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Abstract  

Fibre network mats composed of stainless steel exhibit an unusually large out-of-

plane auxeticity (i.e. high negative Poisson’s ratio ν) when subjected to in-plane 

tensile loading. In situ observations in a scanning electron microscope suggest that 

this is attributable to fibre segment straightening. An investigation was carried out on 

the effects of fibre volume fraction and network thickness on the auxetic response. 

Weak inter-layer bonding, high fibre content and low network thickness were found to 

amplify the auxetic effect. 
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Conventional materials contract laterally when stretched along their length. By 

contrast, auxetic materials exhibit a dilatational behaviour, i.e. they expand in the 

transverse direction when stretched, and are therefore characterised by negative values 

of the Poisson’s ratio ( = − transverse strain / axial strain) [1-3]. Auxetic materials 

are of interest due to their potential to achieve enhancement of material properties 

related to Poisson’s ratio [1, 4-7]. For 3D isotropic materials, the numerical limits for 

Poisson’s ratio  are set by -1 and 0.5, arising from the relationship between the 

Poisson’s ratio, the bulk K and shear G moduli [6, 8]. However, for anisotropic 

materials, these are independent elastic constants, so strong auxetic effects are 

theoretically permissible. A schematic showing the wide range of negative Poisson’s 

ratio measured experimentally for various materials is illustrated in Figure 1. Low 

auxeticity naturally exists in some single crystals (e.g. sulfide minerals, metals, 

metalloids and intermetallics) [8-12]. Similar levels of auxeticity have been observed 

in silicates (α-cristobalite, zeolites) attributed to rotation of “building blocks” [13, 14]; 

cubic metals when stretched in [110] direction [11]; liquid crystalline polymers (eg. 

carbocyclic-, poly(phenylacetylene)- networks) due to the connectivity between the 

rigid centre region and the flexible ends of elongated organic molecules [2, 15-17] 

and skin tissue (cat, cow teat) attributed to their fibrillar structure [18, 19]. Man-made 

auxetic materials include re-entrant or hinged honeycombs and foams, which exhibit 

auxeticity due to the unfolding of re-entrant cells [1, 20-23]; microporous polymers 

(Polytetrafluoroethylene (PTFE), ultra-high molecular weight polyethylene 

(UHMWPE), Polypropylene (PP)) [2, 24, 25]. These polymers consist of an 

interconnected network of nodules and fibrils and auxeticity has been attributed to the 

fibrils causing nodule translation when a load is applied [2, 25-27]. Auxetic effects 

have also been observed in fibre composites involving the use of auxetic constituents 

(polymeric or ceramic fibres [28, 29]) or selection of suitable stacking sequences of 

unidirectional laminae [30-33]. However, high levels of auxeticity in fibre composites 

have only been achieved by the incorporation of metallic fibre networks [29]. These 

networks can be used as a stand-alone material [34] or as reinforcement in composites 

[29]. Such fibre assemblies are highly oriented (fibres oriented mostly in-plane) and 

are produced by sintering fibres together at crossover points. They are in many 

respects intermediate between “materials” and “structures”. 
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The measured out-of-plane Poisson’s ratios of metallic fibre networks mats 

[29, 34-36] reported to date are summarised in Table 1. Values as negative as –18 

have been reported. However, the reason for such a large auxeticity has so far not 

been demonstrated experimentally. This study aims to elucidate the mechanism that 

causes such a large out-of-plane auxeticity in fibre networks. Herein the effects of 

fibre volume fraction and mat thickness on the out-of-plane Poisson’s ratio have been 

investigated.  

Fibre network plates, made of 316L austenitic stainless steel (N.V. Bekaert 

S.A., Belgium), were supplied in three different fibre volume fractions f (10, 15 and 

20 vol%) and three thicknesses, t (1, 2 and 5 mm). The 316L fibres are produced by a 

bundle drawing process and have a hexagonal cross-sectional shape (diagonal length 

40 m). Network plates, made of 444 ferritic stainless steel fibres (Nikko Techno, 

Japan), have also been considered in this study. The plates are 5 mm thick and contain 

15 vol% of rectangular (80   100 m
2
) 444 fibres, produced by a coil-shaving 

process. The network plates are processed as follows [35-37]: i) overlapping of 

individual slender fibres to form fibre webs of fixed density with random planar 

orientation; ii) stacking few layers of such fibre webs upon one another, compressed 

and sintered to plates of specific dimensions. 

In situ tensile testing of 316L fibre networks was carried out using a Zeiss Evo 

LS15 VP model scanning electron microscope in secondary electron mode. A 

DEBEN
®
 tensile stage, equipped with a 5 kN load cell, was mounted in the SEM 

stage. Rectangular dog-bone tensile specimens were electro-discharge machined from 

316L network plates according to ASTM E8-11 sub-size specimen standards. The 

gauge sections were 30 mm long (x direction), 6 mm wide (y direction) and 5 mm 

thick (z direction). In order to prevent crushing in the grip sections, the ends of the 

specimens were impregnated by Loctite super glue. To increase the chances of 

capturing the auxetic mechanism in situ, a further region within the sample gauge 

section, was impregnated with Loctite super glue thereby leaving roughly 9 mm 

exposure region to the electron beam. All tests were conducted in displacement 

control mode at a rate of 0.1 mm min
-1

. The cross-head displacement was measured 

using an LVDT.  

In-plane tensile testing was carried using an Instron testing machine fitted with 

a 5 kN load cell. Rectangular dog-bone samples were cut out from 316L network 
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plates of different thicknesses (1, 2, 5 mm) and 5 mm 444 networks. The in-plane 

dimensions of the sample gauge sections were identical to those used for in situ 

tensile testing. The displacements in the xz plane were captured using Digital Image 

Correlation (DIC) and analysed in order to evaluate the out-of-plane Poisson’s ratios 

as described elsewhere [34].  

A Dynamic Mechanical Analyser (DMA, Triton Technology Ltd) was used to 

measure the out-of-plane Young’s modulus (Ez) of the 316L fibre networks with 

different fibre volume fractions. The tests were carried out in three-point bending 

mode, with a 12.5 mm loading span, at 1 Hz frequency and 0.1 mm displacement 

amplitude. Network beams, measuring 5 mm in thickness and 6 mm in width, were 

used.  

For all experiments (except the in situ experiments where a single sample was 

used), at least 3 tests were carried out for each sample type, from which the average 

value was taken and standard deviation calculated.  

For in situ tensile testing, the through-thickness face (xz plane) of the 316L 

networks was exposed to the electron gun. A region within the sample gauge section, 

as shown in Figure 2, was identified to continuously monitor in situ, while applying 

an in-plane tensile load on the sample. Figure 2a shows the through-thickness view, 

with fibres (highlighted in red) appearing inwardly bent. During in-plane loading 

(0.4% strain), the bent fibres (highlighted in red) were found to straighten up as 

illustrated in Figure 2b. This is also evident from the video (click on the video link 

(only for online version) showing the behaviour), suggesting that fibre straightening 

or outward bending causes lateral expansion of the sample in the through-thickness 

direction. The corollary is that, during processing, the through-thickness pressure 

causes the fibre segments between joints to curve inwards. When the networks are 

stretched in-plane, the fibres straighten or bend outwards. In situ observations suggest 

that the fibre segments with high radius of curvature (a few mm) are the ones that 

straightened up compared to those with low radius of curvature. 

In our previous study [34], the out-of-plane Poisson’s ratio was found to 

become more negative as the fibre volume fraction increases. Figure 3a shows the 

longitudinal strain x as a function of the out-of-plane strain z of 316L networks with 

three fibre volume fractions. Given that during sintering the applied compression 

pressure increases with fibre volume fraction, it can be postulated that fibres at high 
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density networks protrude more inwards during processing compared with the low 

density ones resulting in a larger lateral expansion in response to axial (in-plane) 

loading. This is in agreement with previously measured mean fibre segment 

inclination angles [34] obtained from X-ray tomography. Figure 3b shows that the 

mean fibre segment inclination angles, with respect to the out-of-plane direction (z 

axis), are somewhat lower for lower fibre content networks, i.e. fibre segments are 

sitting more in-plane in the 10% networks.  

A further observation is that the inter-layer bonding in these networks is weak 

causing the networks to continuously expand in the through-thickness direction with 

increasing load (beyond the elastic region), thereby resulting in intra-laminar cracking 

and significant through-thickness thickening [34]. 

In order to investigate whether the number of inter-layers, i.e. the network 

thickness, affects the Poisson ratio, in-plane tensile testing was carried out using 316L 

networks of the same fibre volume fraction but with different plate thicknesses. Figure 

4a shows the longitudinal strain x versus the out-of-plane strain z for 316L networks 

with 15% fibre volume fraction. It can be seen that the slopes, representing the out-of-

plane Poisson’s ratio, become more negative with decreasing plate thickness. As 

Figure 4b shows, the auxetic effect amplifies (i.e. negative Poisson’s value increases) 

almost exponentially as the thickness of the plate reduces from 5 mm to 1 mm. 

Assuming that the inter-layer bonding is not changing with network thickness, the 

observed trend suggests that thin plates, with less inter-layers, can expand more freely 

in the out-of-plane direction, leading to a more negative Poisson’s value as compared 

to thick plates, which are more constrained by the larger number of inter-fibre layers. 

This suggests that weak inter-layer bonding plays a role in the auxetic response of 

these networks.  

Table 2 shows the out-of-plane Young’s modulus (Ez) of the networks 

obtained from DMA testing. Also, shown for comparison, are the in-plane Young’s 

moduli (Ex and Ey) obtained from in-plane tensile testing [34]. As expected, the values 

are dominated by the dependence on fibre volume fraction, i.e. the Young’s moduli 

increase with increasing fibre volume fraction. The out-of-plane modulus is 

approximately two orders of magnitudes lower than the corresponding in-plane 

values. This is unsurprising, as fibres inclined at high  angles to the vertical will 

offer low resistance to vertical displacement.  
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In order to further verify that the auxetic behaviour arises by virtue of the 

network’s structure and processing, a different network, made of 444 ferritic stainless 

steel fibres, was considered. While the sintering conditions are expected to be slightly 

different (because of the different fibre material), the 444 networks are processed in a 

similar fashion as 316L networks. However, the 444 fibres have a non-uniform cross-

sectional shape (rectangular vs cylindrical for 316L fibre), so in practice the fibres 

would bend in planes in which they have relatively low moment of inertia. Figure 4c 

shows the longitudinal strain x versus the out-of-plane strain z, for both 316L and 

444 networks of the same fibre volume fraction (f = 15%). (Specimen dimensions and 

experimental parameters were the same as those used for testing 316L networks). It 

can be seen that similar Poisson’s ratios were measured on both networks, suggesting 

that the out-of-plane auxetic response of the fibre networks mainly arises from the 

processing method.  

 

In summary, sintered metallic fibre network mats exhibit a strong out-of-plane auxetic 

behaviour. The auxetic effect is attributed to fibre straightening (i.e. outward bending) 

in response to in-plane tensile testing. Fibre kinking is induced during processing due 

to the applied pressure. The results suggest that weak inter-layer bonding, high fibre 

content and low network thickness tend to amplify the auxetic effect. 
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Figure Captions 

Figure 1: Schematic showing the range of negative Poisson’s ratio in auxetic 

materials. 

Figure 2: Scanning electron microscopy images of a region in the through-thickness 

face of the 316L fibre networks (f = 10%) showing fibres (some of them highlighted 

in red) (a) before and (b) after application of an in-plane tensile load (applied 

horizontally) corresponding to 0.4% strain. 

Figure 3: (a) In-plane longitudinal strain as a function of out-of-plane strain, 

measured during in-plane tensile testing of 316L fibre networks, for three different 

fibre volume fractions; (b) Out-of-plane Poisson’s ratio plotted as a function of mean 

fibre inclination angles (with respect to the through-thickness direction), obtained 

from X-ray tomography [34],  for different fibre volume fractions. 

Figure 4: (a) In-plane longitudinal strain as a function of out-of-plane strain for 316L 

fibre networks with f = 15%, with three different plate thicknesses; (b) Experimental 

dependence on plate thickness of the out-of-plane Poisson’s ratio of 316L fibre 

networks with f = 15%; (c) In-plane longitudinal strain as a function of out-of-plane 

strain for 316L and 444 fibre networks with f = 15%. 
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Network 

thickness 

t (mm) 

Fibre 

diameter 

(μm)  

Fibre 

volume 

fraction  

f (%) 

Out-of-plane 

Poisson’s 

ratio  

-νxz (-) 

Method for 

strain 

measurement  

Reference 

10 12 20 1.7 
Clip-gauge 

extensometer 
[35] 

unknown 30  20 – 40 5.4 – 18.6 
Laser 

extensometer 
[29] 

5 40 10 – 20 5.3 – 10.7 
Digital Image 

Correlation  
[34] 

 

Table 1: Negative out-of-plane Poisson’s ratio values measured for transversely 

isotropic metallic fibre networks subjected to in-plane tension. In all studies the fibre 

material was austenitic stainless steel 316L supplied by N.V. Bekaert, Belgium. 

 

Table 1



 1 

 

Fibre volume 

fraction 

f (%) 

Young’s modulus (GPa) 

Out-of-plane In-plane 

Ez Ex Ey 

10 0.0069 ± 0.0011 1.17 ± 0.32 1.13 ± 0.06 

15 0.0087 ± 0.0011 2.19 ± 0.11 2.28 ± 0.59 

20 0.0094 ± 0.0006 2.51 ± 0.06 3.10 ± 0.86 

 

Table 2: Out-of-plane Young’s modulus Ez for 316L fibre networks with different 

fibre volume fractions, as obtained by DMA testing. Also, shown are the in-plane 

Young’s moduli (Ex and Ey) measured using tensile testing [34]. All measurements 

were carried out using 5 mm thick plates. 

Table 2
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