becomes quite natural when viewing
the process as classification – defining a set of abstract dimensions looks the same as defining a
layer in a neural network, where each unit in the network is one dimension. The final layer of the
network is convex (as already discussed), and constraining the definition of abstract dimensions
reduces to constraining the layers of the network. Dimensions that are used by many functions
(“domains” in Gärdenfors’s terminology) can be seen as parameter sharing.

To summarise, regions of space and binary classifiers are equivalent, where uncertainty in
a region corresponds to covariance in classifications of pixies. This equivalence additionally
allows us to recast the convexity requirement in terms of constraints on neural network models.
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3.4.2 Uncertainty

Having introduced probabilities of truth, it is natural to ask how these probabilities are supposed
to be interpreted. Bayesian probability theory uses probability to represent beliefs about the
world, where there is some correct but unknown answer. For example, if a physicist is uncertain
about the mass of an electron, they can perform a suitable experiment, and after observing the
results, they would reduce their uncertainty. However, when it comes to linguistic or conceptual
knowledge, it’s not clear this is the same kind of uncertainty. If a learner is uncertain about the
meaning of a predicate, what experiment could they perform? Is there a correct meaning for the
learner to infer?

One influential non-probabilistic account of vagueness, called supervaluationism, holds that
a predicate does have a correct set of truth conditions, but these truth conditions are unknown
(for example: Fine, 1975; Keefe, 2000, chapter 7). However, simply using a set of bound-
aries leads to the problem of higher-order vagueness – if a predicate specifies a set of precise
boundaries, we can reasonably ask where the boundaries begin and end. The set of boundaries
therefore has its own boundary, and this higher-order boundary may also need to be vague.
Intuitively, some boundaries are more plausible than others. While there might not be a clear
boundary between red and orange, as we go further towards orange, we would be increasingly
certain that we’ve crossed the boundary. Following this intuition, we can replace a set of bound-
aries by a distribution over boundaries, which avoids the problem of higher-order vagueness, as
demonstrated by Lassiter (2011). Representing a predicate as a distribution over regions can be
seen as an improvement on supervaluationism that maintains its core insight.

Given such a distribution, it would be tempting to say that a learner could ask fluent speak-
ers for truth value judgements, and thereby reduce their uncertainty. However, for a continuous
semantic space, it would require infinitely many observations to precisely determine the region
in which the predicate is true. Even a finite space could require too many observations, if it is
sufficiently high-dimensional. So if precise truth conditions are impossible to learn, what does
linguistic knowledge actually consist of? Barwise and Perry (1983, pp. 16–19) suggest that lin-
guistic meaning is a relation between utterance events and aspects of the world, determined by
the way language is used by a speech community. In other words, meaning comes from a con-
vention. It is arbitrary, in the sense of de Saussure (1916), but agreed on by the community (for
further discussion of convention, see: Millikan, 1998). There can be variation between different
speakers in a speech community, but even in the ideal case where speakers never contradict one
another, a linguistic convention is necessarily vague, because a precise convention would not be
learnable.

Motivated by these concerns of communication and learning, Sutton (2013)10 argues that
the meaning of a predicate is a probabilistic correlation between uses of the predicate and sit-

10 See §4.3 for a discussion of correlation, §5.2–5.4 for learning, and §6.3 for a situation-theoretic formalisation.
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uations in the world. It expresses the probability that a speaker would classify an individual as
an instance of the predicate. Vagueness is not uncertainty about the world (the world separate
from the linguistic acts themselves), but uncertainty about how to generalise a linguistic conven-
tion to a new situation. This view of linguistic uncertainty can be contrasted with uncertainty
about precise truth conditions, where precise boundaries exist, but are unknown. However, as
discussed above, precise boundaries are not learnable.

Mathematically speaking, this distinction might seem to be splitting hairs. Uncertainty
about precise truth conditions can be represented as a distribution over regions of space – and
as I demonstrated in the previous section, this is equivalent to a semantic function with covari-
ance. Indeed, Lassiter and Goodman (2015) use a probabilistic framework to model pragmatic
language understanding, without committing to a particular interpretation. The important point
is that a distribution over truth values can be taken as a starting point for communication. A
speaker’s decision about what to say and a listener’s inference about a situation are based on
the distribution as a whole (and how it interacts with knowledge of the situation). Truth val-
ues are important stepping stones for the process of communication, but the speaker’s ultimate
aim is to update the listener’s beliefs about the situation. Sutton (2017) argues that separat-
ing communicative success (which is external to semantics, but builds on it) from probabilistic
classification (which is internal to semantics) avoids the apparent paradoxes of vagueness.

To summarise the above discussion, probabilities of truth can be seen as subjective beliefs,
but rather than expressing expectations about the state of the world, they express expectations
that a linguistic convention could be used in a certain way. These beliefs are uncertain, firstly
because of variation in the linguistic convention, and secondly because of the need to generalise
to new situations. While the first source of uncertainty could be removed in a hypothetical
homogeneous speech community that strives to have a precise convention, the second source of
uncertainty is inherent to learning any language that describes a world large enough to require
generalisation.

3.5 A Probabilistic Graphical Model for Probabilistic Model
Structures

In this section, I define a probabilistic model which generates situations and truth values, fol-
lowing the probabilistic generalisation of model theory presented in §3.3. In particular, I define
a probabilistic graphical model, which is a succinct way of stating independence assumptions
between random variables. A graphical model does not specify a joint distribution over the
random variables, but rather gives constraints on a distribution. A graphical model consists
of a graph, where each node is a random variable, and where edges indicate probabilistic de-
pendence. An undirected edge means that the two nodes are dependent on each other, and a
directed edge means that the child node (the start of the edge) is conditionally dependent on
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Figure 3.8: A situation containing three individ-
uals, each represented by a pixie.
Top row: random variables X , Y , Z, whose val-
ues are pixies in a semantic space X , jointly dis-
tributed according to the semantic roles.
Bottom row: each predicate r in the vocabu-
lary V is randomly true or false of each individ-
ual, following the predicate’s semantic function.

the parent node (the end of the edge). Graphical models usually only use one type of edge – but
we will need both.

A fully connected graph would not give any constraints on the joint distribution – indepen-
dence assumptions correspond to missing edges. For any node, we know its distribution once
we know the values for the nodes it’s connected to (more precisely, its parent nodes and nodes
connected by an undirected edge). Repetition of nodes can be indicated using a plate, a box
drawn around the repeated nodes. In the bottom right corner of the plate, I will write the set
which is iterated over.

A graphical model is shown in Fig. 3.8, for a situation with three individuals (X , Y , and Z),
and two semantic roles (ARG1 and ARG2). This might represent an event (Y ) and two partici-
pants in the event (X and Z). This graphical model only generates situations with this particular
configuration of semantic roles, but I will explain later in this section how to generalise this to
other kinds of situation. I will refer to the configuration of semantic roles in a situation as the
situation structure, which can be represented as a directed graph, where the edges are labelled
with semantic roles, but the nodes are not labelled.

The three nodes in the top row represent the individuals. The joint distribution for the these
nodes represents knowledge about which situations are likely or unlikely. Each node in the top
row is a pixie-valued random variable, representing the features of one of the individuals. There
is also an undirected edge for each semantic role. The other edges in the graph are directed,
pointing away, which means that the distribution for the pixie nodes is completely determined
by the two undirected edges corresponding to semantic roles. This is so that the distribution
over situations is defined without reference to any predicates – intuitively, the world is the same
however we choose to describe it.

In machine learning, probabilistic graphical models usually use directed edges, because it
makes inference easier (for example, LDA is a directed model). However, the edges between
the pixie nodes in Fig. 3.8 are undirected, to avoid stipulating causal structure amongst the
pixies in a situation. It might be tempting to suppose that the event is generated first, and then
the participants of the event – but how should this generalise to multiple events? The edges
between pixie nodes are undirected, so that this can easily generalise to situations of any size.
I should also stress that undirected edges are compatible with “directed” semantic roles – the
probability distributions do not need to be symmetric, which maintains the asymmetry of the
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semantic roles. I have avoided indicating the direction of the semantic roles in Fig. 3.8, in order
to make it clear that the edges are undirected in the probabilistic sense. In the semantic sense,
the ARG1 and ARG2 roles are from Y to X and from Y to Z.

The two undirected edges together mean that we can factorise the joint distribution, as shown
in (3.3). This factorisation means that X and Z are conditionally independent given Y . At first,
this might seem like a strong assumption, but they are only independent if the value of Y is
fully known. If all the variables are unobserved, we can have rich interactions between the
three variables, which will be explored in Chapter 4. A concrete distribution of this form will
be given in Chapter 5.

P (X=x, Y =y, Z=z) ∝ P (X=x, Y =y)P (Y =y, Z=z) (3.3)

The three nodes at the bottom of Fig. 3.8 are truth values. The plate indicates that these
are repeated for each predicate in the vocabulary V , so we have a separate truth value for each
predicate for each individual. Each truth value node has a single directed link coming from
one pixie node. This means that the probability of truth only depends on the value of that pixie
node, and not on the any other pixie node, or any other truth value. I will write Tr,X for the
truth value of a predicate r for a pixie-valued random variable X . The predicate’s semantic
function tr determines the conditional distribution of this variable, as shown in (3.4). As with
classical model theory, many predicates can be true of the same individual. For example, if the
situation determined by the values of X , Y , and Z represented a dog chasing a cat, then nodes
like Tdog, X , Tanimal, X , and Tpursue, Y would be true (with high probability), while Tdemocracy, X or
Tdog, Z would be false (with high probability).

P (Tr,X => |X=x) = tr(x) (3.4)

The graphical model in Fig. 3.8 defines a probabilistic model structure as described in §3.3
– the joint distribution over pixies gives us a distribution over situations, and we have a prob-
abilistic truth value for each predicate for each individual. While this graphical model only
generates situations with a particular situation structure, we can write down a similar graphi-
cal model for any situation structure. We introduce one pixie node for each individual, along
with one undirected edge for each semantic role. We then introduce a truth value node for each
predicate for each individual, with a directed edge from the pixie node to the truth value node.
Although this means we have a separate graphical model for each situation structure, we can
share parameters between the graphical models, using the same parameters whenever we see
the same semantic role. A concrete way to do this will be presented in Chapter 5. Finally, if we
have a distribution over situation structures (there are many ways to define a distribution over
graphs), then we can define a generative process where we first draw a situation structure, and
then use the corresponding graphical model.
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picture tell story
ARG1 ARG2 Figure 3.9: A simplified DMRS graph, which

could be generated by Fig. 3.10 below. Such
graphs are observed during training.
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Figure 3.10: Probabilistic graphical model for
Functional Distributional Semantics.
Top row: individuals represented by pixie-
valued random variables X , Y , Z, jointly dis-
tributed according to the DMRS links.
Middle row: for each individual, each predi-
cate r in the vocabulary V is randomly true or
false according to its semantic function.
Bottom row: for each individual, we randomly
generate one predicate, out of all predicates true
of the individual. Only these nodes are observed.

3.6 Functional Distributional Semantics

So far, I have motivated and introduced a probabilistic version of model theory. I now turn
to using it for distributional semantics. This will allow us to learn semantic functions and
distributions over situations, based on data observed in a corpus. The basic idea is that observed
utterances are true of some situation. After observing many utterances, we can learn both what
kinds of situations are likely to exist, as well as how these situations are likely to be described.11

I will define a probabilistic graphical model which incorporates the above probabilistic gen-
eralisation of a model structure, and which can generate semantic dependency graphs like that
in Fig. 3.9. The aim is to train the model in an unsupervised12 way on a parsed corpus – that
is, to optimise the model parameters to maximise the probability of generating the dependency
graphs in the corpus. Although we cannot directly observe the model structure, we can define
latent variables that represent individuals and truth values, which allows us to indirectly learn
a model structure based on distributional information. In a certain sense, this is the inverse
of supervised learning of classifiers – here, we observe the labels, but not the objects being
classified. The fact that learning a classifier in this way is possible at all relies on structural
information. While we don’t observe the individuals in a situation, we can leverage structural
linguistic knowledge in the form of semantic dependency graphs. These graphs might not tell
us the features of the individuals, but they do give us dependencies between the individuals.

11 There will be unfortunate biases in both halves, depending on the corpus – biases in the situations that the
authors chose to talk about, and biases in how the authors chose to describe them. Identifying such biases is
important for real-world applications of NLP, but that is beyond this scope of this thesis.

12 I use the term “unsupervised” in the machine learning sense, following Ghahramani (2004): supervised
learning requires both inputs and outputs, while unsupervised learning requires only inputs. The aim of supervised
learning is to find a mapping from inputs to outputs, while the aim of unsupervised learning is to find structure in
the inputs. Although I assume that dependency graphs are annotated in the training corpus, these are not desired
outputs, but rather part of the input. Learning is unsupervised in this sense.
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DMRS graphs are useful for this purpose, because they have a direct logical interpretation,13

as explained in §1.3.3. DMRS nodes correspond to predicates and variables, and DMRS links
correspond to semantic roles. Quantifiers (such as the, every, a) will be discussed in Chapter 4,
and covered in more detail in Chapter 7. For the rest of this chapter, they will be dropped, and
the reader may assume that all variables are existentially quantified.

I will use the term topology to refer to the structure of links in a DMRS graph. This is a
graph where the links are labelled, but the nodes are not. Neglecting quantifiers, the topology of
a DMRS graph corresponds to situation structure.14 This means that we can extend the graphical
model presented in the last section to generate DMRS graphs. As before, the graphical model
only generates graphs of a particular topology, but a distribution over topologies would let us
define a generative process for DMRS graphs of any topology.

The basic assumption is that each DMRS observed in a corpus is true, and corresponds to an
unobserved, latent situation. This will not always be the case, but for text in an encyclopaedia,
this assumption will hold most of the time. Each DMRS node corresponds to an individual, and
each DMRS link corresponds to a semantic role. The graphical model in Fig. 3.10 generates
dependency graphs with the topology of a transitive sentence – the predicates (P , Q, R) can
be seen at the bottom, and the dependency links (ARG1, ARG2) can be seen at the top. For
example, P , Q, and R might correspond to pictures, tell, and stories. While the predicates are
observed, the individuals and truth values are not. Each observed predicate (grey nodes at the
bottom) has a corresponding latent pixie (orange nodes at the top), as well as latent truth values
for all other predicates in the vocabulary (purple nodes in the middle).

The directed edges in Fig. 3.10 mean that the generative process goes from the top to the
bottom. First, we define a joint distribution over pixies and truth values, as described in §3.5.
Then, for each pixie node (which represents an individual), we define a predicate node. Each
predicate node is conditionally dependent on the truth values of all predicates, for that individ-
ual. The process of choosing a predicate out of all true predicates may be complex, potentially
depending on speaker intention and other pragmatic factors. However, a simple option is to
choose a predicate at random out of all true predicates (potentially weighting the predicates, so
frequent predicates are generated more often). In §7.4, I discuss an approach to pragmatics that
is compatible with this framework, which would allow a more sophisticated choice of predicate
based on the truth values. For now, we can assume this simpler process.15

Putting this all together, the graphical model generates DMRS graphs in three stages. First,
we generate a latent situation. Second, we generate latent truth values for each individual. Third,
we generate a single predicate for each individual, which is what we observe in the corpus.

13 A different formalism for semantic dependency graphs could be used, as long as there is a similar logical
interpretation, which allows us to relate the graphs to a (probabilistic) model structure.

14 This is a result of assuming that semantic roles are part of the situation (see §3.1). A more accurate model
would need to separately represent DMRS topology and situation structure, and explain how the two are related.

15 This doesn’t define what happens if all predicates are false. For a large vocabulary, it is unlikely they are all
are false, but for completeness, we can choose a backoff distribution, such as sampling from the whole vocabulary.
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3.7 Assessment against Top-Down Goals

Having presented my functional framework for distributional semantics, I now return to the
goals given in Chapter 2, and assess how well my framework can deal with them. Some of
these are discussed in detail in subsequent chapters, and some have already been discussed in
this chapter, but I collect an overview here for ease of reference.

3.7.1 Language and the World

As discussed in §2.1, one goal for a semantic theory is to relate its representations to the
real world. In common with all distributional approaches, Functional Distributional Seman-
tics learns from text alone, and so it is not grounded.

However, a functional model does make a clear distinction between concepts and referents
– concepts are represented as semantic functions (probabilistic binary classifiers), while refer-
ents are represented as pixies. As explained in §3.4.1, a semantic function can also be seen a
distribution over regions (when combined with a covariance function), which unites these two
views of concepts.

The distinction between concepts and referents means that a functional model can be grounded
in a more principled way than a vector space model. If we have some way to ground the sem-
antic space, the semantic functions are naturally grounded. Although it is beyond the scope of
this thesis, it would be possible to jointly train a functional model on both distributional data and
grounded data such as labelled images. The crucial point is that we can use the same space to
represent both the grounded data and latent pixies. This would mean that we can train semantic
functions, both on the corpus data using the model described here, and on the labelled images
using supervised learning.

3.7.2 Lexical Meaning

In §2.2, I discussed three aspects of lexical meaning – vagueness, hyponymy, and polysemy.
Vagueness is built into the definition of a semantic function, and has been much discussed in
this chapter. A simple illustration of the vagueness of a semantic function is shown in Fig. 3.11,
where the function defines a series of larger regions (see §3.4.1).

With its close link to model theory, a functional model can simply borrow the definition of
hyponymy in terms of subsets, the only difference being the use of a semantic space, rather than
a set of individuals. A smaller region of space is more specific. We can define one semantic
function as being a hyponym of another if it takes a smaller value at every point in the semantic
space. An example is shown in Fig. 3.12. Although I am using probability theory rather than
fuzzy logic, for reasons explained in §2.3.2, this definition is equivalent to Zadeh (1965)’s
definition of the subset relation between fuzzy sets.
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Figure 3.11: Vagueness.
A contour plot of a simple
semantic function over a two-
dimensional space. Each con-
tour shows where the function
takes a given value.

Figure 3.12: Hyponymy.
The contours are nested – the
more general semantic func-
tion (solid lines) always has
a higher value than the more
specific one (dashed lines).

Figure 3.13: Polysemy.
This semantic function has
two local maxima, each of
which could be considered a
sense. However, the two
senses are linked.

Polysemy is harder to formally define, since our goal is to avoid finite sense inventories, as
explained in §2.2.2. However, a semantic space allows a more fluid notion of sense, because
both pixies and semantic functions can vary continuously. One way to look at the senses of a
semantic function is to consider local maxima. If there is only a single maximum, as in Fig. 3.11,
then we could say that the function has a single sense. However, if there are multiple maxima,
as in Fig. 3.13, then we could consider each of these as a sense. Under this view, a sense
could be very specific (the function takes high values only in a small region) or very general (it
takes high values in a large region). The latter case allows us to represent highly underspecified
senses, as argued for by Ruhl (1989). However, the flexibility of defining a function means
that we can also accommodate cases where trying to define a highly underspecified sense might
overgeneralise. In the example in Fig. 3.13, the two local maxima are linked together (so these
senses are related) but the overall region has an irregular shape, so it would not be possible to
define the region by simple constraints on each dimension. This allows us to capture concepts
which have no simple set of necessary and sufficient properties, but which still exhibit family
resemblance.

3.7.3 Sentence Meaning

In §2.3, I discussed three aspects of sentence meaning – logic, compositionality, and context
dependence. As Functional Distributional Semantics builds on DMRS graphs, there is a natural
link to logic. Truth values are an intrinsic part of the probabilistic model, and it is possible
to use them to perform logical inference, as will be explained in more detail in §4.5. Further-
more, the DMRS graphs have come from the output of the ERG, which builds its semantics
compositionally. Unlike a vector space model, a semantic dependency graph is not bounded in
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size, so we do not have the problem of representing sentence meaning with a fixed number of
dimensions. I will discuss composition in more detail in §4.4

Finally, because the model is probabilistic, it is easier to define context dependence, in a
similar vein to the other probabilistic models discussed in §2.3.3. As a simple example, suppose
we would like the model to generate dogs chase cats and cats chase mice but not to generate
dogs chase mice and cats chase cats. In other words, we would like to capture a probabilistic
dependence between the verb’s arguments. In a vector space model, where each predicate is
represented by a single vector, it is not clear how to capture this. However, by separating
predicates from pixies, we can have two different event pixies which the chase predicate is true
of, where one event pixie co-occurs with a dog-pixie ARG1 and cat-pixie ARG2, while the other
event pixie co-occurs with a cat-pixie ARG1 and a mouse-pixie ARG2. This allows the model to
generate DMRS graphs with a probabilistic dependence between arguments. This idea can be
taken further, and used to describe context-dependent meaning, as I will explain in Chapter 4.

3.7.4 Learning Meaning

Finally, our last goal is for the model to be trainable in practice. The probabilistic graphical
model presented in §3.6 was designed so that it can be trained on a corpus of DMRS graphs.
A detailed implementation of this model will be given in Chapter 5, along with learning algo-
rithms. Compared to vector space models, the additional expressiveness of a functional model
does come at a cost. As we will see, the main challenge is the large number of latent variables
– for every observed predicate, we have a latent pixie and latent truth values for all other predi-
cates. This is also more challenging than a latent topic model like LDA. Firstly, while LDA only
has one latent topic per token, my model has |V| latent truth values (where V is the vocabulary),
which could easily number in the tens of thousands. Secondly, while a latent topic only has a
small number of possible values, a latent pixie has a large number of possible values, since it
lies in a high-dimensional semantic space. As will be explained in §5.3 and §5.4, approximate
inference algorithms will be crucial for allowing the framework to be used in practice.

As mentioned at the end of §2.4, this thesis takes a step towards making it feasible to learn
expressive semantic representations from distributional data. Using latent pixies allows us to
extend representing meaning as a classifier to a distributional setting where referents are not
observed. Using latent truth values can be seen as an approach in the spirit of Copestake and
Herbelot (2012)’s ideal distributions, where logical forms need to be generalised from observed
cases to unobserved ones. However, one part of the model that is not treated as latent is the
logical structure, since this is included as part of the annotations in the training data. In princi-
ple, it could be possible to combine my approach with an unsupervised parsing algorithm, but
that would be beyond the scope of this thesis. The approach I am taking here makes a clear
separation between high-level logical structure and detailed lexical knowledge. While there
are existing resources where the logical structure is largely correct, my aim in this thesis is to
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fill the gap in lexical knowledge, learning semantic representations which are not only as fine-
grained as vector space representations, but also expressive enough to meet our other goals for
a semantic theory.

3.7.5 Comparison with Existing Frameworks

Finally, it is worth comparing my framework to the existing work discussed in §2.5. As I have
argued above, a functional model can deal with a number of important semantic challenges.
This allows us to use a single coherent model, rather than extending vector space models in
different directions, or trying to building hybrid models.

Although I have found the type-driven tensorial framework a thought-provoking source of
inspiration, the framework I have presented is fundamentally different. I have rejected the use
of sentence spaces and linear maps (as explained in §2.3.1, §2.3.2, and §2.5.3), and I have
proposed a uniform representation of predicates as unary functions, rather than using a system
of semantic types. Applying each function only to its intrinsic argument removes the need for
higher-order tensors. The most crucial difference, I believe, is the use of latent variables and
probability distributions, which allow interesting nonlinear behaviour.

Compared to Goodman and Lassiter (2015)’s probabilistic framework, I have proposed a
generative model that is simpler in two ways. Firstly, word meanings are represented as sem-
antic functions, rather than as probabilistic programs. Secondly, the probabilistic graphical
model in Fig. 3.8 jointly generates several pixies “in one step”, rather than using a probabilistic
program. On the other hand, pixies also introduce complexity, since they are structured objects
lying in a semantic space, which may be high-dimensional. It could be possible to draw ideas
from Goodman and Lassiter’s work to make the probabilistic graphical model more complex,
but this would need to be done carefully for it to be feasible for distributional semantics.

Finally, my framework has much in common with Cooper et al. (2015)’s probabilistic TTR
framework. In particular, a semantic function corresponds to a TTR type and applying a sem-
antic function gives a probabilistic type judgement. Both semantic functions and probabilistic
type judgements are defined using conditional probabilities. However, an important innovation
in my work is the use of a semantic space, which is defined without reference to any predicates.
Although Cooper et al. do give some discussion of features, they do not make the semantic
space explicit. Each pixie could in principle be described as a type (and so the whole sem-
antic space could be described as a space of types), but then we would need to be careful to
distinguish pixie types (which represent the world) from linguistic types (which represent how
a speaker describes the world). It for this reason that I have avoided the term “situation type”
(and Barwise and Perry (1983)’s related term “abstract situation”), and instead coined the term
“pixie”. Larsson (2013) and Fernández and Larsson (2014) are explicit in their use of a percep-
tual space, but they only use 1- or 2-dimensional spaces. In this thesis, I use a high-dimensional
space and aim to learn all semantic functions from the data.
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Chapter 4

From Bayesian Inference to Logical
Inference

In Chapter 3, I defined a probabilistic graphical model for distributional semantics, which in-
corporates a probabilistic version of model theory. In this chapter, I discuss some theoretical
benefits of this framework. First, in §4.1–4.3, I show how it allows a natural account of context
dependence, which both gives it a practical advantage over vector space models, and also sheds
light on context dependence as a linguistic phenomenon. I then discuss, in §4.4, how this kind
of context dependence interacts with semantic composition, and finally in §4.5, how it can be
used for probabilistic logical inference.

A Note on Notation

To make the equations easier to follow, I will use a more succinct notation. Previously, I have
been careful to distinguish random variables (such as X), values of random variables (such
as x), and events1 of a random variable taking a value (such as X=x). However, for long
equations, this notation can easily become verbose and hard to read. A more succinct notation,
common in the NLP and machine learning literature, is to write P (x) instead of P (X=x). In
other words, the event of a random variable taking a value is represented just by the value, with
the random variable understood from the context. This notation is convenient for pixie-valued
and predicate-valued random variables.

For truth-valued random variables, it is difficult to understand the variable from context,
because we may have many such variables, but there are only two possible values. However, we
can extend the notational distinction between upper and lower case, and write P (tr,X) instead
of P (Tr,X =>), for any predicate r and pixie-valued random variable X . This exploits the fact
that truth has a distinguished status.

1 In the probabilistic sense, not the semantic sense.
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4.1 Context Dependence as Bayesian Inference

As discussed in §2.3.3, context dependence is a challenging semantic phenomenon. In par-
ticular, one goal for a semantic theory is to represent both occasion meanings (meanings in
particular usages) and standing meanings (lexicalised abstractions over usages).

Searle (1980) discusses an interesting set of examples, focusing on the word cut. They note
how a gardener cutting grass involves a very different kind of cutting from a child cutting a
cake. There is something common to both events, but they involve different tools and different
physical actions – driving a lawnmover, or slicing with a knife. However, Searle also notes how
there are also less obvious interpretations of these expressions. For a gardener who sells turf (a
section of soil containing living grass, which can be sold as a ready-grown lawn), cutting grass
could also refer to cutting out an area of grass, including the soil.2 This kind of cutting would
more closely resemble cutting a cake, as both involve slicing out a section. Searle concludes
that the interpretation of an expression is only possible given a background of assumptions.

Elman (2009) approaches context dependence from a cognitive science perspective, also
discussing the word cut, and noting how there is a clear dependence between the participants
of a cutting event (in particular, the agent, patient, instrument, and location). For example,
specifying the agent induces a strong expectation about possible patients – we expect chefs,
lumberjacks, and surgeons to cut different things. Elman concludes that meaning is a cue for
understanding a situation, but language is always understood in context, incorporating world
knowledge and extralinguistic information. In particular, experimental evidence contradicts a
two-stage process where a listener first constructs a logical representation of a sentence and
then incorporates contextual information.

Although both of the above authors give rather negative conclusions, I believe that both
of their concerns can be dealt with using a probabilistic model, as long as we are careful to
separate the logical form of a sentence from the situation which it describes. In particular,
I propose to represent the standing meaning of a predicate with a semantic function, and an
occasion meaning by a posterior distribution over pixies. Calculating an occasion meaning then
reduces to Bayesian inference, conditioning on the context, which could include both linguistic
and extralinguistic information. We can maintain a single standing meaning for cut, which
can be used in Bayesian inference because it is defined as a conditional probability distribution.
Meanwhile, background assumptions can be encoded in a prior distribution over situations. The
combination of the two allows varied occasion meanings to fall out naturally.

In the simplest case, we have a situation containing a single individual X (a pixie-valued
random variable). If we know the predicate r is true of X , we can apply Bayes’ rule, as shown
in (4.1). We can immediately see that the occasion meaning (the posterior distribution for X)
depends on both world knowledge (the prior forX) and the semantic function tr (the conditional

2 There are other interpretations of cut grass, such as adulterate marijuana, but I’ll focus on Searle’s examples.
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distribution for Tr,X givenX). This simple case of Bayesian inference can be naturally extended
to condition on more context. In the more general case, we have a joint distribution not just over
a single pixie and a single truth value, but over multiple pixies and multiple truth values.

P (x | tr,X) ∝ P (x)P (tr,X |x) (4.1)

= P (x) tr(x) (4.2)

The above equation gives an occasion meaning when we know some predicate is true. We
can also consider an occasion meaning when we observe a speaker uttering a predicate. Rather
than conditioning on a truth value tr,X , we can condition on an observed predicate r, as in (4.3).
If the predicate was generated randomly out of all predicates true ofX , these two equations will
give very similar results. A more nuanced way to choose a predicate will be discussed in §7.4.

P (x | r) ∝ P (r |x)P (x) (4.3)

The above Bayesian account takes to heart the conclusion of both Elman and Searle that
language cannot be understood independently of world knowledge. Here, world knowledge
is encoded as a prior distribution over situations – and without a prior, we cannot construct
a posterior. This means that, without world knowledge, we cannot construct occasion mean-
ings. Even though Elman words their article provocatively, claiming that we should represent
lexical semantics “without a lexicon”, the context-dependent phenomena they describe can be
accounted for using a lexicon of semantic functions. Having now motivated and sketched out
a Bayesian account of context dependence, in the following section I give details of how this
works using the graphical model of Functional Distributional Semantics.

4.2 Context Dependence in Functional Distributional
Semantics

In this section, I use the probabilistic graphical model presented in §3.6 as Fig. 3.10, repeated
here as Fig. 4.1 for convenience. This models events with two participants, such as a gardener
cutting grass or a child cutting a cake. To model more participants (such as an instrument or
location) we can use a larger graph, but I focus here on just these two participants.

World knowledge is encoded in the prior distribution over situations. This is represented in
the top row of Fig. 4.1, where we have a joint distribution for the three pixie nodes. Intuitively,
if we know the features of an event, we know the likely features of its participants (and vice
versa). More formally, for any value y for the variable Y , we have a distribution over pixies for
each of its semantic roles (and vice versa) – for example, we can calculate P (X=x |Y =y).

The standing meanings of cut, grass, and so on are represented by semantic functions. These
functions are fixed, and given a situation, they determine probabilities for the truth values in the
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Figure 4.1: Probabilistic graphical model for
Functional Distributional Semantics.
Top row: individuals represented by pixie-
valued random variables X , Y , Z, jointly dis-
tributed according to the DMRS links.
Middle row: for each individual, each predi-
cate r in the vocabulary V is randomly true or
false according to its semantic function.
Bottom row: for each individual, we randomly
generate one predicate, out of all predicates true
of the individual. Only these nodes are observed.
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middle row of Fig. 4.1. Importantly, we can have high probabilities of truth for quite different
situations. For example, cut grass should be true of both mowing a lawn and slicing out a
section of turf (more precisely, cut should be true of the event, and grass should be true of the
event’s ARG2).

An observed utterance is represented by the bottom row of Fig. 4.1. Each observed pred-
icate has a corresponding latent pixie in the top row. The occasion meaning of each observed
predicate is the posterior distribution of its corresponding pixie node. Given a prior over sit-
uations, and given observed predicates, we can calculate the posterior over situations (a joint
distribution over pixies) as shown in (4.4).

P (x, y, z | p, q, r) ∝ P (p |x)P (q | y)P (r | z)P (x, y, z) (4.4)

We are now in a strong position to respond to Searle and Elman’s concerns. After observing
cut and grass, the posterior over situations will have ruled out situations where those predicates
are false (such as baking a cake or riding a bike), leaving high a probability for situations where
those predicates are true. For most people most of the time, the prior over situations would
assign a much higher probability to lawn-mowing situations than turf-slicing situations, and this
will also be true for the posterior. However, if the listener has reason to have a high probability
for turf-slicing situations (such as if they sell turf), then the situation would be reversed. In
this way, the same standing meaning can lead to different occasion meanings, depending on the
background assumptions of the listener.

Furthermore, because each pixie node is connected to all predicate nodes (via other pixie
nodes and truth value nodes), the posterior distribution of each pixie node depends on all ob-
served predicates. This means that after observing lumberjack and cut, we can already form a
posterior for the final pixie node (for example, a tree pixie should be more likely than a grass
pixie) – knowing that lumberjack was used to describe X restricts what values it is likely to
take, which in turn restricts the likely values for Y , which in turn restricts the likely values
for Z. Lexical knowledge and world knowledge interact to produce a prediction about the final
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participant in the event. More precisely, we can calculate the marginal distribution for Z as
shown in (4.5), where the joint distribution P (x, y, z) for the pixie nodes is crucial.

P (z | p, q) ∝
∑
x,y

P (p |x)P (q | y)P (x, y, z) (4.5)

While I have only discussed the immediate linguistic context, this approach generalises to
other kinds of contexts. Since an occasion meaning is a posterior distribution, we could in
principle condition on any kind of observation. The only requirement is that we have a joint
distribution over all the random variables. Probabilistic graphical models provide a flexible
way to extend a distribution to include more variables. For example, by adding observed nodes
connected to the pixie nodes, we could condition on both linguistic and extralinguistic context.

This well-defined extensibility gives this account of context dependence a strong advantage
over classical accounts such as those given by Kaplan (1979, 1989) and Recanati (2012). In
these approaches, the standing meaning of a word (Kaplan’s “character”) is represented as a
function from contexts to occasion meanings (Kaplan’s “content”). However, without specify-
ing what kind of function this is, this only sketches a solution in very general terms. What kind
of context should be considered, and how is this function calculated? The above Bayesian ac-
count can be seen as providing a specific mathematical mechanism to construct such a function.
Furthermore, by using Bayesian inference, we can naturally extend this to any kind of context,
rather than stipulating a fixed set of arguments for the function. A Bayesian account of context
dependence maintains the intuition behind the classical account, but is both more precise in its
computational mechanism and more general in its dependence on arbitrary context.

Finally, I should note one computational difficulty. To calculate occasion meanings, we
need to calculate posterior distributions. However, in the general case, calculating the posterior
is intractable, a problem that we will also run into when training the model, as will be explained
in §5.2. In practice, we need to approximate the posterior, and doing this will allow us to
construct approximate occasion meanings, as explained in §5.4.1.

4.3 Disambiguation

As mentioned in §2.3.1, word sense disambiguation can be seen as a kind of context depen-
dence. For a word that has a number of different senses, the context can make certain senses
more likely than others. In the above examples, however, we could model cut has a having a
single underspecified sense, following Ruhl (1989). While the context narrowed the occasion
meaning to a particular kind of cutting, we would need a fine-grained sense inventory in order
to see this as disambiguation.

I will now consider a case where it is easier to argue that there are distinct senses, because
one sense is more abstract than the other. The term bus is polysemous between a vehicle and
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a scheduled service. The senses are related, because a bus service necessarily involves a bus
vehicle. However, a service scheduled at a particular time (say, the 3:15 bus) might use different
vehicles on different days. In contrast, car has a vehicle sense, but not a service sense.3 The
preposition on is also polysemous (for discussion of its spatial senses, see: Herskovits, 1986),
and I will discuss two of its senses here: a physical location (supported by a surface), and
following a route or path (e.g. on course, on my way). In contrast, the preposition in has a
location sense, but not a route sense.

The two senses of bus and on mutually disambiguate one another,4 so that on the bus could
mean either being on the roof of a vehicle, or riding a scheduled service (presumably inside the
vehicle). In contrast, on the car and in the bus only refer to physical locations. Even if we want
to represent the standing meanings of on and bus as each having a single underspecified sense,
it is clear that their combination can lead to two distinct occasion meanings.

We can model this using the graphical model in Fig. 4.1, where Y is the prepositional
event, and Z is the vehicle or service. The distribution defined by the ARG2 role should assign
a high joint probability to Y being a location and Z being a vehicle, and also to Y being a
route and Z being a service, but assign a low joint probability to the other combinations. The
semantic function for bus would take high values for both vehicle pixies and service pixies,
and the function for on would take high values for both location pixies and route pixies. After
observing that Q is on and R is bus, the joint posterior over the pixies Y and Z would have two
local maxima, one for each of the two meanings discussed above. In contrast, replacing on with
in or replacing bus with car would lead to a distribution with a single maximum.

This kind of disambiguation relies on both world knowledge (the prior over situations) and
lexical semantic knowledge (the semantic functions for predicates). If we define a sense to be
a local maximum, as tentatively suggested in §3.7.2, then the number of occasion senses relies
on both kinds of knowledge. Even if we represent a term like bus with a single standing sense,
its interaction with other predicates may lead to a posterior distribution over situations where
we can identify distinct occasion senses.

4.4 Semantic Composition

Context dependence is often discussed in relation to compositionality. As this functional frame-
work builds on DMRS, we can compose semantic representations using the MRS composition
algebra (Copestake et al., 2001; Copestake, 2007).5 However, a functional model gives us a
new interpretation of the DMRS graphs. We can see a DMRS graph equipped with semantic
functions as a probabilistic binary classifier of situations.

3 Except for some dialects, where car can mean tram.
4 This observation is due to Martin Kay (p.c.).
5 Admittedly, composing DMRS graphs using the MRS composition algebra is somewhat indirect. A compo-

sition algebra for DMRS has been drafted but has not yet been published.

74



In the simplest case, a graph with a single node is a classifier of situations containing a single
individual – applying the semantic function to the individual can be seen as applying the graph
to the situation. For example, it is raining would be represented by a DMRS graph with a single
node, which can be used to classify raining situations. For a graph with multiple nodes, we can
make use of the fact that DMRS has a logical interpretation. In this section, I will consider the
case where all variables in the corresponding logical proposition are existentially quantified (for
example, a gardener is on a bus). This special case is enough to illustrate compositionality and
give a flavour of what it means in a probabilistic model. I will consider other quantifiers in the
subsequent section, and give a fuller account in Chapter 7.

For a graph with multiple nodes (neglecting quantifiers), we can define a classifier by first
aligning the graph topology to the situation structure, and then applying each semantic function
to the corresponding individual. If all the functions return truth, then the classifier for the whole
graph returns truth. This definition gives us a straightforward way to compose classifiers. We
can see the composed classifier as the standing meaning of a phrase.

The generative model in Fig. 4.1 doesn’t directly represent such a classifier. However, we
can interpret the last step of the generative process as choosing between composed classifiers
that return truth for the latent situation – the DMRS nodes are the predicate nodes in the bottom
row, and their corresponding truth values are in the middle row (along with truth values for all
other predicates). A set of predicates can only be generated if they all return truth, which would
mean that the combined classifier would also return truth. Intuitively, the graphical model first
generates a situation, and then generates a DMRS graph which is true of the situation.

So how does context dependence emerge as we compose DMRS graphs? If we start from
two DMRS graphs, we can consider the two posterior distributions over situations defined by
those graphs. Once we compose these two graphs, we have a new posterior distribution, over
larger situations. However, this posterior is not the same as independently combining the poste-
riors of the two subgraphs. As the pixie nodes of the two subgraphs are now linked together, we
have a joint distribution for all the pixie nodes, which depends on all the observed predicates.
This means that, as we build a composed DMRS graph, we modify the posterior distributions
at every step. In this way, we can see semantic composition as simultaneously composing the
logical structure and refining the context-dependent meanings.

While composition of logical structures can be done without world knowledge, composition
of occasion meanings relies on it. When two DMRS graphs are composed, we have one or
more semantic roles linking the pixies of the two graphs. The posterior distribution for the
composed graph depends on the new role(s), but information about these roles is part of world
knowledge and not the lexicon. We can see this in terms of what McNally and Boleda (2017)
term “conceptual afforded” composition and “referentially afforded” composition. Composition
of DMRS graphs relies on knowledge of concepts stored in the lexicon – for example, verbs
like rain describe events without any participants, so the DMRS graph cannot compose with an
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argument, while verbs like give describe events with several participants, so the DMRS graph
can compose with several arguments. In contrast, composition of occasion meanings relies on
knowledge of referents in a situation – as we have seen in the examples earlier in this chapter,
the posterior over situations is highly sensitive to the world knowledge encoded in the prior.

4.5 Logical Inference

The previous discussion considered inference about pixies, given observed predicates. In this
section, I turn to inference about truth values, given other truth values, which is the domain
of logical inference. The probabilistic graphical models we have been working with contain a
node for the truth of each predicate for each individual. Using these nodes, we can convert log-
ical propositions into statements about probabilities. Similarly to the above account of context
dependence, we will use conditional probabilities defined using Bayesian inference.

A simple example of the kind of logical inference we might be interested in is whether the
truth of one predicate implies the truth of another. To begin with, we can consider the simple
case of a situation containing a single individual. If we know that one predicate is true of this
individual, what does this tell us about other predicates? We can model this kind of inference
using the probabilistic graphical model in Fig. 4.2, which is a special case of a probabilistic
model structure, when there is only one individual X , and the vocabulary only contains two
predicates, a and b. Unlike the previous sections of this chapter, we are not generating predicates
– we are considering a probabilistic model structure, and attempting to perform the same kinds
of logical inference that could be done in a classical model structure.

Using the graphical model in Fig. 4.2, we can calculate the probability of one predicate be-
ing true of X , given that the other predicate is true: P (tb,X | ta,X). To calculate this, we must
marginalise outX , because the model defines the joint probability includingX: P (x, tb,X , ta,X).
This is analogous to removing bound variables when calculating the truth of quantified expres-
sions in classical logic, a correspondence which will be taken further in Chapter 7.

The truth values are conditionally independent given X , but once we marginalise out X , the
truth values are no longer independent. Intuitively, knowing one truth value tells us something
about the latent pixie, which in turn tells us something about the other truth value. Marginal-
ising out X requires summing over the semantic space X , which is intractable in the general
case, a difficulty that was previously noted for calculating occasion meanings. I will present a
variational inference algorithm in §5.4, and apply it to logical inference in §5.4.2, allowing us
to efficiently (but approximately) calculate such probabilities.

These conditional probabilities maintain a close link to classical logic, allowing us to set
up an equivalence6 between logical propositions and statements about conditional probabilities.

6 Unless we define conditional probabilities given zero-probability events, the equivalence requires the logic to
have “existential import”, which means that a proposition involving every A entails that some A exists. This follows
from the definition of conditional probability, P (B |A) = P (A ∧B) /P (A), which is only defined if P (A) 6= 0.
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X

Ta,X Tb,X

Figure 4.2: A simple probabilistic model structure with a single individual X , and two pred-
icates a and b. We can recast logical inference in terms of conditional probabilities, such as
P (tb,X | ta,X), the probability that b is true, given a is true.

Firstly, we can say that universally quantified propositions correspond to conditional probabil-
ities being equal to 1. For example, (4.6) and (4.7) are equivalent. Intuitively, conditioning
on Ta,X means restricting to those pixies x for which the predicate a is true. If the conditional
probability of Tb,X being true is 1, then the predicate b is true for all of those x.

∀x ∈ X , a(x)⇒ b(x) (4.6)

P (tb,X | ta,X) = 1 (4.7)

Similarly, we can say that existentially quantified propositions correspond to conditional
probabilities being nonzero. For example, (4.8) and (4.9) are equivalent. Intuitively, if there
a nonzero probability of Tb,X being true, then there is some pixie for which it is true. Setting
up an equivalence with a conditional probability might seem surprising, because the logical
proposition is symmetric in a and b, but the conditional probability is not. However, if we have
P (tb,X | ta,X) > 0, then we also have P (ta,X | tb,X) > 0. Writing it as a conditional probability
gives the same form to (4.7) and (4.9), and generalises better, as we will see in Chapter 7.

∃x ∈ X , a(x) ∧ b(x) (4.8)

P (tb,X | ta,X) > 0 (4.9)

Furthermore, classical rules of inference hold under the above equivalence. For example,
from P (tb,X | ta,X) = 1 and P (tc,X | tb,X) = 1, we can deduce that P (tc,X | ta,X) = 1. In clas-
sical syllogistic logic, this is known as the “Barbara” syllogism – from ∀x, a(x)→ b(x) and
∀x, b(x)→ c(x), we can deduce that ∀x, a(x)→ c(x). Proofs of the general equivalence and
this special case are given in §4.5.1 below. Admitted, this is only equivalence with a syllogis-
tic logic, which is quite restricted. I will extend this approach to deal with propositions with
multiple quantifiers in Chapter 7. However, we can already see some benefits of a probabilistic
approach – in a sense, the probabilities are more “fine-grained” than the logical propositions,
because probabilities lie in the range [0, 1], but the universal and existential quantifiers only
need to know if the probabilities are 0, 1, or an intermediate value.
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In practice, the probabilities will never be exactly 0 or exactly 1,7 because a distributional
model will only learn soft constraints, as discussed in §5.1.2. In some cases, we can get around
this – for example, if we are dealing with a fixed set of individuals, and some truth values
are observed (say, if they are part of the common ground in a discourse). In other cases, it
doesn’t matter if probabilities are always intermediate, because the probability itself can be
informative – for example, P (tb,X | ta,X) = 0.999 would mean that, if a(X) is true, it is almost

always the case that b(X) is also true. The conditional probability represents the degree to
which a implies b, in an intuitive sense: the higher the value, the closer we are to every; and the
lower the value, the closer we are to no.

One use of such conditional probabilities is to define a measure of lexical similarity. To
make the measure symmetric, we can multiply the conditional probabilities in both directions,
as shown in (4.10). This measures the degree to which a pair of predicates imply each other,
and it will be used in the experiments in §6.2.1.

logical-sim(a, b) = P (tb,X | ta,X)P (ta,X | tb,X) (4.10)

This measure casts similarity in terms of logical inference, and can be contrasted with sim-
ilarity in terms of feature overlap. Intuitively, if we know that a is true of one individual, and
that b is true of another, we can ask whether those individuals are similar. In other words, if we
have a similarity measure for pixies, this induces a similarity measure for predicates. Given a
prior over pixies, each semantic function defines a posterior over pixies. This is similar to the
occasion meanings we saw earlier in this chapter, with the only difference being that we are
conditioning on a truth value, rather than an observed predicate. Given two semantic functions,
we can define two distributions over pixies, as shown in Fig. 4.3. We can find the expected sim-
ilarity between pixies from those distributions, as shown in (4.11), where x is drawn from the
posterior for a, y is drawn from the posterior for b, and sim is some similarity measure over X .

featural-sim(a, b) = Ex,y [sim(x, y)] (4.11)

These two similarity measures allow us to distinguish cases where predicates imply each
another, and cases where referents are similar. For example, no cat is a dog, and no dog is a cat,
but it makes sense to say that cats and dogs are similar, because they share many features. The
“logical similarity” of cat and dog is low, but their “featural similarity” is high.

However, while a functional framework can draw this distinction in theory, learning such
a distinction is difficult when learning from distributional data. As Copestake and Herbelot
(2012) note, distinguishing logical similarity (which they term “substitutability”) from featural
similarity (which they term “contextual similarity”) requires knowing extensions. However,
in distributional semantics, such information is not overtly available. In principle, it could be

7 Except for contraditions (b is the negation of a) and tautologies (b is a).
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X Y

Ta,X Tb,Y

Figure 4.3: Similarity in terms of feature overlap. X and Y are independent and identically
distributed random variables. By conditioning X on the truth of a, and Y on the truth of b, and
then measuring the similarity of the pixies, we get a similarity measure for the predicates.

possible to use a coreference resolution system to determine when predicates share a referent.
This would make it possible to observe, for example, that cat and dog never share a referent,
even when they occur close together in the same text. If two predicates can both be true of
the same individual, we would expect to observe coreference. The lack of coreference should
lead us to deduce that the predicates should be true in disjoint regions of the semantic space.
However, implementing a system that uses coreference information is beyond the scope of this
thesis. Furthermore, similarity of such pairs of predicates are inconsistently annotated in the
available test data (see §6.2.1), which would make it difficult to evaluate if the system has
learnt such distinctions correctly. Nonetheless, the ability to make such a distinction is a clear
advantage over vector space models. Exploiting the distinction will be a task for future work.

Finally, in the general case, there are multiple individuals in a situation, as illustrated in
Fig. 4.4. This opens up the possibility of inferring what is true of one individual, given what
is true of another. For example, if we know that a person is cutting grass, we could ask how
likely it is that the person is also a gardener (likely), an artist (less likely), or a flowerpot (very
unlikely). As before, we can answer this question by calculating a conditional probability:
P (td,X | tperson,X , tcut,Y , tgrass,Z), where d is gardener, artist, or flowerpot.

As with the one-pixie case considered in Fig. 4.2, the truth values are conditionally inde-
pendent given the latent pixies, but they are not independent. The latent pixies share a joint
distribution, and because the truth values are connected via the latent pixies, the truth of one
predicate depends on all the other predicates. Intuitively, knowing one truth value tells us some-
thing about that predicate’s latent pixie, which in turn tells us something about the other pixies
in the situation, which in turn tells us something about the other truth values. This dependence
is similar to the dependence that we saw for occasion meanings.

Calculating the above conditional probability requires marginalising out all the latent pixies
from the joint distribution, and as with the one-pixie case, doing this in practice requires ap-
proximate inference algorithms, as will be discussed in §5.4.2. This algorithm will make the
connection between logical inference and context dependence even clearer – to calculate the
probability of a predicate being true of an individual, given a DMRS graph that describes the
situation, we first calculate the (approximate) occasion meanings of the nodes in the DMRS
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Ta,X Tb,Y Tc,Z

Td,X

Figure 4.4: Logical inference for three pixies and four predicates: we know that a, b, c are
true of X , Y , Z, respectively, and we would like to infer whether d is true of X , which can be
calculated as P (td,X | ta,X , tb,Y , tc,Z). The distribution for Td,X depends on all the other truth
values, because it is indirectly connected to them via the latent pixies.

graph, and then apply the predicate’s semantic function to the corresponding occasion meaning.

As with the one-pixie case, there is an equivalence between logical propositions and state-
ments about probabilities. For example, we can say (4.12) and (4.13) are equivalent. Note that
ARG1 in the logical proposition does not correspond to a random variable in the conditional
probability – it is instead represented in the structure of the graphical model (the edges between
orange nodes in Fig. 4.4). As before, this conditional probability will never be exactly 0 or 1,
but it is nonetheless a useful quantity, as we will see in the experiments in §6.2.2 and §6.2.3.

∃x, y ∈ X , a(y) ∧ b(x) ∧ ARG1(y, x) (4.12)

P (tb,X | ta,Y ) > 0 (4.13)

4.5.1 Proof of Equivalence

In this section, I prove the equivalence between logical propositions and constraints on proba-
bilities. This section can be safely skipped by readers not interested in a formal proof.

4.5.1.1 Proof of General Case

Syllogisms are classically expressed in set-theoretic terms. A quantified proposition of the form
Q a’s are b’s, where Q is some quantifier, gives constraints on the sizes of sets. Writing A for
the extension of a, and B for the extension of b, a quantified proposition constrains the sizes of
the sets A ∩B and A \B, and says nothing about the size of B.

For the existential quantifier ∃, we have:

|A ∩B| > 0
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For the universal quantifier ∀, we have the following, where the second constraint assumes
existential import:

|A \B| = 0

|A ∩B| > 0

From these definitions, we can use standard set theory to prove all and only the valid syllo-
gisms. To show equivalence with our probabilistic framework, we first note a measure-theoretic
correspondence – sizes of sets form a measure (the counting measure), and probabilities also
form a measure. The above conditions are all constraints on sizes of sets being zero or nonzero,
so it suffices to show that the sizes and probabilities are measure-theoretically equivalent:
they agree on which sets have measure zero.

Given a classical model structure with extensions for a and b, and assuming that we have
a semantic space that is fine-grained enough to represent each individual by a distinct pixie,
we can define a prior over the semantic space to be a uniform distribution over the pixies cor-
responding to the individuals.8 Finally, a classical truth-theoretic function is a special case of
a semantic function, where all conditional probabilities are either 0 or 1.9 So we have now
constructed a probabilistic model following Fig. 4.2.

Because the semantic space is fine-grained enough to embed all individuals as distinct pix-
ies, the sets of individuals A and B have corresponding sets of pixies. As we have defined
the prior for X so that its value always corresponds to an individual, A and B also have cor-
responding events X∈A and X∈B. In what follows, I will write P (A) to denote P (X∈A),
and so on. (The use of upper case A and B follows the set-theoretic convention, rather than the
random-variable convention.)

First, we note that P (B |A) = P(A∩B)
P(A) is defined only when P (A) > 0. This will give us

existential import. We need to prove that the statements about conditional probabilities are
equivalent to the statements about which events have zero probability.

For ∃, if P (B |A) > 0, then:

P (B |A) =
P (A ∩B)

P (A)
> 0

P (A ∩B) > 0

We can say nothing further about the probability P (A \B) = P (A)− P (A ∩B), which
may be zero or nonzero, just as in the classical case.

Conversely, if P (A ∩B) > 0, then P (B |A) > 0.

8 Technically, we can choose any distribution measure-theoretically equivalent to this one (assigning nonzero
probability precisely to those pixies). I have suggested a uniform distribution for concreteness.

9 For pixies that do not correspond to any individual, we can set the conditional probability to be 0, for com-
pleteness. However, it doesn’t actually matter, because these pixies have zero probability. In classical logic, we
don’t need to worry about generalisation to new situations.
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For ∀, if P (B |A) = 1, then:

P (A ∩B)

P (A)
= 1

P (A ∩B) = P (A)

P (A ∩B) = P (A ∩B) + P (A \B)

P (A \B) = 0

And we also have:

P (A \B) + P (A ∩B) = P (A) > 0

P (A ∩B) > 0

Conversely, if P (A \B) = 0 and P (A ∩B) > 0, then:

P (A) = P (A ∩B) + P (A \B)

= P (A ∩B)

=⇒ P (B |A) =
P (A ∩B)

P (A)
= 1

This demonstrates the equivalence.

4.5.1.2 Example – Barbara

We can prove the Barbara syllogism as follows:

P (B |A) = 1 =⇒ P (A \B) = 0,

P (A) > 0

P (C |B) = 1 =⇒ P (B \ C) = 0

P (A \ C) = P (A ∩B \ C) + P (A \B \ C)

≤ P (B \ C) + P (A \B)

= 0

P (A ∩ C) = P (A)− P (A \ C)

= P (A)

=⇒ P (C |A) =
P (A ∩ C)

P (A)
= 1
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Chapter 5

Implementation and Inference Algorithms

In Chapter 3, I described a general probabilistic framework, which extends model-theoretic
semantics, and which can be used for distributional semantics. However, a probabilistic graph-
ical model only gives constraints on a distribution, rather defining a specific distribution. Here
I explicitly construct a distribution that implements this graphical model. As I have already
noted, the large number of latent variables present a learning challenge, so I will try to keep
the network architecture as simple as possible, so as not to introduce additional challenges.
Experiments using this implementation will be presented in Chapter 6.

The most crucial part of this chapter is §5.1, which gives details of the probabilistic model.
I discuss how to train the model in §5.2, and I discuss approximate inference algorithms in §5.3
and §5.4. Longer derivations have been set aside as subsections, to make it easier for a reader
to skip them, if they are not interested in such details.

A Note on Notation

Although matrix-vector notation is common in NLP, it is often cumbersome, with a frequent
need to use matrix transposition. Furthermore, it is always unclear for higher-order tensors.

I will use index notation (also called suffix notation), where tensors (including vectors)
are written with subscripts that range over dimensions of the vector space. An nth-order tensor
has n subscripts. For example, ai is a vector, aij is a matrix, aijk is a third-order tensor, and
so on. I will also use the Einstein summation convention, which means an index which is
repeated is summed over. For example, aibi represents a dot product between vectors a and b,
and aijbjk represents a matrix multiplication of matrices a and b.

Indices which are not dimensions of a vector space will be written as superscripts in brack-
ets. For example, a truth value which was written as Tr,X in the previous two chapters will be
written as T (r,X), because predicates and random variables are not dimensions of a space. In
contrast, the semantic space will be a vector space, so pixies can be written as xi.
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Figure 5.1: The neural network on the right implements the probabilistic graphical model on
the left (repeated from Fig. 3.10). Each square represents a binary unit (with D units per pixie).
Top row: pixies are binary-valued vectors, forming a CaRBM. For each semantic role, there
are connections determining how likely it is that pairs of units are active at the same time.
Middle row: each semantic function is a one-layer feedforward network, with a single output
in the range [0, 1], which is used to generate a truth value.
Bottom row: true predicates are weighted by frequency and one is generated.

5.1 Network Architecture

The neural network architecture is shown in Fig. 5.1, alongside the graphical model defined
in §3.6. Because of the undirected edges in the graphical model, there are no existing models
used in NLP that can easily be adapted for this purpose. I take the semantic space X to consist
of D-dimensional binary-valued vectors. Furthermore, I assume that these vectors are sparse –
for any particular vector, most dimensions have value 0. In particular, I assume that exactly C
of these dimensions are 1, as shown in (5.1). Intuitively, each dimension represents a different
feature. Sparse representations have been shown to be beneficial in NLP, both for applications
and for interpretability of features (for example: Murphy et al., 2012; Faruqui et al., 2015).
Binary-valued vectors both encourage sparsity and make it easier to define a joint distribution
over several pixies, because the space is finite (although still very large, for reasonable D).

X =

{
x ∈ {0, 1}D

∣∣∣∣∣ ∑
i

xi = C

}
(5.1)

The rest of the architecture has been chosen to match this semantic space. We need to
specify how the edges corresponding to semantic roles determine a joint distribution for the
pixie nodes, and we need to specify how semantic functions determine probabilities of truth.

To define the joint distribution for pixie nodes, the basic idea is that we want to specify how
the features of one pixie node should co-occur with the features of other nodes that are linked
to it. I will refer to one dimension of a pixie node as a unit. If a unit’s value is 1, I will call it
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active or on, and if its value is 0, I will call it off. I will denote a semantic role l from x to y
as x l−→ y. As explained in §3.5, the semantic role is directed, while the edge in the graphical
model is undirected but asymmetric. I define the distribution over situations using a Restricted
Boltzmann Machine (RBM) (Smolensky, 1986; Hinton et al., 2006; Hinton, 2010), but rather
than having connections between “hidden” and “visible” units (as in a normal RBM), we have
connections between units of pixies, whenever two pixies are linked by a semantic role. This is
illustrated in the top row of Fig. 5.1. A variant of the RBM which is suitable for sparse vectors
is the Cardinality RBM (CaRBM), introduced by Swersky et al. (2012). This introduces a
constraint fixing the total number of active units, which matches the space defined by (5.1).

Let S be a random variable for a situation, distributed according to this RBM. The probabil-
ity of S taking the particular value s depends on the energy E(s), as shown in equations (5.2)
and (5.3). A high energy denotes an unlikely situation. Conversely, a large negative energy de-
notes a likely situation.1 The normalization constant Z ensures that the total probability across
all situations sums to 1.

The energy of a situation depends on the connections of the RBM, plus bias terms, as shown
in (5.4). Each semantic role l has a corresponding parameter matrix w(l)

ij , which determines the
strength of association between different features of the linked pixies. Indices i and j vary over
dimensions of the space X . The first term in (5.4) sums the contributions over all semantic roles
x

l−→ y between pixie nodes. Because I am using sparse representations, I assume that all link
parameters are non-negative – this means that we only have a nonzero parameter when a pair of
units are likely to be active together (and not when they are unlikely to be active together). This
is similar to the use of positive PMI in vector space models. I also introduce a bias vector bi, to
control how likely each dimension is to be active, regardless of the semantic roles. The second
term in (5.4) sums the biases over all pixies x in the situation. The parameter tensors w(l)

ij and bi
together define the distribution over situations.

P (S=s) =
1

Z
exp

(
−E(s)

)
(5.2)

Z =
∑
s′

exp
(
−E(s′)

)
(5.3)

−E(s) =
∑

x
l−→y in s

w
(l)
ij xiyj −

∑
x in s

bixi (5.4)

I now turn to the semantic functions t(r), which map from pixies to probabilities of truth.
As previously explained, the semantic functions determine the distributions for the truth value
nodes, as shown in (5.5). I implement each semantic function as a feedforward network.
Unlike the RBM, where the connections go in both directions, a feedforward network maps
from an input to an output. In this case, the output will be a value in [0, 1], interpreted as the

1 The minus sign may seem unfortunate in machine learning, but the term “energy” has been inherited from
statistical physics. A physical system is more likely to be in a low energy state.
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probability of truth. For simplicity, each semantic function is only a single-layer network, as
given in (5.6) and (5.7) and shown in Fig. 5.1. Each predicate r has a parameter vector v(r)i ,
which determines the strength of association with each dimension of the semantic space. As
with the semantic role parameters, I assume that these parameters are all non-negative, so that
only positive associations are stored in the model. I also include a bias term a(r), which controls
how likely the predicate is to be true or false in general. These together define a score F (x, r),
as shown in (5.7).2 This is passed through the sigmoid function to give a value in the range
[0, 1], as shown in (5.6). The parameter vector v(r)i looks just like a set of feature weights as
proposed in the prototype theory of concepts (Rosch, 1975, 1978).

P
(
T (r,X) =>

∣∣X=x
)

= t(r)(x) (5.5)

t(r)(x) =
1

1 + exp
(
F (x, r)

) (5.6)

−F (x, r) = v
(r)
i xi − a

(r) (5.7)

Given the semantic functions, choosing a predicate for a pixie can be hard-coded, for sim-
plicity, as was discussed briefly in §3.6. I will write R(X) for the predicate node corresponding
to a pixie node X . The probability that R(X) takes the value r depends on whether it is true of
the pixie, and depends on the frequency f (r) of the predicate, where frequencies are defined as
a proportion of observed tokens, so that

∑
r f

(r) = 1. This distribution over predicates is shown
in (5.8) and (5.9), where Z(x) normalises the distribution.3

P
(
R(X) =r

∣∣X=x
)

=
1

Z(x)
f (r)T (r,X) (5.8)

Z(x) =
∑
r′

f (r′)T (r′,X) (5.9)

However, the trouble with using this definition is that we cannot calculate the probability
of generating a predicate without sampling a truth value for every predicate in the vocabulary,
becauseZ(x) is a random variable that depends on all truth values for that pixie. A slightly more
tractable alternative is to use a mean-field approximation, where we consider the expected value
of each truth value node, rather than sampling a value. In other words, we use probabilities of
truth, rather than sampling truth values. We can then calculate a distribution based on these
expected values, as shown in (5.10) and (5.11), which approximate the result of (5.8) and (5.9).
Now, the probability of generating a predicate r depends on the predicate’s frequency f (r) and
the value of its semantic function t(r)(x). We still need to consider the whole vocabulary to

2 The minus sign in the definition of F is to show the similarity with E. We can view F (x, r) as the energy
associated with r being true of x, where falsehood always has an energy of 0.

3 If it is usually the case that many predicates are true at the same time, this implicitly assumes that all predicates
are true equally often, but frequent predicates are more likely to be generated. An alternative would be to use some
function of the frequency, such as taking it to some power in the range [0, 1].
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calculate the normalisation constant Z(x), but it is at least no longer a random variable.

P
(
R(X) =r

∣∣X=x
)

=
1

Z(x)
f (r)t(r)(x) (5.10)

Z(x) =
∑
r′

f (r′)t(r
′)(x) (5.11)

5.1.1 Summary of Architecture

To ensure clarity in the above description, I used the verbose notation that distinguishes random
variables, values, and events of a random variable taking a value. In the following sections, I
will use the more succinct notation explained in Chapter 4, where P (X=x) is written as P (x),
and P

(
T (a,X) =>

)
is written as P

(
t(a,X)

)
.

Below is a summary of the above model, using the succinct notation. To further simplify
the equations, I have given unnormalised probabilities, without the normalisation constants
(writing∝ to indicate this). Equation (5.12) shows that the distribution over situations is imple-
mented by an RBM, with connections between pixies that are linked by a semantic role (plus
bias terms that make some parts of the semantic space more likely). Equation (5.13) shows that
a semantic function is implemented by a one-layer feedforward network. I have further sim-
plified the equation by writing σ for the sigmoid activation function, σ(x) = (1 + exp(−x))−1.
Finally, equation (5.14) shows that predicates are generated according to their frequency and the
value of the semantic function. These three equations correspond to the three rows of Fig. 5.1,
from top to bottom.

P (s) ∝ exp

 ∑
x

l−→y in s

w
(l)
ij xiyj −

∑
x in s

bixi

 (5.12)

t(r)(x) = σ
(
v
(r)
i xi − a

(r)
)

(5.13)

P (r |x) ∝ f (r)t(r)(x) (5.14)

5.1.2 Soft Constraints

It should be noted that this model only implements soft constraints on semantics – indeed, it
would be difficult to learn hard constraints from corpus data alone. This means that, all distri-
butions over pixies have a nonzero probability for every pixie, and all semantic functions assign
a nonzero probability of truth to every pixie. By analogy with a traditional model structure, we
might want to have zero values, to indicate that a certain pixie or situation is impossible, or that
a certain predicate is definitely false of a certain pixie. However, from a Bayesian point of view,
a zero probability is problematic – it would imply that, no matter what new evidence an agent
observes, they cannot change their mind.
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In practice, some probabilities will be vanishingly small. In fact, to make interesting predic-
tions, this is necessary – for high-dimensional spaces, an interesting subspace (perhaps repre-
senting a domain, like rock climbing or ballroom dancing) may be small compared to the whole
space. For example, suppose we have 1000 dimensions, with only 40 active at once. This gives
1072 pixies. A subspace only using 200 dimensions has 1042 pixies, or one part in 1030 of the
whole space! To define a distribution P (x) over the space, with most probability mass in this
subspace, pixies in the subspace must be at least 1030 times more likely than pixies outside.

Suppose a predicate is probably true of pixies in this subspace, and probably false of pixies
outside. Intuitively, knowing that the predicate is true should restrict our attention to the sub-
space. More formally, given a single pixie node, with a uniform prior over the space, and given
a truth value node which is observed to be true, we might expect the pixie node’s posterior to
assign most probability mass to the subspace. For this to happen, the probability P (t |x) of the
predicate being true must be 1030 times larger for pixies in the subspace than for pixies outside.
So, for a semantic function to be useful, it must be close to a step function. This makes it look
more like a traditional truth-conditional function with only 0 and 1 as values.

5.2 Gradient Descent

To train the above architecture, we need to determine values for its parameters – the semantic
role parameters w(l)

ij , bi, and the semantic function parameters v(r)i , a
(r). We are aiming to opti-

mise these parameters to maximise the probability of observing the training data. As described
in §3.6, each data point is a DMRS graph observed in a parsed corpus.

When the probability of the training data is viewed as a function of the model parameters,
it is called the likelihood of the parameters. For the family of optimisation algorithms based
on gradient descent, we need to know the gradient (or derivative) of the likelihood with
respect to the model parameters. The basic idea is to update each parameter in the direction that
increases the likelihood. The gradient of the likelihood with respect to a parameter θ is given
in (5.15), which decomposes into four terms: the first two are for the prior distribution over
situations, and the last two are for the semantic functions. In both cases, one term is positive
and conditioned on the data, while the other term is negative and represents the predictions of
the model – the model converges (the parameter updates go to zero) when the predictions of
the model exactly match the data, so the two terms cancel out.

In (5.15), s is a latent situation and g is an observed DMRS graph, (corresponding to the top
and bottom rows of Fig. 5.1, respectively). The gradient is of the log-likelihood, for mathemat-
ical convenience, because multiplying probabilities corresponds to summing log-probabilities,
and it’s easier to differentiate a sum than a product. Maximising the log-likelihood is equivalent
to maximising the likelihood. In the last two lines, the sum is over the pixies x in the latent sit-
uation, and r is the observed predicate corresponding to x (which could also be written as r(X)
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to indicate this). In the last line, r′ denotes a predicate generated from the latent pixie x, and
g′ denotes a DMRS graph generated from the latent situation s – both of these are supposing
we fix the situation s, and imagine we haven’t observed the predicates. The subscripts on the
expectations denote which random variable is marginalised out, and which random variables
are conditioned on (if any). A full derivation is given in §5.2.1 below.

∂

∂θ
logP (g) = Es|g

[
∂

∂θ

(
−E(s)

)]
−Es

[
∂

∂θ

(
−E(s)

)]
+Es|g

[∑
x in s

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)]

−Es|g

[
Eg′|s

[∑
x in s

(
1−t(r′)(x)

) ∂
∂θ

(
−F (x, r′)

)]]
(5.15)

We can now expand (5.15) for each of the parameter tensors, as shown in (5.16) to (5.19).
For the semantic role parameters w(l)

ij and bi, we only get contributions from the first two terms
of (5.15), while for the semantic function parameters v(r)i and a(r), we only get contributions
from the last two terms of (5.15). The gradient for w(l)

ij is given in (5.16), showing that we
reinforce connections between units we expect to be active for the observed graph, and we
weaken connections between units that we expect to be active in general (not conditioned on
the observed graph). The gradient goes to zero when each RBM connection is used equally
often when explaining the data and when generating new situations. The gradient for bi is given
in (5.17), where we similarly weaken bias against units we expect to be active for the observed
graph, and we strengthen bias against units we expect to be active in general.

∂

∂w
(l)
ij

logP (g) =
(
Es|g − Es

) ∑
x

l−→y in s

xiyj

 (5.16)

∂

∂bi
logP (g) =

(
Es|g − Es

)[
−
∑
x in s

xi

]
(5.17)

The gradient for v(r)i is given in (5.18), where, for the observed predicate, we reinforce
weights for the units we expect to be active – and if other predicates are likely to be generated
for this pixie, we weaken their weights. The different behaviour for the observed predicate and
other predicates is indicated by 1r′=r, which is 1 when r′ = r, and 0 otherwise. The gradient
goes to zero when the predicted predicates for latent situations match the observed predicates.
Finally, the gradient for a(r) is given in (5.18), where we similarly weaken the bias against the
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observed predicate, and strengthen the bias against other likely predicates.

∂

∂v
(r′)
i

logP (g) = Es|g

[∑
x in s

(
1r′=r − P (r′ |x)

)((
1−t(r′)(x)

)
xi

)]
(5.18)

∂

∂a(r′)
logP (g) = Es|g

[∑
x in s

(
1r′=r − P (r′ |x)

)(
−
(
1−t(r′)(x)

))]
(5.19)

Calculating the above expectations exactly is infeasible, as this requires summing over all
possible situations, and for high-dimensional spaces, there are simply too many to sum over. In
the following two sections, I introduce approximate calculations for these expectations: in §5.3,
I introduce a Markov Chain Monte Carlo method, which approximates the expectation by sum-
ming over a number of samples, and in §5.4, I introduce a Variational Inference method, which
approximates the distribution we are summing with respect to.

5.2.1 Derivation of Gradient

In this section, I derive (5.15). We are aiming to optimise the log-likelihood logP (g), with
respect to the model parameters. The important idea that will lead us to the relatively intuitive
form of (5.15) is that the model is a combination of two distributions in the exponential family
– probabilities are proportional to the exponential of a negative energy. Both the prior distri-
bution over situations, and the conditional distribution over predicates given a situation, can be
expressed in this form.4 This means that each half of the model gives a pair of terms in the
gradient: one positive, conditioned on the data; and one negative, generated by the model.

First, we apply the chain rule to logP (g). Although using a log simplifies the gradient,
the simplification is not immediate, because the model generates the graph based on the latent
situation, so calculating logP (g) requires summing over all s. We then expand P (s, g) into
a product of terms. Here, each pixie x in s corresponds to a predicate r in g. Recall that
t(r) denotes the semantic function for r, and f (r) denotes the frequency of r, which is a constant.

∂

∂θ
logP (g) =

1

P (g)

∂

∂θ
P (g)

=
1

P (g)

∂

∂θ

∑
s

P (s, g)

=
1

P (g)

∂

∂θ

∑
s

1

Z
exp

(
−E(s)

) ∏
x in s

1

Z(x)
f (r)t(r)(x)

4 It is tempting to try to reparametrise the model so the whole thing is in the exponential family. Indeed, di-
rected and undirected graphical models are equivalent – given a model of one form, there is a model of the other
form defining the same distribution. However, I have introduced a family of graphical models with different situ-
ation structures, but with shared parameters. Conversion to an undirected graph loses parameter sharing between
semantic functions, and conversion to a directed graph loses parameter sharing between semantic roles.
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As the summand is product of several terms, applying the product rule will give a sum of
several terms. However, we can make use of the fact that all these terms are exponentials, so
their derivatives of are multiples of the original term:

∂

∂θ
e−E(s) = e−E(s) ∂

∂θ

(
−E(s)

)
∂

∂θ
t(r)(x) = t(r)(x)

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)
∂

∂θ

1

Z(x)
= − 1

Z(x)2
∂

∂θ
Z(x)

∂

∂θ

1

Z
= − 1

Z2

∂

∂θ
Z

This allows us to derive:

∂

∂θ
logP (g) =

1

P (g)

∑
s

P (s, g)

[
∂

∂θ

(
−E(s)

)
+
∑
x in s

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)
−
∑
x in s

1

Z(x)

∂

∂θ
Z(x)

− 1

Z

∂

∂θ
Z

]

The final summand does not depend on s, so the sum simplifies:
∑

s P (s, g) = P (g), which
cancels with 1/P (g). For the other three terms, we can simplify using P (s, g) /P (g) = P (s | g).
Then:

∂

∂θ
logP (g) =

∑
s

P (s | g)

[
∂

∂θ

(
−E(s)

)
+
∑
x in s

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)
−
∑
x in s

1

Z(x)

∂

∂θ
Z(x)

]
− 1

Z

∂

∂θ
Z

We now expand the derivatives of the normalisation constants. As these are sums of the first
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two terms, they give analogous derivatives, except summed over all values:

1

Z

∂

∂θ
Z =

1

Z

∂

∂θ

∑
x

exp
(
−E(x)

)
=
∑
s

exp
(
−E(x)

)
Z

∂

∂θ

(
−E(s)

)
=
∑
s

P (s)
∂

∂θ

(
−E(s)

)

1

Z(x)

∂

∂θ
Z(x) =

1

Z(x)

∂

∂θ

∑
r′

f (r′)t(r
′)(x)

=
∑
r′

f (r′)t(r
′)(x)

Z(x)

(
1−t(r′)(x)

) ∂
∂θ

(
−F (x, r′)

)
=
∑
r′

P (r′ |x)
(
1−t(r′)(x)

) ∂
∂θ

(
−F (x, r′)

)

Putting this all together, we get:

∂

∂θ
logP (g) =

∑
s

P (s | g)

[
∂

∂θ

(
−E(s)

)
+
∑
x in s

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)
−
∑
x in s

∑
r′

P (r′ |x)
(
1−t(r′)(x)

) ∂
∂θ

(
−F (x, r′)

)]

−
∑
s

P (s)
∂

∂θ

(
−E(s)

)

Finally, we write expectations instead of sums of probabilities:

∂

∂θ
logP (g) = Es|g

[
∂

∂θ

(
−E(s)

)
+
∑
x in s

(
1−t(r)(x)

) ∂
∂θ

(
−F (x, r)

)
−
∑
x in s

Er′|x
[(

1−t(r′)(x)
) ∂
∂θ

(
−F (x, r′)

)]]
−Es

[
∂

∂θ

(
−E(s)

)]
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5.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods approximate expectations by sampling a
small number of points, that should be somehow representative of the whole distribution. For
example, this kind of inference is often used for LDA (Griffiths and Steyvers, 2004) and for
RBMs (Hinton, 2002, 2010). For the random variable that we need to marginalise out, we start
from some random initial value, and define a probabilistic update rule. This rule is chosen so
that, as we keep applying it, the distribution of values tends towards the distribution we want.
After applying the rule many times, we can use the resulting value as a sample. The updates
can be seen as defining a Markov chain (the distribution for the next value only depends on the
previous value) and the sampling as a Monte Carlo method (we take samples to approximate
the full distribution) hence the name.

In (5.15), there are expectations with respect to three different distributions, and so we need
to sample values for each of these three distributions. For the first, third, and fourth terms, we
need to sample a situation conditioned on the observed DMRS graph, while for the second term,
we need to sample a situation without conditioning on the data. The sampling of situations both
with and without conditioning on the data is analogous to the training of normal RBMs. For
the fourth term, we also need to sample a predicate for each sampled pixie, which we use to
approximate the fourth term – this sampled predicate is analogous to the negative samples used
by Mikolov et al. (2013) in a Skip-gram model.

For all three sets of samples, we can initialise values randomly, but we need to know update
rules so that the sampled values tend towards the correct distributions. As we will see, the form
of the model means that sampling is more difficult than for LDA or normal RBMs.

The prior distribution over situations is the easiest to calculate, because we can exactly
calculate the conditional distribution of one pixie, given the other pixies in the situation. This
is by virtue of the design of a CaRBM – Swersky et al. (2012) show they can be calculated
using belief propagation5 (for an introduction, see: Yedidia et al., 2003). Intuitively, if we
didn’t have the cardinality constraint, we could switch each unit on or off independently. With
the constraint, we can first consider units independently, and then rule out cases where the
total number of active units is wrong. This can be done efficiently, because we can recursively
calculate how many units are active for the first i units, and build up to the whole vector.

We first fix an (arbitrary) order of the units, and calculate the probabilities pi that each unit
is on, ignoring the cardinality constraint, as shown in (5.20). The probability for each unit
depends on its connections to other pixies in the situation, as well as its bias.

pi = σ

∑
y

l−→x

w
(l)
ji yj +

∑
y

l←−x
w

(l)
ij yj − bi

 (5.20)

5 Also known as the “sum-product algorithm”.
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We can then sample a pixie using two passes over the units. In the first pass, we calculate
the probabilities m(i, n) that, out of the first i units, exactly n of them are active, supposing we
don’t have a cardinality constraint, as shown in (5.21). These are calculated recursively over i,
starting fromm(1, 1) = p1 andm(1, 0) = 1−p1. We can let n range from 0 to C, discarding the
probability mass making the total is above C. We know that exactly C must be active overall, so
once we have finished the first pass, we can discard all of the probability mass making the total
below C. In the second pass, we go back along the units, probabilistically deciding whether
to switch each unit on or off. At each unit i, we know how many more units need to be on –
let this number be ki. For the last unit, we simply have kD = C. We can find the probability
that the current unit is on, using the unnormalised probabilities calculated in the first pass – in
particular, the probabilities that, out of the remaining units, exactly ki or ki−1 are on, as shown
in (5.22) and (5.23). After probabilistically choosing a value, we can calculate ki−1 based on ki,
subtracting 1 if we turned unit i on.

m(i, n) = pim(i−1, n−1) + (1−pi)m(i−1, n) (5.21)

P (xi=1) ∝ m(i−1, ki−1) (5.22)

P (xi=0) ∝ m(i−1, ki) (5.23)

I now turn to the second distribution we need to sample from, the distribution over sit-
uations s conditioned on an observed DMRS graph g. We cannot calculate the conditional
distribution P (s | g), and unlike for the prior P (s), we also cannot calculate the conditional dis-
tribution for each pixie node, given the graph and all other pixies. For the prior, it was possible
to use belief propagation, but this relied on decomposing the cardinality constraint into a series
of recursive steps. This is unfortunately not possible when conditioning on a predicate. I will
denote the conditional distribution for one pixie node as P (x | g, s−X), where s−X represents
the values for all other pixie nodes in the situation.

However, if we compare two particular values x and x′, for a single latent pixie variable,
the normalisation constant cancels out in the ratio P (x′ | g, s−X) /P (x | g, s−X), so we can use
the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970). Each update step
involves first considering switching to a different value, and then probabilistically deciding to
either switch to the new value or stay with the current value. For sampling a sparse binary-
valued vector, given the current value x, we can uniformly at random choose one unit to switch
on, and one to switch off, to get a proposal x′. If the ratio of probabilities shown in (5.24) is
above 1, we automatically switch to x′; while if the ratio is below 1, it is used as the probability
of switching to x′. Here, r is the observed predicate corresponding to the latent pixie.

P (x′ | g, s−X)

P (x | g, s−X)
=

exp
(
−E(s′)

)
1

Z(x′)
t(r)(x′)

exp
(
−E(s)

)
1

Z(x)
t(r)(x)

(5.24)
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Although Metropolis-Hastings avoids the need to calculate the normalisation constant Z of
the prior distribution, the model was defined with two normalisation steps (unlike most appli-
cations of the algorithm, where there is just one) and so we still have the normalisation con-
stant Z(x) for choosing a predicate given a pixie. This constant represents the proportion of the
vocabulary that is true of the pixie (weighting predicates by frequency). Intuitively, we prefer to
sample a pixie which few predicates are true of, rather than a pixie which many predicates are
true of. Calculating this requires summing over all the whole vocabulary, which is expensive.

To avoid this problem, we can introduce an approximation. Rather than averaging the out-
puts of the semantic functions, we can instead average the functions themselves. This means
that we can calculate a single average, which we can use for all pixies, rather than having to cal-
culate a different average for each pixie. Weighting predicates by frequency, we can calculate
the average predicate weights vi and biases b, which define an average semantic function t. One
option for approximating the ratio of normalisation constants is to apply this average semantic
function, as shown in (5.25). However, we have no guarantee that this is a good approximation.
An alternative is to consider the average predicate weights for the dimensions that are being
turned on and off. Intuitively, if the average weight is higher for one dimension, more predi-
cates may be true when that dimension is active. A heuristic approximation is given in (5.26),
where x and x′ differ in dimensions i and i′ only: xi and x′i′ are on, while xi′ and x′i are off.
Using an exponential means that we can simply add this term to the energy. The constant k can
be freely chosen to improve the accuracy of this approximation.

Z(x)

Z(x′)
≈ t(x)

t(x′)
(5.25)

OR
Z(x)

Z(x′)
≈ exp

(
k (vi − vi′)

)
(5.26)

Finally, we have the distribution over predicates, given a latent pixie. This can be done
straightforwardly using the Metropolis-Hastings algorithm, according to the ratio shown in (5.27),
where x is the value of the latent pixie, r is the current value of the sampled predicate, and r′ is
the proposed new value of the sampled predicate.

P (r′ |x)

P (r |x)
=
f (r′)t(r

′)(x)

f (r)t(r)(x)
(5.27)

One optimisation is worth noting. After each update to the model parameters, all of the
above distributions will change. Rather than recalculating the samples from scratch after each
parameter update, we can use fantasy particles (also known as persistent Markov chains),
which Tieleman (2008) found effective for training RBMs. This simply involves keeping the
value from before the parameter update, and using this as the initial value after the update.
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Figure 5.2: The diagram on the right depicts a mean-field approximation, where each unit has
an independent probability of being active. These probabilities are optimised so that the joint
distribution approximates the conditional distribution of the pixie nodes in the graphical model
on the left (repeated from Fig. 5.1), given the observations P = p, Q = q, and R = r. We are
not interested in the latent truth values, so they are not explicitly represented.

5.4 Variational Inference

The MCMC algorithms described in the previous section guarantee unbiased estimates once
the Markov chain has converged (with the exception of the approximation for Z(x)). However,
an MCMC algorithm is slow for two reasons. Firstly, many iterations of the Markov chain are
required for it to converge. Secondly, even though we are not summing over the entire space,
many samples are still needed, because the discrete values lead to high variance. In this section,
I introduce a variational inference algorithm, which directly approximates the distribution we
need to calculate, and then optimises this approximation.

The distribution that is difficult to sample from is P (x | g, s−X), the conditional distribution
of a pixie node, given the observed DMRS graph g and all other latent pixies s−X . The ba-
sic idea is to introduce a simpler distribution Q(x), and then optimise the parameters for this
simpler distribution. In particular, we can use a mean-field approximation, where each unit
has an independent probability qi of being active, as shown in (5.28). This is simpler than the
true distribution, because each unit is independent. Furthermore, we will optimise each of these
probabilities based on the average activation of all other units (in other words, the mean-field

activation).
P (x | g, s−X) ≈ Q(x) =

∏
i|xi=1

qi
∏
i|xi=0

(1− qi) (5.28)

The Q distribution therefore has one parameter for each unit, and the values of these param-
eters are jointly optimised across all pixies, so that the overall distribution is close to the true
distribution P. Because the parameters are jointly optimised, each parameter depends on all the
observed pixies. This is illustrated in Fig. 5.2.
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For Q to be a good approximation, it needs to be close to P. We can measure this using
the Kullback-Leibler (KL) divergence from Q to P, which measures the number of extra bits
we need to encode a sample from P using a code designed for Q. Minimising this quantity
is also done in the Expectation Propagation algorithm (Minka, 2001). However, a semantic
function model is not in the exponential family, which means we cannot apply Expectation
Propagation. In contrast, Variational Bayes minimises the KL-divergence in the opposite di-
rection, from P to Q. However, for the above approximation, this is infinite: for any pixie where
the number of active units is not equal to the fixed cardinality, P (x) = 0 but Q(x) 6= 0, giving
infinite Q(x) logP (x | g, s−X). Furthermore, while Variational Bayes prefers “high precision”
approximations (areas of high Q are accurate), optimising the opposite KL-divergence leads to
“high recall” approximations (areas of high P are accurate). This is appropriate for two reasons.
Firstly, one way that Q has low precision is predicting pixies with the wrong number of active
units. However, we can avoid these areas by using the belief propagation algorithm explained
in the previous section – we simply replace pi with qi in (5.20). Secondly, in areas where the
number of active units is correct, Q will be much higher than P only if there is a dependence
between dimensions that Q cannot capture, such as if P has multiple local maxima. Because of
the definition of an RBM, such a dependence is impossible within one pixie. Between pixies,
this kind of dependence is possible, as was discussed in §4.3, but it is reasonable to expect
such cases to be rare, since they need a fine balance between the prior over situations and the
semantic functions.

To optimise Q, we can use gradient descent on the parameters qi. For simplicity, we can
begin by considering a situation composed of a single pixie x, with an observed predicate r.
Exactly calculating the gradient turns out to be difficult, and additional approximations are nec-
essary. In particular, given a mean-field distribution, what is the expected output of a semantic
function applied to a vector drawn from the distribution? The mean field vector is not in X ,
because each component lies in the range [0, 1], rather than the binary set {0, 1}. Each value
represents how much we expect the pixie to have a particular feature, given the observed pred-
icates. However, we can still apply semantic functions to these mean-field vectors, since they
have been implemented as feedforward neural nets – each parameter in a neural net can be
multiplied by a value in the range [0, 1] just as easily as it can be multiplied by 0 or 1. Since
a mean-field vector defines a distribution over pixies, applying a semantic function to a mean-
field vector lets us approximately calculate the probability that a predicate is true of a pixie
drawn from this distribution.

Differentiating the KL-divergence with respect to qi, and using the above idea that we can
apply semantic functions to mean-field vectors, we can derive the update rule given in (5.29).
A full derivation is given in §5.4.3. This updates Q one parameter qi at a time, while holding
the other parameters fixed. The rule looks at the probability of generating the predicate r when
the unit xi is on, and when it is off. If r is more likely to be generated when xi is on, qi will
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be high. If r is more likely to be generated when xi is off, qi will be low. If there is no
difference, qi will be C/D, the expected probability if all dimensions are equally likely. I have
written x(+i) for the mean-field vector where unit i is fixed to be on, and x(−i) for the mean-field
vector where unit i is fixed to be off. Details are given in §5.4.3. Optimising Q can then be
done by repeatedly applying this update rule across all dimensions. To approximate the ratio of
normalisation constants Z(x), we can use (5.25).

qi =

(
1 +

D−C
C

t(r)
(
x(−i)

)
t(r)
(
x(+i)

)Z (x(+i))
Z
(
x(−i)

))−1 (5.29)

For multiple pixies, as shown in Fig. 5.2, the process is similar. We have one mean-field
vector for each pixie node, and we optimise these together. The only difference to the update
rule is that, as well as considering how activating one unit changes the probability of a predicate
being generated, we also have to consider how likely this dimension is to be active, given the
other pixies in the situation. This leads to an extra term in the update rule, as shown in (5.30),
where we sum over incoming links y l−→ x and outgoing links y l←− x. This rule also includes
the bias terms, which were neglected in the update rule above.

qi =

1 +
D−C
C

t(r)
(
x(−i)

)
t(r)
(
x(+i)

)Z (x(+i))
Z
(
x(−i)

) exp

bi −∑
y

l−→x

w
(l)
ji yj −

∑
y

l←−x

w
(l)
ij yj



−1

(5.30)

Intuitively, we assign high probabilities to a unit for two possible reasons: either it’s strongly
connected to highly probable units in other pixies, or activating this unit makes it much more
likely for an observed predicate to be generated. If neither of these facts hold, we will assign
a low probability – because we are enforcing sparsity on the pixie vectors, the dimensions are
effectively competing with each other.

5.4.1 Variational Inference for Context Dependence

In §4.2, I proposed representing the occasion meaning of a predicate as the posterior distribution
of its corresponding pixie node. Because the above mean-field vectors approximate posterior
distributions of pixie nodes, we can see a mean-field vector as an approximate occasion mean-
ing. Indeed, the right-hand side of Fig. 5.2 clearly shows how each mean-field vector depends
on the whole context.

The update rule given in (5.30) applies specifically to linguistic context (observing a DMRS
graph), but the general principle behind it could be applied to other kinds of context. As previ-
ously argued, a probabilistic graphical model can easily be extended to include extralinguistic
nodes, and variational inference can similarly be extended to approximate other kinds of poste-
rior distribution, and hence other kinds of occasion meaning.
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X

Ta,X Tb,X

(a) Logical inference for a single pixie X , repeated
from Fig. 4.2. We would like to know if b is true
of X , given that a is true of X , which can be cast
as the conditional probability P (tb,X | ta,X).

(b) Variational inference for Fig. 5.3a. The dotted
lines indicate mean-field variational inference, and
the solid lines indicate approximate inference using
the mean-field pixie vector.

Y ZX
ARG2ARG1

Ta,X Tb,Y Tc,Z

Td,X

(c) Logical inference for three pixies, repeated from
Fig. 4.4. We would like to know if d is true of X ,
given that a, b, c are true of X , Y , Z, respectively,
which can be cast as the conditional probability
P (td,X | ta,X , tb,Y , tc,Z).

(d) Variational inference for Fig. 5.3c. The ARG1
and ARG2 roles are not represented, but the mean-
field probabilities are optimised to approximate the
joint distribution induced by the links, and so each
unit depends on all observed truth values.

Figure 5.3: Each variational distribution on the right allows us to approximately calculate a
conditional probability (which represents a logical inference) defined by the graph on the left.

5.4.2 Variational Inference for Logical Inference

In §4.5, I cast logical inference as Bayesian inference between truth value nodes. The above
variational inference algorithm now gives us an efficient way to calculate these conditional
probabilities, as illustrated in Fig. 5.3. The only difference with the previous discussion is that
we are now conditioning on a predicate being true, rather than a predicate being generated. This
changes just one detail in the derivation in §5.4.3 – we can drop the Z(x) terms, because we are
just considering the truth of one predicate, rather than choosing to generate a predicate from the
vocabulary. This means that conditioning on truth is actually slightly easier than conditioning
on observing a predicate, because we don’t need to approximate Z(x).

To use the mean-field approximation for logical inference, we first find the mean-field vec-
tors for all pixie nodes in the situation, conditioning on the observed truth values. Note that we
have to construct a vector for every pixie node, because they are jointly optimised to approxi-
mate the joint posterior distribution for the pixie nodes. We then take the semantic function for
predicate of interest, and apply it to the relevant mean-field pixie.
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5.4.3 Derivation of Update Rule

In this section, I derive (5.29) and (5.30). A few additional approximations are necessary,
beyond the mean-field approximation, which will be introduced in the course of the derivation.
We are trying to optimise Q to minimise the KL-divergence from Q(x) to P (x | g, s−X):

DKL(P||Q) =
∑
x

P (x | g, s−X) log
P (x | g, s−X)

Q(x)

=
∑
x

P (x | g, s−X)

 logP (x | g, s−X)−

 ∑
j|xj=1

log(qj) +
∑
j|xj=0

log(1− qj)


To optimise Q, we take the derivative with respect to a parameter qi. Note that the first term

above is independent of Q, which gives us the first line below. The independence assumption
of Q also means that ∂qj/∂qi = 0 for all j 6= i. This gives us the second line below, where the
sum over x has been split according to whether xi is on or off.

∂

∂qi
DKL(P||Q) = − ∂

∂qi

∑
x

P (x | g, s−X)

 ∑
j|xj=1

log(qj) +
∑
j|xj=0

log(1− qj)


= −

∑
x|xi=1

P (x | g, s−X)
1

qi
+
∑
x|xi=0

P (x | g, s−X)
1

1− qi

Now we can rewrite P (x | g, s−X) as the following. Let r be the observed predicate cor-
responding to x. For simplicity, we will first assume that r is the only predicate in g, and so
x is the only pixie in s. We will also assume a uniform prior over x, which is equivalent to
neglecting the bias terms bi. For D dimensions, of which C are active, there are

(
D
C

)
different

vectors, which are each equally likely.

P (x | g, s−X) = P (x | r) =
P (x)P (r |x)

P (r)

=
f (r)t(r)(x)(
D
C

)
P (r)Z(x)

Note that f (r)/
(
D
C

)
P (r) is constant in x, so the only part that depends on x is t(r)(x)/Z(x).

Setting the derivative of the KL-divergence to 0, and substituting in above the expression for
P (x | g, s−X), the parts constant in x cancel and we are left with:

∑
x|xi=1

t(r)(x)

Z(x)

1

qi
=
∑
x|xi=0

t(r)(x)

Z(x)

1

1− qi

It is intractable to sum over all these x, but now we can use the mean-field approximation.
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Let x(+i) denote the mean-field vector where xi is on and C−1 other units are on, and let x(−i)

denote the mean-field vector where xi is off, and C other units are on. We can define these
mean-field vectors so that the value for each dimension j 6= i is the marginal distribution for
that unit, given the value for xi, the distribution Q, and the cardinality constraint. This can be
calculated using the belief propagation algorithm explained in §5.3, modified so that we record
each marginal probability, rather than sampling a value. The sums ki are now real numbers,
recursively calculated as ki−1 = ki − xi. However, this is prohibitively expensive when making
many updates. A cheaper alternative is to linearly scale Q so that the sum of the components is
correct (but preventing values from going above 1). For j 6= i, we have:

x
(+i)
j = min

{
1,

C − 1∑
k 6=i qk

qj

}

x
(−i)
j = min

{
1,

C∑
k 6=i qk

qj

}

Now we can use the second approximation mentioned in the main text above – rather than
applying t(r) to many values of x, we can apply it to the mean-field vector, and simply count
how many different values of x would have had to consider. The approximations for Z(x) that
was given in (5.25) can similarly be used for mean-field vectors. We then have:(

D−1

C−1

)
t(r)
(
x(+i)

)
Z
(
x(+i)

) 1

qi
≈
(
D−1

C

)
t(r)
(
x(−i)

)
Z
(
x(−i)

) 1

1− qi
t(r)
(
x(+i)

)
Z
(
x(+i)

) 1

qi
≈ D−C

C

t(r)
(
x(−i)

)
Z
(
x(−i)

) 1

1− qi

Re-arranging for qi yields the following, which is the optimal value for qi, given the other
dimensions qj , and given the above approximations:

qi ≈

(
1 +

D−C
C

t(r)
(
x(−i)

)
t(r)
(
x(+i)

)Z (x(+i))
Z
(
x(−i)

))−1

In the above derivation, we assumed a uniform prior over x, which meant that we had
P (x | g, s−X) ∝ t(r)(x)/Z(x). If there are bias terms, or if there links between pixies, then this
no longer holds, and we instead have the prior P (x) being determined by the RBM parameters,
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which gives the following, where we sum over incoming links y l−→ x and outgoing links y l←− x.

P (x | g, s−X) ∝ t(r)(x)

Z(x)
exp

∑
y

l−→x

w
(l)
kjxjyk +

∑
y

l←−x
w

(l)
jkxjyk − bjxj


=
t(r)(x)

Z(x)
exp


∑

y
l−→x

w
(l)
kj yk +

∑
y

l←−x
w

(l)
jk yk − bj

xj


So to amend the update rule, we replace t(r)(x)/Z(x) with the above expression, which

gives the following:

qi ≈

1 +
D−C
C

t(r)
(
x(−i)

)
Z
(
x(+i)

)
exp

((∑
y

l−→x
w

(l)
kj yk +

∑
y

l←−xw
(l)
jk yk + bj

)
x
(−i)
j

)
t(r)
(
x(+i)

)
Z
(
x(−i)

)
exp

((∑
y

l−→x
w

(l)
kj yk +

∑
y

l←−xw
(l)
jk yk + bj

)
x
(+i)
j

)

−1

Now note that this ratio of exponentials can be rewritten as:

exp


∑
y

l−→x

w
(l)
kj yk +

∑
y

l←−x
w

(l)
jk yk − bj

(x(−i)j − x(+i)j

)
For dimensions j 6= i, the difference between the two mean-field vectors will be small, so if

each of the termsw(l)
kj yk, w(l)

jk yk, and bj are on average close to zero, the above expression will be
dominated by the value at j = i. In fact, we don’t need to assume that w(l)

jk yk is on average close
to zero, but we can exploit a gauge symmetry – adding a constant value to every component
of w(l)

jk does not affect the model, because it adds the same amount of energy to every situation.
This is because the number of active units in each pixie is fixed, and so the number of active
connections between linked pixies is also fixed. This means we can add a constant to w(l)

jk , so
that the average energy associated with each link is zero. We can similarly add a constant to bj
so that the average bias energy of each pixie is zero. This means that, when using an appropriate
gauge, we can approximate the above ratio of exponentials as:

exp

bj −∑
y

l−→x

w
(l)
ki yk −

∑
y

l←−x
w

(l)
ik yk


This yields the update rule given in (5.30):

qi ≈

1 +
D−C
C

t(r)
(
x(−i)

)
t(r)
(
x(+i)

)Z (x(+i))
Z
(
x(−i)

) exp

bi −∑
y

l−→x

w
(l)
ki yk −

∑
y

l←−x

w
(l)
ik yk



−1

102



Chapter 6

Experiments

In this chapter, I bring together the work of the previous chapters, and I show how the frame-
work can be used in practice. In §6.1, I first describe how I trained a model, using the neural
network architecture presented in Chapter 5. Then in §6.2, I present results on three tasks, illus-
trating the usefulness of the model for distinguishing similarity from relatedness (see §6.2.1),
for representing occasion meanings of verbs (see §6.2.2), and for composing relative clauses
(see §6.2.3). These experiments apply the ideas presented in Chapter 4. The source code for
my experiments is available online.1

6.1 Training

In §6.1.1, I begin by describing the dataset I used, and in §6.1.2, I describe how I trained a
model on this dataset. Because training a model based on a random initialisation leads to long
training times, I present a simple method for parameter initialisation in §6.1.3, which adapts an
existing method for producing sparse count vectors.

6.1.1 Training Data

WikiWoods2 is an annotated corpus providing DMRS graphs for 55m sentences of English
(900m tokens). It was produced by Flickinger et al. (2010) and Solberg (2012) from the
July 2008 dump of the full English Wikipedia, using the English Resource Grammar (ERG)
(Flickinger, 2000, 2011) and the PET parser (Callmeier, 2001; Toutanova et al., 2005), with
parse ranking trained on the manually treebanked subcorpus WeScience (Ytrestøl et al., 2009).
It is updated with each release of the ERG, and I have used the version of WikiWoods based on
the 1212 version of the ERG. The corpus is distributed by DELPH-IN.

1 https://github.com/guyemerson/sem-func
2 http://moin.delph-in.net/WikiWoods
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Figure 6.1: Graphical models for the three DMRS topologies extracted from WikiWoods.

DMRS topology No. instances
Both arguments 10,091,234
ARG1 only 6,301,280
ARG2 only 14,868,213
Total 31,260,727

Table 6.1: Size of the training data, without transforming copula clauses.

To preprocess the corpus, I used the Python packages pydelphin3 (developed by Michael
Goodman), and pydmrs4 (Copestake et al., 2016). For simplicity, I restricted attention to
subject-verb-object (SVO) triples, although I should stress that this is not an inherent limi-
tation of the framework, which could be applied to arbitrary graphs. The term “SVO” is a slight
abuse of terminology, as DMRS graphs are semantic, not syntactic – but it is nonetheless a
concise and informative term.

In the ERG, there are two kinds of predicates: surface predicates5 (which correspond to
words), and abstract predicates6 (which correspond to grammatical constructions). In this
work, I restricted attention to surface predicates, and I ignored properties such as number on
nouns and tense on verbs. Surface predicates have a three part structure, consisting of a lemma,
a part of speech, and a sense, written in that order, and separated by underscores. Note that
senses are only distinguished on the basis of syntax, not semantics. For example, homonymous
words like bank and bass only have a single sense in the ERG, because the homonymous senses
cannot be distinguished syntactically. In contrast, rest has two predicates: _rest_n_of, a
count noun taking an optional PP-complement; and _rest_n_1, a mass noun.

I searched for all verbal predicates in the WikiWoods treebank (identified by the part of
speech v), excluding modal verbs such as can and may (identified by the sense modal), that
had either an ARG1 or an ARG2, or both. For simplicity, I ignored arguments involving coor-

3 https://github.com/delph-in/pydelphin
4 https://github.com/delph-in/pydmrs
5 Also called “real predicates”, or “realpreds”.
6 Also called “grammar predicates”, or “gpreds”.
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dinations (such as: promoted events and parties). I kept all instances whose arguments were
nominal (identified by the part of speech n), which avoids verbs taking clausal or adjectival
complements, and which also avoids pronouns and proper nouns.

The ARG1-only graphs typically correspond to intransitive verbs, but also include cases
where I ignored a coordinated ARG2. The ARG2-only graphs include passives – and in particu-
lar, bare passive adjuncts (such as: a related function, a self-titled album), which are relatively
common. They also includes cases where I ignored a coordinated ARG1.

As a result of this process, all data is of the form (verb-predicate, ARG1-noun-predicate,
ARG2-noun-predicate), where one but not both of the arguments may be missing. Using predi-
cates rather than surface forms (for example, _write_v_to instead of write, writes, writing,
written, wrote) makes sense model-theoretically, and also reduces data sparsity.

However, the ERG does not automatically convert out-of-vocabulary items from their sur-
face form to lemmatised predicates, because this cannot always be done deterministically – for
example, given a past tense verb ending in -tted, does the stem end with -t, -tt, or -tte? All three
such spellings exist in English (chat, boycott, piroutte), and determining the stem cannot be
done without a lexicon. For out-of-vocabulary items, the ERG simply records the surface form.
To find lemmas for these items, I applied WordNet’s morphological processor Morphy (Fell-
baum, 1998), as available in NLTK (Bird et al., 2009). Finally, I filtered out triples including
rare predicates, so that every predicate appears at least five times in the dataset.

The number of instances of each DMRS topology is given in Table 6.1. In total, the dataset
contains 72m tokens, with 88,526 distinct predicates. Graphical models for each topology are
shown in Fig. 6.1.

Over 7% of the SVO triples involve the copula (the verb be). While the English copula is
also used as an auxiliary verb (it is raining) and with adjectives (the sky is bright), these uses are
not represented as a DMRS node. However, when the copula is used to link two noun phrases,
the ERG represents it with the predicate _be_v_id, with the two noun phrases as its ARG1
and ARG2.

In the general case, it could be argued that the copula links distinct referents (every tree was

once a seed), and it is certainly the case that they may differ in features such person, number, and
gender. However, in encyclopaedic text, the copula is often used to equate its two arguments. In
these cases, we could consider them as having the same referent, and hence there should only
be one individual in the model structure. To do this, we can transform DMRS graphs involving
_be_v_id, so that we have a single pixie node, but two observed predicates, as shown in
Fig. 6.2. I applied this transformation, discarding instances where the two arguments were the
same – these make sense given the full context (a tourism region is a geographical region that

has been designated...), but are useless without it (a region is a region). As before, I filtered the
dataset so that every predicate occurs at least 5 times. A summary of the transformed dataset is
given in Table 6.2. In total, it contains 69m tokens, with 87,862 distinct predicates.
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Figure 6.2: Graphical model for copula clauses, after transformation. The situation comprises
a single pixie X . Two predicates P and Q are generated for this pixie, with independent and
identical distributions, based on the same set of truth values.

DMRS topology No. instances
Both arguments 8,231,139
ARG1 only 6,079,769
ARG2 only 14,557,212
Copula 1,692,945
Total 30,561,065

Table 6.2: Size of the training data, after transforming copula clauses.

For the graphical model in Fig. 6.2, the gradients for the model parameters can still be cal-
culated as explained in §5.2. The only difference is that we have observed two samples from the
distribution over predicates given a latent pixie. This means we have just two changes. Firstly,
we have to sum over the two observed predicates in the last two lines of (5.15), and therefore
also in (5.18) and (5.19). Secondly, when calculating the expectation Es|g over situations given
an observed DMRS graph, we simply multiply the contributions t(r)(x)/Z(x) from each pred-
icate – for Metropolis-Hastings, these contributions can be seen in (5.24), and for variational
inference, they can be seen in (5.29) and (5.30).

6.1.2 Training Algorithm

The model parameters can be trained using gradient descent (see §5.2). However, there are
also a number of hyperparameters – quantities that must be set before training begins. Some
hyperparameters involve decisions about the model architecture (see §5.1) – in particular, to
define the semantic space, we need to set the dimensionality D, and the cardinality C.

Other hyperparameters involve decisions about the training algorithm. Since the gradient
cannot be calculated exactly (see §5.2), we first have to decide how to approximate it, such
as using the MCMC method presented in §5.3, or the variational inference method presetned
in §5.4. This first decision can be seen as a discrete hyperparameter. With both of these algo-

106



rithms, we have to decide on the number of update steps. With the MCMC algorithm, we also
have to decide on the number of samples.

While the gradient tells us whether to increase or decrease each parameter, it does not tell us
how much we should change it. Once we have calculated gradients of all model parameters, we
still need to choose a step size. We may also want to use a different step size for each parameter.

Many schemes for choosing step sizes have been proposed. I used a version of AdaGrad
(Duchi et al., 2011),7 which compares the size of the gradient with previously calculated gra-
dients, allowing it to respond when gradients become larger or smaller. At each update step,
we find the square of the gradient (componentwise), and keep a sum of the squares of previous
gradients. The current gradient is compared to the square root of this sum, to determine the step
size, as shown in (6.1), where θt is the value of parameter θ at time t, L is the objective function
we are aiming to optimise, Gt is the sum of the square gradients, and η is a hyperparameter,
called the learning rate.

However, if the initial weights are far from the optimum, they will need to change drastically
during training, and AdaGrad may reduce the step size too much. I therefore used a modified
version of AdaGrad, called RMSProp (Tieleman, 2012), with an exponential decay of this sum,
as shown in (6.2), where α ∈ [0, 1] is another hyperparameter. The two hyperparameters η and α
together determine the general step size, and how far back we look at previous gradients.

θt+1 = θt +
η√
Gt

∂L
∂θ

(θt) (6.1)

Gt = αGt−1 +

(
∂L
∂θ

(θt)

)2

(6.2)

Gradients will vary between DMRS graphs, and updating parameters based on one graph
at a time will lead to high variance in the updates. On the other hand, averaging gradients
across many graphs (or even the whole dataset) leads to slow training, because a large amount
of computation is required to make a single update. I trained the model using minibatches of
DMRS graphs, where the gradient is summed for a small number of graphs. The size of the
minibatch is an additional hyperparameter. As each minibatch can be processed independently,
minibatches can be processed in parallel, with an update made whenever a minibatch is finished.

Finally, we may have expectations about likely parameter values. For example, we might
believe that very large values would indicate overfitting. We can use regularisation to enforce a
prior over model parameters. Rather than directly maximising the log-likelihood logP (g) (the
log-probability of generating a DMRS graph g, for the given parameter values), we optimise
an objective function L that includes additional terms penalising certain parameter values. I
used L1 and L2 regularisation, which penalise the absolute value of a parameter, and the square
value of a parameter, respectively. This is shown in (6.3), where λ1 and λ2 are hyperparameters.

7 I also experimented with other update schemes, such as Adam (Kingma and Ba, 2015) and AdaDelta (Zeiler,
2012), but I did not find a noticeable difference between them.
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Intuitively, these terms mean that parameters can only become large if they are particularly
useful for modelling the data, which reduces overfitting. L1 regularisation encourages sparsity
(setting parameters to 0), while L2 regularisation more strongly penalises large values.

L = logP (g)− λ1|θ| − λ2|θ|2 (6.3)

Some of the training hyperparameters can also be set differently for different sets of pa-
rameters. For example, it may make sense to set η, α, λ1, λ2 differently for the semantic role
parameters and the semantic function parameters, since they control distinct parts of the model.

6.1.3 Parameter Initialisation

Although it is possible to initialise the model parameters randomly at the start of training, I
found that this leads to a long training time, due to slow convergence. I suspect that this is
because the co-occurrence of predicates is mediated via at least two latent vectors, which leads
to mixing of semantic classes in each dimension, particularly in the early stages of training.
Such behaviour can similarly happen with complicated topic models – for example, Ó Séaghdha
(2010) observed this for their “Dual Topic” model. Carefully initialising the model parameters
allows a drastic reduction in training time.

Firstly, we can note that nominal and verbal pixies naturally lie in separate subspaces – that
is, their active units are almost always in different dimensions. This is because I have restricted
attention to SVO triples, with a verbal predicate for Q in Fig. 6.1, and nominal predicates for
P and R. We must therefore minimise the probability of generating nominal predicates for Q,
and verbal predicates for P and R. As these predicates are generated from latent pixies, this
forces the pixies to have different active dimensions, and hence the semantic functions to have
different nonzero values. I have observed this separation of dimensions when starting from a
completely random initialisation. To avoid this initial training time, I simply assigned half the
dimensions to nominal predicates and half to verbal predicates.8

To further improve parameter initialisation, I used a simple method for producing sparse
count vectors. In particular, I used a simplified version of Random Positive-only Projections,
a random-indexing technique proposed by QasemiZadeh and Kallmeyer (2016). Each context
is randomly assigned to a dimension. Many contexts will therefore be assigned to the same
dimension. This random assignment of dimensions means that information is lost, but using a
small number of dimensions (compared to the vocabulary size) allows us to construct vectors
quickly and efficiently.

I defined contexts using semantic roles – each pair (predicate, ARG-n) defines a context,
randomly assigned to a dimension. We first count how many times each dimension occurs with

8 For a dataset with more varied DMRS topologies (for example, with verbs taking clausal complements, and
nouns also taking complements), it would probably not be optimal to partition dimensions in this way. For example,
a verb might be observed with both nominal and clausal complements.
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each target predicate. This gives us counts nri, where r ranges over predicates, and i ranges
over dimensions. Based on these counts, we can calculate frequencies, as shown in (6.4). This
process can be carried out separately for nouns and verbs, to keep them in distinct subspaces.

fri =
nri∑
r,i nri

fr· =
∑
i

fri f·i =
∑
r

fri (6.4)

We can then calculate PPMI vectors, as shown in (6.5). This compares the observed fre-
quency fri with the expected frequency if contexts were completely random, fr·f·i.

v
(r)
i = max

{
0, log

fri
fr·f·i

}
(6.5)

Because this method uses PPMI, we can use the same hyperparameters discussed by Levy
et al. (2015a). In particular, we can smooth the dimension frequencies by taking them to the
power α, as shown in (6.6), and we can add a negative offset log k to the PMI scores, as
shown in (6.7). Levy et al. find that these parameters are important, recommending α = 0.75

and k = 5. However, because we are not using the vectors in the same way, we should not
necessarily expect the optimal hyperparameters to be the same. Indeed, in the experiments
reported in §6.2, I did not find these hyperparameters to be useful.

fi ∝

(∑
r

n
(r)
i

)
α

(6.6)

v
(r)
i = max

{
0, log

f
(r)
i

f (r)fi
− log k

}
(6.7)

We can also introduce a scaling hyperparameter – since the vectors are used as parameters
in a feedforward neural net, and not to calculate cosine similarity, the magnitude of the vector
matters. So, we can multiply the PMI score in (6.5) by some factor. In fact, for the tasks
considered in §6.2, I found empirically that a factor close to 1 is optimal.

After initialising the parameter vectors v(r)i using the above technique, we also need to
initialise the bias terms a(r). If we keep a parameter vector fixed, varying the bias changes how
likely the predicate is to be true in general, while maintaining the relative probabilities of truth
for different pixies. So, we can initialise each bias so that the expected frequency of a predicate
matches the observed frequency f (r). The frequency is given by (6.9).

f (r) =
∑
x

P(x)P(r|x) (6.8)

= Ex
[

1

Z(x)
f (r)t(r)(x)

]
(6.9)
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However, the above equation cannot be calculated exactly. If we assume that the total weight
of other predicates being true can be approximated as a constant value Z?, then when r is true
of x, we have Z(x) ≈ Z? + f (r). The hyperparameter Z? lets us control the proportion of the
vocabulary that should typically be true at the same time. We can approximate the expectation
by applying t(r) to a mean-field vector x?, which has value 2C/D across all dimensions in the
subspace (either the noun subspace or verb subspace, as appropriate). This approximation is
shown in (6.10) and (6.11), and leads to the formula in (6.12) for initialising the biases.

f (r) ≈ f (r)

Z? + f (r)
t(r)(x?) (6.10)

=
f (r)

Z? + f (r)

(
1 + exp

(
−v(r)i x?i + a

(r)
))−1

(6.11)

=⇒ a
(r) ≈ v

(r)
i x?i + log

((
f (r) + Z?

)−1 − 1
)

(6.12)

Once the semantic function parameters have been initialised, the semantic role parameters
(in the CaRBM) can be initialised based on mean-field vectors. Each semantic function defines
a mean-field vector for a single-pixie situation, as described in §5.4 and illustrated in Fig. 5.3b.
For each SVO triple in the training data, we can take the mean-field vectors for the observed
predicates, and for each semantic role, we can calculate the mean-field activation of each pair
of dimensions of the linked pixies. This is simply the outer product of the mean-field vectors –
if we have a link x l−→ y, and vectors xi and yj , then we have an activation xiyj for the link.

We can average these mean-field activations across the whole training set, to get an observed
average activation m(l)

ij for each semantic role l. We can then initialise the parameters w(l)
ij using

the PPMI of these activations, as shown in (6.13).9 It makes sense that w(l)
ij increases as the log-

arithm ofm(l)
ij , because the probability of a unit being active increases as the exponential of w(l)

ij .
The PPMI compares the observed activation m(l)

ij with the expected activation for completely
random vectors, which is (C/D)2.

w
(l)
ij = max

{
0, log

(
m

(l)
ij

)
− 2 log

(
C

D

)}
(6.13)

As with the PPMI vectors for semantic functions, we can use the hyperparameters discussed
by Levy et al., as well as a scaling hyperparameter. In the experiments reported in §6.2, I found
the negative offset and scaling hyperparameters to be useful.

Finally, we can initialise the biases bi, so that each dimension has a expected probability
of C/D of being active, before the cardinality constraint is applied. Adding a constant to all
biases has no effect on the normalised probabilities, because it adds a constant energy to every

9 As mentioned in §5.4.3, it may be better to choose a gauge so that the average energy of a link is 0. This can
be achieved by replacing the 0 in (6.13) with an appropriate negative value.
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situation. In physics, this is known as a gauge symmetry. However, a judicious choice of bias
can make calculations more numerically stable, by avoiding underflow errors (when quantities
are extremely close to 0).

bi = − log

(
C

D

)
(6.14)

6.2 Experimental Results

Finding a good evaluation task is far from obvious. Simple similarity tasks do not require
structured semantic representations like dependency graphs, while tasks like textual entailment
require a level of coverage beyond the scope of this thesis. As well as evaluating on lexical
similarity (see §6.2.1), I also chose to consider the SVO similarity and RELPRON datasets,
described in §6.2.2 and §6.2.3, because they provide restricted tasks which allow us to explore
approaches to semantic composition. A brief discussion of future work is given in §6.2.4.

I compare my model to two vector baselines. The first is a standard Skip-gram model
(Mikolov et al., 2013), trained on the plaintext version of the WikiWoods corpus. The second is
the same Skip-gram model, but trained on the SVO triples I used to train my model – contexts
are therefore defined as occurence in the same triple. In both cases, I used the implementation
in Gensim (Řehůřek and Sojka, 2010), with default hyperparameter settings.

In the experiments reported in the following sections, I initialised the model as described
in §6.1.3, without further training. These results were reported in Emerson and Copestake,
2017b. The earlier results reported in Emerson and Copestake, 2016 used a random initialisa-
tion and MCMC gradient descent. The long training time meant that it was difficult to tune hy-
perparameters, and results were considerably worse than those reported below. In future work,
I intend to perform gradient descent on the carefully initialised model. For all three tasks con-
sidered below, I used the variational inference algorithm presented in §5.4.2 to approximately
calculate conditional probabilities.

6.2.1 Lexical Similarity

Lexical similarity datasets measure similarity between pairs of words, as judged by human
annotators. In evaluating on these datasets, I have two aims. Firstly, I aim to show that the
performance of my model is competitive with state-of-the-art vector space models. Secondly
I aim to show that my model can specifically target similarity rather than relatedness. For
example, the predicates for painter and painting are related (since a painter paints paintings),
but they are unlikely to be true of the same individuals, and the individuals they are true of are
unlikely to share features. In contrast, the predicates for painter and artist are similar, because
they are likely to be true of the same individuals, and the individuals they are true of are likely
to share features. Vector space models tend to conflate these two notions.
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X

Ta,X Tb,X

Figure 6.3: Lexical similarity as logical inference (on the left), calculated using mean-field
variational inference (on the right). Repeated from Figs. 5.3a and 5.3b.

I evaluated my model on four datasets. SimLex-999 (Hill et al., 2015) and SimVerb-3500
(Gerz et al., 2016) are two datasets that aim to measure similarity, not relatedness. MEN (Bruni
et al., 2014) and WordSim-353 (Finkelstein et al., 2001) primarily measure relatedness, rather
than similarity. However, Agirre et al. (2009) split WordSim-353 into similarity and relatedness
subsets – although the annotations were not changed, so the similarity subset is not as targeted
as SimLex-999 and SimVerb-3500, where annotator instructions explicitly target similarity.

SimLex-999 contains 666 noun pairs and 222 verb pairs; I ignored the 111 adjective pairs as
I did not include adjectives in my training data. SimVerb-3500 contains 3500 verb pairs, split
into a development set (500 pairs) and a test set (3000 pairs). MEN contains 3000 word pairs;
of these, I used the 2005 noun pairs. It also includes 29 verb pairs, but this set is too small to
be useful on its own. I also ignored the 96 adjective pairs, and the 870 pairs with mixed parts
of speech. Finally, WordSim-353 contains 252 pairs in the relatedness subset, and 203 pairs in
the similarity subset (with some overlap between the two). Of all four datasets, SimVerb-3500
is the largest and hence most statistically significant.

For predicates which are true of similar but disjoint sets of individuals, annotations in these
datasets are not completely consistent. For example, SimLex-999 gives a low score of 1.8 (out
of 10) to the pair (dog, cat), but a high score of 7.8 to (rat, mouse). This kind of inconsistency
means that, although these datasets can be used to get a rough idea of how a model measures
similarity and relatedness, it is difficult to interpret the results in model-theoretic terms (such as
overlap of extensions, or similarity of features of individuals).

To calculate a similarity score in a semantic function model, we can recast similarity as
inference: we can use the conditional probability of one predicate being true, given that another
predicate is true, as shown in Fig. 6.3. To make this into a symmetric score, we can multiply the
conditional probabilities in both directions. As discussed in §4.5, using a conditional probability
should in principle measure the overlap between predicates’ extensions, rather than similarity
of features – but disjointness of extensions is difficult to learn from distributional data alone.
Furthermore, even with training data that would allow the model to learn predicates with disjoint
extensions but similar features, the conditional probabilities might also encode the probability
of making mistakes – for example, a speaker might know that rats and mice are disjoint, but still
mistake one for the other.
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Model SL Noun SL Verb SimVerb MEN WS Sim WS Rel
Skip-gram .40 .23 .21 .62 .69 .46
SVO Skip-gram .44 .18 .23 .60 .61 .24
Semantic Functions .46 .25 .26 .52 .60 .16

Table 6.3: Spearman rank correlation with average annotator judgements, for SimLex-999 (SL)
noun and verb subsets, SimVerb-3500, MEN, and WordSim-353 (WS) similarity and relat-
edness subsets. Note that we would like to have a low score for WS Rel, which measures
relatedness, rather than similarity.

Results are shown in Table 6.3.10 We can see that the semantic function model is competitive
with Skip-gram, but has qualitatively different behaviour, as it has very low correlation for the
relatedness subset of WordSim-353. Vector space models tend to have high performance on
both subsets – although we can see that SVO Skip-gram has intermediate performance on WS
Rel. Compared to Skip-gram, the semantic function model has lower performance on MEN and
the similarity subset of WordSim-353, but these two datasets were not annotated to specifically
target similarity, in the sense given above. For SimLex-999 and SimVerb-3500, which do target
similarity, performance is higher than Skip-gram.

It is also interesting to note that SVO Skip-gram performs notably better than normal Skip-
gram, despite being trained on a much smaller amount of data – only 72m tokens, rather than
900m. This is also despite the fact that the default hyperparameter settings have been tuned
for the normal use of Skip-gram. Tuning hyperparameters for SVO Skip-gram might further
increase the gap between the two.

For my model, hyperparameters for each dataset were tuned on the remaining datasets, ex-
cept for SimVerb-3500, which has its own development set. Five different random seeds were
used (for the random indexing), and the results averaged for each hyperparameter setting. I
found that the optimal settings for nouns and verbs differ considerably. For example, if the
settings for SimVerb-3500 and the verb subset of SimLex-999 are chosen based on the per-
formance on the remaining datasets (which are all noun-based), performance is considerably
worse, and below that of Skip-gram.

For the smoothing and negative offset hyperparameters discussed by Levy et al. (2015a),
the best settings differ from those suggested in that paper. In particular, I found that, unlike
for normal word vectors, it was unhelpful to use a negative offset for PPMI scores. The nega-
tive offset k encourages sparsity, by setting values to zero if the PMI is only slightly positive,
so that only the strongest features remain. This loses information, but also removes noise in
the data. However, when using vectors as parameters for a semantic function, sparsity is al-
ready enforced in the pixie vectors. This means that small parameters have little effect on the
mean-field vectors, which effectively provides a different way to remove noise in the data. In

10 Performance of Skip-gram on SimLex-999 is higher than reported by Hill et al. (2015). Despite correspon-
dence with the authors, it is not clear why their figures are so low.
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Figure 6.4: Contextual logical inference (on the left), calculated using mean-field variational
inference (on the right). Repeated from Figs. 5.3c and 5.3d. After jointly calculating mean-field
vectors for all pixie nodes, we apply a semantic function to one mean-field vector. For the REL-
PRON dataset (see §6.2.3), the function is applied to either X (as shown) or Z, depending on
whether the property has a subject or object relative clause. For the GS2011 dataset (see §6.2.2),
the function is applied to Y .

this setting, it appears that the loss of information caused by the negative offset is harmful for
performance. For the smoothing hyperparameter α, results were less conclusive, but I did not
observe the increased performance reported by Levy et al. for vector space models. In the ab-
sence of evidence suggesting that we should choose α < 1, it seems reasonable to set α = 1, as
this removes the need to tune this hyperparameter.

6.2.2 Similarity in Context

Grefenstette and Sadrzadeh (2011) produced a dataset of pairs of SVO triples, where only the
verb varies in the pair. Each pair was annotated for similarity. For example, annotators had
to judge the similarity of the triples (table, show, result) and (table, express, result). In line
with lexical similarity datasets, a system can be evaluated using the Spearman rank correlation
between the system’s scores and the average annotations.

For each triple, I calculated the mean-field vector for the verb, conditioned on all three
predicates. I then calculated the probability that the other verb’s predicate is true of this mean-
field vector, as shown in Fig. 6.4 (except that we are interested in Y rather than X). To get a
symmetric score, I multiplied the probabilities in both directions. For the vector space models,
I simply summed the vectors for the three words, and then calculated the cosine similarity of
the two sums of vectors.

Semantic function hyperparameters were tuned based on average performance across the
lexical similarity datasets (see §6.2.1), and semantic role hyperparameters were tuned based on
the RELPRON development set (see §6.2.3).

Results are given in Table 6.4. The performance of my model (.25) matches the best model
Grefenstette and Sadrzadeh consider. I also include results for an ensemble, which combines
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Model GS2011
Skip-gram, Addition .12
SVO Skip-gram, Addition .30
Semantic Functions .25
SVO Skip-gram and Sem-Func Ensemble .32

Table 6.4: Spearman rank correlation with average annotator judgements, on the GS2011
dataset for similarity in context.

Model Dev Test
Skip-gram, Addition .50 .47
Semantic Functions .20 .16
Skip-gram and Sem-Func Ensemble .53 .49

Table 6.5: Mean average precision on the RELPRON development and test sets. The Skip-gram
model was trained on a larger training set (a more recent version of Wikipedia), to allow a direct
comparison with Rimell et al.’s results.

the scores produced by my model and by the SVO Skip-gram model. The performance of this
ensemble (.32) matches the improved model of Grefenstette et al. (2013), despite using less
training data. Furthermore, the fact that the ensemble outperforms both the semantic function
model and the vector space model shows that the two models have learnt different kinds of
information. If they made the same kinds of mistakes, combining the models would not give an
improvement. This improvement is also not due to the combined model having a larger capacity
– increasing the dimensionality of the individual models did not give this improvement.

6.2.3 Composition of Relative Clauses

Rimell et al. (2016) produced the RELPRON dataset, which aims to evaluate how well a model
can perform semantic composition – in particular, composition of relative clauses. It consists of
a set of terms, each paired with up to ten properties. Each property is a short phrase, consisting
of a hyperonym of the term, modified by a relative clause with a transitive verb. For example, a
telescope is a device that astronomers use, and a saw is a device that cuts wood. The task is to
identify the properties which apply to each term, viewed as a retrieval task: given a single term,
and the full set of properties, the aim is to rank the properties, with the correct properties at the
top of the list. There are 65 terms and 518 properties in the development set, and 73 terms and
569 properties in the test set. Unlike the other datasets considered in this chapter, the human
ceiling on this dataset is near 100%, far higher than state-of-the-art performance with vector
space models.

Every property follows one of only two syntactic patterns – a noun modified by either a
subject relative clause (that cuts wood) or an object relative clause (that astronomers use).
This dataset therefore lets us focus on evaluating semantics, rather than parsing. A model
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that uses relatedness can perform fairly well on this dataset – for example, astronomer can
predict telescope, without knowing what relation there is between them. However, the dataset
also includes lexical confounders – for example, a document that has a balance is a financial
account, not the quality of balance (not falling over). The lexical overlap means that a vector
addition model is easily fooled by such confounders, and indeed the best three models that
Rimell et al. tested all ranked this confounding property at the top, when retrieving properties
for the term balance.

We can represent each property as a situation of three pixies, as shown in Fig. 6.4. Although
the properties are syntactically noun phrases, we have the same set of semantic roles as in a
transitive clause. For each property, I calculated the contextual mean-field vectors, conditioned
on all three predicates. To find the probability that the term’s predicate is true, we can apply the
term’s semantic function to the head noun’s mean-field vector. The difference between subject
and object relative clauses is captured by whether this vector corresponds to the ARG1 pixie X ,
or the ARG2 pixie Z.

For the vector space models, I took a weighted sum of the vectors for the three words in the
property, and calculated cosine similarity with the term. Since we may not want to weight each
word equally, there are two additional hyperparameters (three minus one, because the vector
magnitude does not matter for cosine similarity). These hyperparameters were tuned on the
development set. For my model, I first tuned the semantic function hyperparameters based
on average performance across the lexical similarity datasets, and then tuned the remaining
hyperparameters on the development set.

Results are given in Table 6.5. My model performs worse than vector addition, perhaps as
expected, since it does not capture relatedness, (as explained in §6.2.1), but many properties can
be predicted based on relatedness. As in §6.2.2, I also give results for an ensemble combining
my model with the vector space model, re-tuning hyperparameters for the component models.
There is an additional hyperparameter controlling the importance of each of the two models.
The ensemble performs better than either model alone – just as argued in §6.2.2, this shows that
my model has learnt different information from the vector space model.

In particular, we can inspect the tuned weights for the vector space model’s weighted sum,
as I tuned these separately when using the vector space model on its own and as part of the
ensemble. When part of the ensemble, it has a much lower weight for the head noun, which
shows that the semantic function model has effectively taken over responsibility for deciding
if the head noun is a hyperonym of the term, while the vector space model can better detect
relatedness between the other noun and the term.

Finally, the ensemble also improves performance on the lexical confounders, of which there
are 27 in the test set. The vector space model places 17 of them in the top rank, and all of them
in the top 4 ranks. The ensemble model, however, succeeds in moving 9 confounders out of the
top 10 ranks. There is clearly further progress to be made, since two thirds of the confounds
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are still in the top 10 ranks. However, to my knowledge, this is the first system that manages to
improve both overall performance as well as performance on the confounders.

6.2.4 Future Work

In future work, I plan to use the datasets produced by Herbelot and Vecchi (2016) and Herbelot
(2013), where pairs of “concepts” (such as tricycle) and “features” (such as is small) have been
annotated with suitable quantifiers (out of these options: all, most, some, few, no). This would
allow an experimental evaluation of the approach to quantification presented in §4.5 and further
developed in Chapter 7. One challenge posed by these datasets is the syntactic variation in the
features, such as has 3 wheels and lives on coasts. These datasets can therefore be seen as a
further stepping stone between the datasets considered above and general textual entailment,
since they are more varied than the above datasets, but more targeted than textual entailment
datasets.
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Chapter 7

Quantifiers and First-Order Logic

Model theory requires quantifiers to give truth values to propositions (see §1.3), but they resist
integration into vector space approaches, as discussed in §2.3.2. In this chapter, I give an
account of how quantifiers can be interpreted in my framework. I first provide a background on
generalised quantifiers in §7.1, and then explain in §7.2 how quantifier scope is underspecified
in (D)MRS. These two sections clarify the classical (non-probabilistic) view which I aim to
emulate. The main contribution of this chapter is in §7.3, where I propose a probabilistic version
of quantification. In §7.4, I discuss how a probabilistic approach provides a better account of
vague quantifiers, which are challenging for classical model theory. In §7.5, I explain how
to combine precise quantifiers with vague predicates, and in §7.6, I relate this chapter to the
simpler account given in §4.5. Although this chapter is relatively programmatic, and although I
do not have any experimental results to report, this work constitutes significant progress towards
using distributional semantics in an expressive logic like first-order predicate calculus.

7.1 Generalised Quantifiers

Partee (2012) recounts how quantifiers have played an important role in the development of
model-theoretic semantics, seeing a major breakthrough with Montague (1973)’s work, and
culminating in the theory of generalised quantifiers (Barwise and Cooper, 1981; Van Benthem,
1984), which I will summarise in this section.

We can calculate the truth of a proposition using a scope tree, which is a convenient way to
represent a logical proposition, as illustrated in Fig. 7.2. The basic idea is to calculate the truth
value for the whole proposition by working bottom-up through the tree. The leaves of the tree
are expressions including variables. They can be assigned truth values, if each variable is fixed
as a specific individual in the model structure. To assign a truth value to the whole proposition,
we work up through the tree, quantifying the variables one at at time. Once we reach the root,
all variables have been quantified, and we are left with a truth value.
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∀x picture(x)→ ∃z∃y tell(y) ∧ story(z) ∧ ARG1(y, x) ∧ ARG2(y, z)

Figure 7.1: A first-order logical proposition, repeated from Fig. 1.2a.

every(x)

picture(x) a(z)

story(z) ∃(y)

> tell(y) ∧ ARG1(y, x) ∧ ARG2(y, z)

Figure 7.2: A scope tree, equivalent to Fig. 7.1 above. Each non-terminal node is a quantifier,
with its bound variable in brackets. Its left child is its restriction, and its right child its body.

Each quantifier is a non-terminal node in the tree, with two children – its restriction (on
the left) and its body (on the right). It also quantifies exactly one variable, called its bound
variable. Each node in the tree also has a certain number of free variables. For each leaf, its
free variables are exactly the variables appearing in the logical expression. For each quantifier,
its free variables are the union of the free variables of its restriction and body, minus its own
bound variable. For a well-formed scope tree, the root of the tree has no free variables. Each
node in the tree defines a truth value, given a fixed value for each of its free variables.

To define the truth value for a quantifier node, we look at its restriction and body. Given
fixed values for the quantifier’s free variables, the restriction and body only depend on the
quantifier’s bound variable. This means we can work out whether the restriction and body are
true, for different values of the bound variable. The restriction and body therefore each define
a set of individuals in the model structure – the individuals for which the restriction is true, and
the individuals for which the body is true. I will write these as R(v) and B(v), respectively,
where v denotes the fixed values for all free variables.

Generalised quantifier theory says that to know whether a quantified proposition is true, we
only need to know two quantities: the cardinality of the restriction set |R(v)|, and the cardinality
of the intersection of the restriction and body sets |R(v) ∩ B(v)|. Natural language quantifiers
can all be expressed in this way, with examples given in Table 7.1.

Quantifier Condition
some |R(v) ∩ B(v)| > 0

every |R(v) ∩ B(v)| = |R(v)|
no |R(v) ∩ B(v)| = 0

most |R(v) ∩ B(v)| > 1
2
|R(v)|

Table 7.1: Classical truth conditions for precise quantifiers.
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a(z)

story(z) every(x)

picture(x) ∃(y)

> tell(y) ∧ ARG1(y, x) ∧ ARG2(y, z)

Figure 7.3: An alternative scope tree to Fig. 7.2, for the sentence every picture tells a story.

every picture tell story a
ARG1/NEQ ARG2/NEQRSTR/QEQ RSTR/QEQ

Figure 7.4: DMRS graph, underspecifying between Figs. 7.2 and 7.3. Repeated from Fig. 1.2c.

7.2 Quantifier Scope in Minimal Recursion Semantics

So far in this thesis, I have not used scope trees, and they may seem quite different from DMRS
graphs. However, as mentioned in §1.3.3, (D)MRS underspecifies scope (Copestake et al.,
2005). For example, while Fig. 7.2 shows the more likely reading of every picture tells a story,
it also has another reading, that there is one single story which all pictures tell, as shown in
Fig. 7.3. The preference for one scope tree or another depends on the particular words in the
sentence, as well as the surrounding context.

The graph in Fig. 7.4 is underspecified between these two scopes, simply giving constraints
on a possible scope tree. It specifies that picture is in the restriction of every and that story is in
the restriction of a. In this case, picture and story are the immediate children of the respective
quantifiers, but in the general case, there could be nodes in between the two – a RSTR/QEQ link
specifies dominance in the scope tree, but not immediate dominance.1

The ERG does not introduce quantifiers for event variables, as shown in Fig. 7.4. I assume
that event variables are existentially quantified with no constraints on the restriction, and these
quantifiers scope low (immediately above the event variable), as shown in Figs. 7.2 and 7.3.

Efficiently determining the set of scope trees that correspond to a given (D)MRS is an inter-
esting computational challenge when there is a large number of quantifiers (for discussion, see:
Koller and Thater, 2005, 2006), but the details of such an algorithm are not important here. The
aim of this section was to explain how scope trees relate to the DMRS graphs used so far in this
thesis. In the rest of this chapter, I will work exclusively with scope trees.

1 Technically, a QEQ constraint means that only quantifiers can intervene. However, for (D)MRS representa-
tions derived from a grammar compliant with the composition algebra, this detail is unnecessary (Copestake et al.,
2005, footnote 11). In any case, I only discuss quantifiers here, and not other sources of scope, such as modals
(it might rain), scopal adverbs (it probably rained), and attitude report verbs (the dog knew it rained).

121



Y ZX
ARG2ARG1

Tα,X Tβ,Y Tγ,Z

T1

T2

T3

Figure 7.5: A probabilistic scope tree. T1, T2, T3 correspond to non-terminal nodes in Fig. 7.2,
going up through the tree. Solid lines indicate conditional dependence (on the value of the
parent node), and dotted lines indicate the scope true (using the distribution of the parent node).
One random variable is marginalised out at a time, until T3 is no longer dependent on any
variables. For the scope tree in Fig. 7.3, T2 would be conditionally dependent on Z, not X .

7.3 Probabilistic Scope Trees

With a probabilistic model structure, we can adapt the definition of generalised quantifiers, by
replacing sets of individuals with distributions over pixies. The basic process is the same as in
the classical case – we have a scope tree, and we work bottom up through the tree. However,
we will replace binary truth values with probabilities of truth. This extends the the account of
quantifiers given in §4.5, which only considered a single quantifier and a single variable. We
will now consider multiple quantifiers and multiple variables, thereby moving from syllogistic
logic to first-order predicate logic. However, the core insight from §4.5 still holds – quantifi-
cation corresponds to a conditional probability, where a random variable has been marginalised
out. This correspondence follows from the more basic correspondence between sizes of sets
and probabilities of sets, which was exploited in the proof of equivalence given in §4.5.1.

We begin with a probabilistic model structure, in the form of a probabilistic graphical model,
as introduced in §3.5. The pixie nodes together define a distribution over situations. We also
have a scope tree, which represents a first-order proposition. In the classical case, given a
set of situations, a scope tree can be assigned a truth value. In the probabilistic case, given a
distribution over situations, a scope tree can be assigned a probability of truth. Note that this
probability is not a function of one situation, but rather of the whole distribution.

For each predicate in the scope tree, the graphical model includes one pixie node and one
truth value node (this is from the one-to-one correspondence between predicates and variables
in neo-Davidsonian semantics). We now introduce an additional binary-valued random variable
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for each quantifier node in the scope tree, as illustrated in Fig. 7.5. Each of these random
variables is conditionally dependent on all of the free variables for its corresponding scope tree
node. The distributions for these random variables will be defined bottom-up through the tree.

For each leaf, the conditional distribution of the random variable is determined by the sem-
antic function(s).2 For each non-terminal, we have to define a distribution to mimic the classical
case. For precise quantifiers, these distributions are degenerate – they are either true with prob-
ability 1, or false with probability 1. This matches the interpretations of the universal and
existential quantifiers in §4.5, where we had precise constraints on conditional probabilities.
However, when we come to vague quantifiers in §7.4, we will need intermediate probabilities.

For a classical scope tree, the truth of a quantifier node depends on its free variables, and
is defined in terms of the extensions of its restriction and body, in a way that removes the
bound variable. For a probabilistic scope tree, the distribution for a quantifier node will be
conditionally dependent on its free variables, and will be defined in terms of the distributions
for its restriction and body, marginalising out the bound variable.

Let the pixie node for the bound variable beX , let the set of pixie nodes for the free variables
be V , and let the probabilistic truth values for the restriction and body be R and B, respectively.
In the classical case, given fixed values for all free variables, the restriction and body each define
a set of individuals, which we can write asR(v) and B(v). In the probabilistic case, given fixed
values for all free variables, conditioning on r or b defines distributions forX . These conditional
distributions directly correspond to the classical sets, as shown in (7.1) and (7.2).3 As explained
in §4.5, I write P (r), P (b), P (v) for P (R=>), P (B=>), P (V =v), respectively.

P (r | v) = P (X ∈ R(v) | v) (7.1)

P (b | v) = P (X ∈ B(v) | v) (7.2)

For classical generalised quantifiers, we only need to consider the cardinalities |R(v)| and
|R(v) ∩ B(v)|. In a probabilistic model structure, these correspond to the probabilities P (r | v)

and P (r, b | v). It therefore makes sense to consider the conditional probability P (b | r, v), be-
cause this uses both of the classical sets, as shown in (7.3). Intuitively, this makes sense – the
truth of a quantified expression depends on how likely B is to be true, given that R is true.

P (b | r, v) =
P (r, b | v)

P (r | v)
=

P (X ∈ R(v) ∩ B(v) | v)

P (X ∈ R(v) | v)
(7.3)

2 The conditional dependence of the leaf node including the verb highlights the assumption that DMRS topol-
ogy is isomorphic to situation structure (see §3.1 and §3.6). The leaf has three free variables, so its truth value
should depend on all three pixie nodes. However, the verb’s semantic function depends only on the event. This
mismatch is because the ARG1 and ARG2 roles are trivially “true”, having been built into the situation structure.
Removing the isomorphism would mean that this leaf node is conditonally dependent on all three pixie nodes.

3 Given a classical model structure, we can construct a probabilistic model structure where this holds, as done
in §4.5.1 for the special case of situations containing one individual. If there are symmetries in the situation struc-
ture (permuting individuals without affecting semantic role labels), each permutation needs nonzero probability.
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Quantifier Condition
some P (b | r, v) > 0

every P (b | r, v) = 1

no P (b | r, v) = 0

most P (b | r, v) > 1
2

Table 7.2: Truth conditions for precise quantifiers, in terms of the conditional probability of the
body given the restriction (and given all free variables). These conditions mirror Table 7.1.

Truth conditions for quantifiers can be defined in terms of P (b | r, v), as shown in Table 7.2.
In the special case where there are no free variables, and the body and restriction are each
a single predicate, the conditions for every and some reduce to the conditions given in §4.5
for the universal and existential quantifiers. This account does not cover so-called cardinal
quantifiers like one and two. However, the ERG represents numbers not as quantifiers, but as
additional predicates (like adjectives). This is compatible with Link (1983)’s lattice-theoretic
approach, which allows reference to plural individuals without quantification.

To work through a specific example, we can consider the scope tree in Fig. 7.2, and the
corresponding graphical model in Fig. 7.5 (if we set α, β, γ to be picture, tell, story). The
distributions for the nodes Tα,X , Tβ,Y , Tγ,Z are determined by semantic functions. We have
three quantifier nodes in the scope tree, and hence three additional truth value nodes in the
graphical model. We first define a distribution for T1, which represents the ∃(y) quantifier, and
which depends on the free variables x and z. It is true if, out of situations involving the fixed
pixies x and z, there is nonzero probability that they are the ARG1 and ARG2 of a telling-event
pixie.4 Next, we define a distribution for T2, which represents the a(z) quantifier, and depends
on the free variable x. It is true if, out of situations involving the fixed pixie x and a story
pixie z, there is nonzero probability that they are the ARG1 and ARG2 of a telling-event pixie.
Finally, we define a distribution for T3, which represents the every(x) quantifier, and has no free
variables. It is true if, for situations involving a picture pixie x, we are certain to have nonzero
probability that x is the ARG1 of a telling-event pixie, which has a story pixie ARG2.

To sum up, this approach allows us to directly interpret quantifiers in the distributional
model, unlike the previous work discussed in §2.3.2, which either built a hybrid system (for
example: Lewis and Steedman, 2013; Beltagy et al., 2016), or was not as general as first-order
logic (for example: Grefenstette, 2013; Herbelot and Vecchi, 2015). The above approach also
goes further than Cooper et al. (2015), who discuss quantifiers in probabilistic TTR, but only
non-vague quantifiers. By expressing generalised quantifiers in terms of conditional probabili-
ties, it is possible to capture vague quantifiers as well, as discussed in the following section.

4 This shows this approach does not rely on neo-Davidsonian event semantics. After quantifying out an event
variable with n semantic roles, we get a function from n pixies to a probability of truth. We can see this as an n-ary
semantic function, and we could choose to directly represent n-ary predicates in this way. However, this requires
accounting for the number of arguments – for example, representing both transitive and intransitive eat.
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some every no most

few many GEN

Figure 7.6: Probabilities of truth for various quantifiers. In each graph, the x-axis is the value
of P (b | r, v), and the y-axis is the probability of the quantifier node being true. All axes range
from 0 to 1. Quantifiers in the bottom row are vague, and GEN is the generic quantifier.

7.4 Vague Quantifiers

While some, every, no, and most can be given precise truth conditions, other natural language
quantifiers are vague. In particular, we can consider the terms few and many, which don’t
have precise truth conditions. Partee (1988) surveys work suggesting that few and many are
ambiguous between a vague cardinal reading and a vague proportional reading. As mentioned in
the previous section, we can treat cardinals like adjectives, so I will only discuss the proportional
readings here.

Under a classical account, many means that R(v) ∩ B(v) is large compared to R(v), but
how large is underspecified. Similarly, few means thatR(v)∩B(v) is small compared toR(v),
but how small is underspecified. Note that, for the proportional reading of few, it is also true
when the proportion is zero. For example, if someone said, few people would argue that the

most nutritious food is depleted uranium crumble, they might believe it’s almost certain that no
one would argue such a thing, but they are leaving open the possibility that someone would. It
would be absurd to argue back by saying, you’re wrong, no one would argue that!.5

The underspecification of the proportion that makes few and many true can naturally be
represented as a distribution over thresholds, or equivalently as a function from proportions
to probabilities of truth (see §3.4.1). So, we can define the meaning of a vague generalised
quantifier to be a function from P (b | r, v) to a probability of truth. This is illustrated in Fig. 7.6,
where the non-vague quantifiers are shown in the first row, and the vague quantifiers are shown
in the second. For the non-vague quantifiers, the value on y-axis is always 0 or 1, but for the
vague quantifiers, we have intermediate values.

Finally, another challenging case of natural language quantification involves generic sen-
tences, such as dogs bark, ducks lay eggs, and mosquitoes carry malaria. Generics are ubiqui-
tous in natural language, but they are challenging for classical models, because the truth condi-

5 This argument is due to Mary Karavaggelis (p.c.).
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tions are hard to pin down, and seem to depend heavily on the content of the proposition, and
on the context of use (for discussion, see: Carlson, 1977; Carlson and Pelletier, 1995; Leslie,
2008; Herbelot, 2010).

As we saw in Chapter 4, a probabilistic model can provide a natural account of context de-
pendence, so it is reasonable to ask if the same technique can be applied to generic sentences.
Indeed, Tessler and Goodman (2016) analyse generic sentences using a Bayesian approach to
pragmatics, as formalised in the framework of Rational Speech Acts (RSA) (Frank and Good-
man, 2012; Goodman and Frank, 2016). In this framework, literal truth values are separated
from pragmatic meaning. Given a standing meaning of an utterance, and a prior over situations,
a literal listener can construct an occasion meaning for that utterance (a posterior distribution
over situations). A pragmatic speaker who directly observes a situation can then choose an
utterance which is informative for a literal listener – in particular, they can choose the utter-
ance which maximises a literal listener’s posterior probability for the observed situation. In the
general case, a pragmatic speaker may not deterministically generate an utterance, but instead
probabilistically generate one, preferentially choosing informative utterances.

In terms of my framework, we can see a literal listener as defining distributions for truth
value nodes, and a pragmatic speaker as defining distributions for predicate nodes (the third row
of the graphical model in Fig. 3.10). I have not mentioned predicate nodes so far in this chapter,
because I have been discussing literal meaning. However, given the literal meanings defined
by the above probabilistic quantifiers, we can define a pragmatic speaker. This would give a
more interesting distribution over DMRS graphs than the simple generative process suggested
in §3.6, which simply involved choosing a predicate at random out of the true predicates. In the
RSA framework, this simple generative process would be called a literal speaker.

In §4.1, I discussed Bayesian inference over a literal speaker, and showed how this leads to a
natural account of context dependence. The crux of the RSA framework is to perform Bayesian
inference over a pragmatic speaker. Given an observed utterance from a pragmatic speaker
and given a prior over situations, a pragmatic listener can construct a pragmatic occasion
meaning for the utterance (a posterior distribution over situations). Tessler and Goodman’s
insight is that this Bayesian inference of pragmatic meanings can account for the challenging
behaviour of generic sentences. The literal meaning of a generic quantifier can be very simple
(it is more likely to be true as the proportion increases), but the pragmatic meaning can have a
rich dependence on the world knowledge encoded in the prior over situations. For example, the
utterance mosquitoes carry malaria does not mean that all mosquitoes do (in fact, many do not)
but it can inform a pragmatic listener to update their distribution over situations so that they
have an increased expectation of mosquitoes carrying malaria.

In Fig. 7.6, I have followed Tessler and Goodman and represented the meaning of the generic
quantifier as simply the identity function. At first sight, this may seem too simple to model
generic sentences, but the complexity comes from pragmatic inference, and not literal meaning.
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7.5 Quantification with Soft Constraints

In the previous sections, I proposed casting quantification in terms of conditional probabili-
ties. For a probabilistic model structure that corresponds to a classical model structure, this
probabilistic account gives the same truth values. However, for a probabilistic model structure
expressing soft constraints, this account would seem to fail – for a model with soft constraints,
conditional probabilities will never be exactly 0 or exactly 1 (except for contradictions and
tautologies), as discussed in §4.5 and §5.1.2.

For example, suppose two people are in a room in an art gallery, and one person says, every

picture tells a story. Whether a picture tells a story has vague truth conditions, but the listener
might look around the room and agree that it’s relatively clear what story each picture is telling.
In other words, they might agree that the utterance is probably true, even though they’re not
100% certain that each picture is telling a story. On the other hand, if one of the pictures is
somewhat abstract, so the listener isn’t quite sure what story it is supposed to be telling, they
might be less willing to agree with the utterance.

The account of quantification given in §7.3 would seem to predict that the utterance is
certainly false in both of the above cases, because the listener isn’t 100% certain that each
picture is telling a story. With probabilities between 0 and 1, every is always false, and some is
always true, which would render the logic somewhat pointless. In this section, I explain how
this approach to quantification can be adapted to deal with soft constraints, allowing precise
quantifiers like every and some to have intermediate probabilities of truth.

There are two places where the model encodes soft constraints – in the distribution over
situations, and in the semantic functions. Just one of these is enough to create a challenge. If
the body of a quantifier depends on semantic functions with soft constraints, then P (r, b | v) will
be strictly between 0 and 1. On the other hand, if the distribution over situations assigns nonzero
probability to every combination of pixies, then we can always find one combination of pixies
where the restriction and body are both true, and another combination where the restriction is
true but the body false. Hence, P (r, b | v) will be strictly between 0 and 1. For the above account
of quantification to give nontrivial results for precise quantifiers, it would seem that we need
hard constraints, both on the distribution over situations and on the semantic functions.

How can we usefully define quantification in the face of soft constraints? The basic idea is to
view soft constraints as distributions over hard constraints. This was already discussed in §3.4.1,
where a vague semantic function can be seen as a distribution over precise regions (given a
covariance function). As for the distribution over situations, we can consider a finite number
of situations (as done in the example given in §3.3). We can see the collection of situations
as itself being a situation – a supersituation consisting of multiple subsituations.6 While the
distribution over supersituations may encode soft constraints, the conditional distribution over

6 Kratzer (2017) uses the terms “topic situation” and “resource situation”, respectively.
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Figure 7.7: A probabilistic scope tree, accounting for soft constraints. A supersituation ξ con-
sists of a finite number of subsituations (x, y, z). Each truth value depends on its free variables,
and for non-leaf nodes, also depends on the supersituation. Given these variables, each truth
value is determined by a precise function π. These functions are composed according to the
scope tree. All edges indicate conditional dependence, but have been colour-coded for clarity:
the orange edges denote drawing a subsituation from the supersituation; the black edges denote
determining a truth value; the purple edges denote semantic composition via quantification.

subsituations (given a fixed supersituation) has nonzero probability in a finite number of cases.
This is illustrated in Fig. 7.7. At the top, we can see how the joint distribution over pixies

is now dependent on a supersituation node Ξ. For any particular supersituation ξ, the joint
distribution forX, Y, Z is defined by sampling a subsituation from ξ. This sampling is indicated
by the orange edges. Fig. 7.5 implicitly fixed a supersituation, but it is explicit in Fig. 7.7.

One way that we might define a distribution for Ξ is to take a finite number of samples
from a graphical model for situations, as shown in Fig. 7.8. Here, Ξ is simply the collection of
N samples. The graphical model inside the plate encodes soft constraints for (sub)situations,
but by taking a finite number of samples, we can define a distribution with hard constraints.7

Turning to the probabilities of truth, we can start with semantic functions (which define

7 Technically, the conditional dependence structure inside the plate does not induce the same conditional de-
pendence in a set of samples. For example, if we have two samples (x1, y, z1) and (x2, y, z2), there is now a
conditional dependence between X and Z. So, we would either need to draw an extra undirected edge between
X and Z in Fig. 7.7, or modify Fig. 7.8 so that Ξ records pairs (x, y) and (y, z), rather than triples (x, y, z).
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Figure 7.8: A distribution over supersituations, defined by takingN samples from an undirected
graphical model for (sub)situations, so that Ξ =

(
(X1, Y1, Z1), . . . , (XN , YN , ZN)

)
.

the leaves of the scope tree) and then consider quantification (which defines the rest of the
scope tree). As previously mentioned, we can see a vague semantic function as a distribution
over precise functions. For a vague function t, with a corresponding distribution over precise
functions π, we have (7.4) by definition. Given a pixie and a precise function, we can find the
truth value. This can be seen in the third row of Fig. 7.7.

t(x) = Eπ [π(x)] (7.4)

For the quantifier nodes in the scope tree, we can view quantification as semantic compo-
sition – each scope tree node corresponds to a distribution over functions, and quantification
combines the restriction and body functions into a new function. This can be seen in the purple
edges in Fig. 7.7, which follow the scope tree.

Because the distribution over subsituations is determined by the supersituation, the truth of
each quantifier node depends on the supersituation – as soon as we have quantified out a pixie
node, the truth value node expresses information about the whole collection of sibsituations,
rather than just a single subsituation. We therefore have an edge from Ξ to each quantifier
truth value node. Once we have quantified out all variables, the truth value for the root node
depends only on the supersituation – intuitively, a proposition quantifying over subsituations is a
proposition about the supersituation. The scope tree allows us to move from semantic functions
that apply to individuals to a proposition that applies to (super)situations.

The function πQ for a quantifier determines the truth value q, given all free variables v, and
the supersituation ξ, as shown in (7.5). A vague function tQ can then be defined by marginalising
out the distribution over precise functions, as shown in (7.6).

P (q | v, ξ, πQ) = πQ(v, ξ) (7.5)

tQ(v, ξ) = P (q | v, ξ) = EπQ [πQ(v, ξ)] (7.6)

In §7.3, I gave an account of quantification in terms of the conditional probability P (b | r, v).
With the supersituation now explicit, this must be amended to P (b | r, v, ξ). With semantic
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functions now considered as distributions over precise functions, this must be further amended
to P (b | r, v, ξ, πR, πB), where πR and πB are functions for the restriction and body. What
remains to be shown is that this corresponds to constructing a quantifier function πQ, from the
restriction and body functions πR and πB.

As explained in §7.4, the probability of a quantifier being true is given by a function fQ
applied to the above conditional probability, as in (7.7). This can be rewritten as a ratio of prob-
abilities (corresponding to the classical sets), as in (7.8). As the restriction and body depend
on the bound variable u, while the quantifier does not, we need to sum over possible values, as
in (7.9). This can now be factorised according to the conditional dependence structure (illus-
trated in Fig. 7.7), as in (7.10). Finally, we can write this expression in terms of the functions
for the restriction and body, as in (7.11). Note that these functions take u ∪ v as an argument
– by definition of a scope tree, if we add the bound variable of a quantifier to its set of free
variables, we get the free variables of its restriction and body. I have written u ∪ v rather than
{u} ∪ v, to leave open the possibility that the quantifier has more than one bound variable.

P (q | v, ξ, πR, πB) = fQ
(
P (b | r, v, ξ, πR, πB)

)
(7.7)

= fQ

(
P (b, r | v, ξ, πR, πB)

P (r | v, ξ, πR, πB)

)
(7.8)

= fQ

(∑
u P (b, r, u | v, ξ, πR, πB)∑
u P (r, u | v, ξ, πR, πB)

)
(7.9)

= fQ

(∑
u P (u | v, ξ)P (r |u, v, ξ, πR)P (b |u, v, ξ, πB)∑

u P (u | v, ξ)P (r |u, v, ξ, πR)

)
(7.10)

= fQ

(
Eu|v,ξ

[
πR(u ∪ v, ξ)πB(u ∪ v, ξ)

]
Eu|v,ξ

[
πR(u ∪ v, ξ)

] )
(7.11)

Finally, we must define a distribution for ΠQ that allows both (7.5) and (7.11) to hold.
Note that (7.11) defines a vague function, which can be converted to a distribution over precise
functions: πQ compares (7.11) to a threshold value, returning truth iff it’s above the threshold.
We have a distribution over these functions, using a uniform distribution over thresholds in [0, 1].

We can now recursively define functions for quantifier nodes, working from the leaves to the
root. Given distributions over precise semantic functions (in the leaves), we have corresponding
distributions over quantifier functions. We can therefore see Fig. 7.5 as an abbreviated notation
for Fig. 7.7. The dotted edges do not indicate conditional dependence of truth values on each
other, but dependence of functions on each other – in other words, dependence of distributions

of truth values on each other. Distilling this main idea, we can write the abbreviated equation
in (7.12). A quantifier function depends on the restriction and body functions, marginalising
out the bound variable.

πQ = fQ

(
Eu [πRπB]

Eu [πR]

)
(7.12)
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7.6 Revisiting Logical Inference

In §4.5, I proposed casting logical inference as Bayesian inference about one truth value node,
given another truth value node. I suggested that such a conditional probability would still be
useful, even if it is never exactly 0 or exactly 1. In this section, I re-analyse these conditional
probabilities using the quantification machinery introduced in this chapter. In particular, I will
show that these conditional probabilities can be seen as instances of generic quantification.

As defined in §7.4, the generic quantifier GEN does not transform the conditional probability,
but just uses the identity function. This means that the vague function tQ is given by:

tQ(v, ξ) = EπR,πB

[
Eu|v,ξ

[
πR(u ∪ v, ξ) πB(u ∪ v, ξ)

]
Eu|v,ξ

[
πR(u ∪ v, ξ)

] ]
(7.13)

Note that the distributions over precise semantic functions are independent of the distri-
bution over situations. In other words, we can reverse the order of expectations between Eπ
and Eu|v,ξ. It is therefore tempting to write (7.14), which would allow us to express the vague
function for a generic quantifier in terms of the vague functions for its restriction and body, as
shown in (7.15).

tQ(v, ξ) =
Eu|v,ξEπR,πB

[
πR(u ∪ v, ξ) πB(u ∪ v, ξ)

]
Eu|v,ξEπR

[
πR(u ∪ v, ξ)

] (7.14)

=
Eu|v,ξ

[
tR(u ∪ v, ξ) tB(u ∪ v, ξ)

]
Eu|v,ξ

[
tR(u ∪ v, ξ)

] (7.15)

Because of the fraction, (7.13) and (7.15) are not quite the same. For example, consider
the generic proposition a’s are b’s, and consider a uniform distribution over just two situations
(with a single pixie node X). In one situation, predicates a and b are certainly true of X , while
in the other situation, b has a 1

2
chance of truth, while b is certainly false. Under (7.13), the

proposition has a 3
4

chance of truth, but under (7.15), it has a 2
3

chance.

Given a distribution over a large number of situations, or given predicates with probabilities
of truth close to 0 or 1, the two probabilities will be very similar, and so they make largely
the same predictions. Now, the decision to model generics as in (7.13) was driven by the
intuition that generics are vague but semantically simple. The alternative definition in (7.15)
is arguably even simpler, because it allows us to directly compose vague functions – this is
computationally convenient, because we only need to calculate Eu once in total, rather than
once for each possible πR and πB. Distilling this idea, we can write the abbreviated equation
in (7.16), which can be compared with (7.12). To put it another way, a vague quantifier doesn’t
need to use precise functions.

tQ =
Eu [tRtB]

Eu [tR]
(7.16)
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Figure 7.9: Re-analysis of Fig. 4.2 as generic quantification.
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Tα,X Tβ,Y Tγ,ZTδ,X

R

Q

GEN(x, y, z)

α(x) ∧ β(y) ∧ γ(z)
∧ ARG1(y, x)
∧ ARG2(y, z)

δ(x)

Figure 7.10: Re-analysis of Fig. 4.4 as generic quantification.

Composing vague functions rather than precise functions effectively goes back to the ac-
count given in §7.3 and §7.4, before I explicitly introduced precise functions. Indeed, we can
rewrite (7.15) as (7.17).

tQ(v, ξ) = P (b | r, v, ξ) (7.17)

In the special case where there is only one quantifier in the scope tree, and leaving the
supersituation ξ implicit, this reduces to the conditional probability P (b | r). This is simply the
probability of one node being true, given that another is true – which is precisely the kind of
conditional probability considered in §4.5. In Figs. 7.9 and 7.10, the logical inference shown in
Figs. 4.2 and 4.4 has been recast as generic quantification, where there is only one quantifier in
the scope tree. Note that in Fig. 7.10, all of the variables are quantified at once – the R node
combines the three semantic functions into a function of a whole subsituation, which acts as the
restriction of the quantifier node Q. The fact that there is only one quantifier means that we can
evaluate the whole scope tree using a single conditional probability.

By viewing these conditional probabilities as generic quantification, we can see that the
bottom-up exploration of §4.5 and the top-down approach of this chapter have met in the middle.
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Chapter 8

Conclusion

In this thesis, I have presented a novel framework for distributional semantics, and I have used
it to tackle both theoretical and practical problems. As this thesis straddles linguistics and
machine learning, I will discuss the significance of this work from both perspectives.

8.1 Contribution to Linguistics

Although distributional semantic ideas have been proposed at least since Harris (1954) and Firth
(1951), it has been difficult to formalise distributional semantics in a way that is compatible with
model-theoretic semantics. While the rise of vector space models has popularised distributional
semantics, the vectors produced are not easily interpretable, and hence struggle to account for
various aspects of meaning (see Chapter 2).

The main contribution of this thesis is a framework for distributional semantics which is
compatible with model theory (see §3.6 and Chapter 5). This allows the framework to combine
the strengths of model theory in representing semantic structure, with the strengths of distribu-
tional semantics in learning detailed lexical knowledge. As a result, it can meet a range of goals
for a theory of semantics (see §3.7).

Developing a theoretical foundation for this distributional semantic framework has required
extending classical model theory. In particular, if we take learnability to be an important goal
for a semantic theory, then this means taking generalisation seriously. This means that it is
necessary to make a clear distinction between an individual in a model structure and a pixie,
which represents the features of a possible individual (see §3.2). The notion of a pixie creates
a clear distinction between an extension and a truth-conditional function, and makes it easier to
discuss generalising a predicate to new situations. Armed with the notion of a pixie, it is also
easier to define a probabilistic generalisation of a model structure (see §3.3). While there is
other work on probabilistic semantics, the use of a simple graphical model (see §3.5) is what
made it possible to use this model for distributional semantics.
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One linguistically important component of the model is a lexicon composed of semantic

functions, which are probabilistic truth-conditional functions (see §3.4). I have examined the
nature of these probabilities, connecting them to work in philosophy of language, and arguing
that they represent uncertainty about generalising a linguistic convention (see §3.4.1). Fur-
thermore, I have shown how such functions (when equipped with a covariance function) are
equivalent to distributions over regions of space, thereby uniting two different views of con-
cepts (see §3.4.1). Finally, implementing a semantic function in a high-dimensional space has
brought to light how the boundaries of a concept need to be fairly sharp in practice, in order for
the concept to be useful (see §5.1.2).

Furthermore, I have demonstrated how a probabilistic model is more than just a convenience
to accommodate learning, and in fact allows a natural account of context dependence (see §4.1
and §4.2). This account is in the spirit of existing work on Bayesian semantics, but applied to
more complex situations than previously discussed. It crucially relies on an interaction between
conceptual knowledge and world knowledge, a necessary fact highlighted by previous authors.
I have also explained how this kind of context dependence relates to disambiguation (see §4.3)
and composition (see §4.4), and I have successfully applied it in practice to real-world datasets
(see §6.2.2 and §6.2.3).

Designing a graphical model to generalise a classical model structure has enabled it to sup-
port a well-defined logic. I have used Bayesian inference over probabilistic truth values to give
a generalisation of not only syllogistic logic (see §4.5), but also first-order logic (see §7.3).
Furthermore, by representing quantification in terms of conditional probabilities, I have shown
how this gives a natural account of vague quantifiers (see §7.4).

8.2 Contribution to Machine Learning

Distributional vector space models have proved effective for a range of NLP tasks, but they
are fundamentally limited, because a vector space does not provide an appropriate structure to
capture various aspects of meaning (see Chapter 2). One particular concern is that a vector
space does not have any logical structure, which limits the use of distributional vectors in any
application that requires planning or reasoning.

The main contribution of this thesis is a framework for distributional semantics which is
logically interpretable (see §3.5 and §3.6). By defining a probabilistic generative model which
incorporates a latent model structure, it is possible to interpret training the model in terms
of learning about what situations exist and learning about how situations are described. This
interpretability makes the model better suited for capturing semantics than a vector space model
(see §3.7). In order to meet model-theoretic demands, the graphical model has both undirected
and directed edges, which is unorthodox, but still well-defined.

In particular, I have represented words as semantic functions, which are probabilistic bi-
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nary classifiers (see §3.4). Such representations have been proposed in other areas of NLP,
but not for distributional semantics. I have also explained how such functions can be used to
efficiently parametrise a distribution over regions, by combining them with a covariance func-
tion (see §3.4.1). Furthermore, I have shown how the logical interpretability extends beyond
the word level, by demonstrating that the framework can support not only syllogistic logic
(see §4.5), but also first-order logic (see §7.3), and vague quantifiers (see §7.4).

I have given a concrete implementation of this framework, using a combination of Restricted
Boltzmann Machines and feedforward networks (see §5.1). Because this is a new kind of model
(a combination of undirected and directed graphical models), I have had to adapt existing learn-
ing algorithms. While gradient descent can be used (see §5.2), the main practical challenge is
the large number of latent variables. I have presented two approximate inference algorithms, a
Markov Chain Monte Carlo method (see §5.3), and a Variational Inference method (see §5.4).
In both cases, the fact that the model is split into two halves (which is needed for the connection
to model theory) meant that existing techniques could not be directly applied, and as a result, I
have introduced additional approximations, in order to make the algorithms tractable.

I have trained the model on WikiWoods, a parsed version of the English Wikipedia (see §6.1).
Because a random initialisation led to long training times when using MCMC gradient descent,
I have adapted a simple method for producing sparse count vectors as a method for parameter
initialisation (see §6.1.3). I have optimised the hyperparameters for this method, finding that the
optimal settings for producing parameter vectors are quite different from the optimal settings
for producing word vectors.

Finally, for several semantic evaluation datasets, I have either matched or pushed forward
the state of the art. I have demonstrated that a functional model outperforms Word2Vec on lex-
ical similarity datasets, and furthermore, that it can strongly distinguish between similarity and
relatedness (see §6.2.1). I have demonstrated that a functional model outperforms Word2Vec on
calculating lexical similarity in context, and is competitive with state-of-the-art tensorial mod-
els (see §6.2.2). And lastly, I have demonstrated that a semantic function model can be used to
improve the state of the art on RELPRON, a challenging dataset testing semantic composition
(see §6.2.3). This last result is particularly exciting, because using semantic functions improved
performance on the confounders in the dataset – phrases involving lexical overlap, which have
been shown to consistently confuse vector space models.

8.3 Looking Forwards

Read narrowly, this dissertation introduces a linguistically interpretable and computationally
tractable framework for learning the meanings of words from text. However, this also represents
the basis of a larger research project. I may have taken steps towards the goals outlined in
Chapter 2, but there is still more work to be done.
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As discussed in §2.1 and §3.7.1, all distributional semantic models come up against the
symbol grounding problem – if meanings of words are defined in terms of other words, the
definitions are circular. Indeed, people do not learn language from text or speech alone, but also
connect words with their sensory perception. With its connection to both machine learning and
formal semantics, my framework provides a basis for exploring this problem, as state-of-the-art
image processing techniques could be directly incorporated into the semantic functions. The
functions could be trained in a semi-supervised fashion – where there is grounded information,
pixies can be observed directly and the functions trained using direct supervision; where there
is only text, pixies can be treated as latent variables, and the functions trained as described in
Chapter 5.

The use of multiple data sources could be further extended to include ontologies like Word-
Net, and structured knowledge bases. A hyponymy relation in an ontology could be treated as
a (soft) constraint on semantic functions, using the approach to hyponymy described in §3.7.2.
Meanwhile, for a knowledge base that is structured in terms of entities and relations between
them, each entity could be treated as a latent pixie, while each relation could be treated as an
observed truth value for a predicate and specific latent pixies. These additional data sources
would then provide additional supervision signals.

As discussed in §2.3.3 and §3.7.3, compositionality is an important feature of language.
However, many phrases cannot be understood by simply combining their parts. Some expres-
sion are completely opaque, and might be treated as single lexical items For example, a red

herring is neither red, nor a herring. However, the particularly challenging cases are semi-

compositional For example, a magic carpet is both magic and a carpet, but is also able to fly.
Semi-compositional constructions are poorly understood, both theoretically and computation-
ally (for example: Sag et al., 2002; Reddy et al., 2011; Vincze, 2012). However, the ubiquity of
such expressions means they must be properly accounted for. I will briefly take adjective-noun
expressions as an example, using the approach given in Chapter 7. The noun and adjective each
have a semantic function, which take different arguments. However, after marginalising out the
adjective’s event variable, we have composed them into a function of a single argument. The
framework could be extended to allow additional constraints to be introduced at this stage. This
would naturally allow a continuum between fully compositional expressions (where nothing is
added), semi-compositional expressions (where some additional meaning is added), and fully
idiomatic expressions (where we replace the composed representation with a new one).

A traditional distinction is that, while semantics deals with literal meanings, pragmatics
deals with meanings in context. In most of this thesis, I have concerned myself with semantics
in this narrow sense. However, to properly account for context dependence, we need to be able
to deal with a larger context, which would take us into the traditional domain of pragmatics. As
explained in §7.4, my framework is compatible with the framework of Rational Speech Acts, a
Bayesian approach to pragmatics. While most work in RSA uses a hand-written semantic model
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for a small domain, my framework could provide a semantic model across a large domain. This
would both extend my framework to include pragmatic reasoning, and allow us to explore how
these pragmatic models behave when they are scaled up.

Finally, to further improve training efficiency, we could use amortised variational inference
– rather than optimising the variational approximation separately for each observed DMRS
graph, we parametrise a function mapping from DMRS graphs to mean-field distributions over
pixies, and optimise this function across all observed DMRS graphs in the training data. This
function introduces a second level of approximation (since it may map to a suboptimal mean-
field distribution), but it can be calculated much more quickly. One method would be to use a
graph-convolutional network, which would allow us to make use of the DMRS topology in a
natural way.

Reaching all of the goals given in Chapter 2 would be a breakthrough in computational
linguistics and artificial intelligence. The framework I have developed in this thesis provides a
basis from which we might hope to reach them.
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bank 3.0. Institute of Formal and Applied Linguistics (ÚFAL), Charles University, Czech
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Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and Anna Korhonen. SimVerb-3500: A
large-scale evaluation set of verb similarity. In Proceedings of the 21st Conference on Em-

pirical Methods in Natural Language Processing (EMNLP), pages 2173–2182. Association
for Computational Linguistics, 2016. Cited on page 112.

Zoubin Ghahramani. Unsupervised learning. In Olivier Bousquet, Ulrike von Luxburg, and
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