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Abstract

Background: Correlation matrices are important in inferring relationships and networks between regulatory or
signalling elements in biological systems. With currently available technology sample sizes for experiments are
typically small, meaning that these correlations can be difficult to estimate. At a genome-wide scale estimation of
correlation matrices can also be computationally demanding.

Results: We develop an empirical Bayes approach to improve covariance estimates for gene expression, where we
assume the covariance matrix takes a block diagonal form. Our method shows lower false discovery rates than
existing methods on simulated data. Applied to a real data set from Bacillus subtilis we demonstrate it’s ability to
detecting known regulatory units and interactions between them.

Conclusions: We demonstrate that, compared to existing methods, our method is able to find significant covariances
and also to control false discovery rates, even when the sample size is small (n = 10). The method can be used to find
potential regulatory networks, and it may also be used as a pre-processing step for methods that calculate, for
example, partial correlations, so enabling the inference of the causal and hierarchical structure of the networks.
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Background
Correlation analysis is a common approach for identifying
relationships between the expression of genes or proteins.
Initially the covariance matrix would be calculated which
may then be either inverted to find a partial correlation
matrix, or standardised to give the correlationmatrix. The
correlation matrix is often used in downstream analysis
such as graphical inference or using partial correlations,
that further provides causal information. One problem
with this type of analysis is that often, by necessity, sam-
ple sizes are small and this reduces the power of detecting
correlations and increases the false discovery rate.
Methods for improving the estimation of correlations

have to date included the shrinkage approach, Corpcor
[1]. However, this method is applied uniformly to the full
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correlation matrix. In practice, recent graphical model
approaches have used the block diagonal form of the
covariance matrix to improve computational efficiency
and interpretation [2]. In our case, we assume that sets
of genes, within an operon for prokaryotes or under the
control of one transcription factor for eukaryotes, will
strongly correlate with each other. Such correlated sets are
then represented by a single block, and the full correlation
matrix is then split into separate blocks or transcrip-
tional units. Consequently, a block diagonal structure of
the covariance matrix is used to model this. A different
covariance matrix in block diagonal form is used for each
condition present in the data, meaning that different tran-
scriptional units may be present in a case compared to a
control matrix.
In conjunction with assuming the block diagonal form

of the covariancematrix, we have taken an empirical Bayes
approach to model the covariance, and similarly calculate
correlations. This approach uses the data to generate the
prior information matrix and borrows information from
across the genes to estimate covariances in such a way as
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to lower the false discovery rates (FDRs). This is important
in downstream analysis where we would like to limit the
number of false discoveries when identifying candidates
to test experimentally.

Implementation
We use an empirical Bayes approach to infer covariances
and by simple extension, correlations. The theoretical
basis of this, using conjugate priors, is derived in [3]. In
that paper, Champion et al. use an independence prior,
and a flat prior with constant covariance. We introduce
a new prior that is a mixture of these two extremes, the
block diagonal prior.
Bayes theorem relates the posterior distribution of the

parameters given the data p(�|X) to the likelihood of the
data p(X|�) and the prior distribution of the parameters
p(�) via

p(�|X) ∝ p(X|�)p(�)

We assume the data X are multivariate normal with
sample size n, covariance matrix �, mean μ and number
of variables (genes) p, and thus the likelihood is propor-
tional to

p(X|�) ∝ |�|− 1
2 exp

{
−1
2
(x − μ)T�−1(x − μ)

}

Wewish to obtain a Bayesian estimate for the covariance
matrix �, which we denote by η, and we assume that μ

is known. The conjugate prior for estimating a covariance
matrix (η) is an inverseWishart distribution.We adopt the
same parameterisation as [3]: η ∼ W−1(ψ , λ) where ψ is
the mean of the Inverse Wishart distribution ( λz

λ
) and λ +

p + 1 are the degrees of freedom. The probability density
function (pdf) for the inverse Wishart is proportional to

p(�) ∝ |η|−(λ+2p+2)/2)exp
{
−1
2
tr(λzη−1)

}

To obtain the joint posterior distribution we multiply
the likelihood for sample data (which is multivariate nor-
mal) with the prior. Let S = ∑

(x′ − μ′)(x′ − μ′)T , where
x′ is the sample data and μ′ the sample mean. Then the
joint posterior distribution p(�|X) is proportional to

|η|−(n+λ+2p+2)/2 exp
{
−1
2
tr(η−1(λz + S))

}

which is an inverse Wishart distribution with parameters(
λz+S
λ+n , λ + n

)
. We then estimate η by η0, the expected

value of the distribution:

η0 = λz + S
λ + n

From this we can see that the inverse Wishart requires
two hyperparameters, the matrix z and scalar λ.

Calculating hyperparameters
In empirical Bayes methods both hyperparameters λ and z
are estimated from the data, rather than using a hierarchi-
cal model and assigning a prior distribution to each of the
parameters, or by having to choose the parameter values
where little prior knowledge is available. In choosing the
matrix zwe are looking for an appropriate prior matrix for
the covariance matrix η. The Inverse Wishart distribution
requires that the matrix z is positive definite, block diag-
onal matrices are positive definite if and only if each of
the blocks are positive definite. Therefore we construct a
block diagonal prior matrix where each of the blocks have
a constant (non perfect) correlation. The estimated corre-
lation matrix from this method η0 is then a mixture of the
sample correlation matrix S and the block diagonal prior
matrix z.
As we are using a block diagonal matrix for z we have

added an extra level of estimation to the model over other
methods that fix the structure of the prior matrix z a pri-
ori as, for example, the independence or flat correlation
matrix. By using the block diagonal matrix the different
groupings or blocks need to be determined for each data
set separately. There are three methods for generating the
blocks for thematrix z available in the package covEB. The
first is to provide a list of the block assignments for each
variable in the covariance matrix. Each entry in the list
should comprise a set of variables that together will form
one block. The algorithm then uses the average correla-
tion within these blocks to calculate a constant value for
this block in the matrix z, with all elements outside the
block set to zero.
The second method is to provide a threshold param-

eter (or correlation level). This could be based on prior
knowledge or calculated using an existing method for
thresholding covariance matrices such as those described
in Bickel et al. [4]. Given this correlation level (used for
simplicity to allow the user to set thresholds in [-1,1]), we
set all elements of the sample correlation matrix below
this threshold to zero and identify the block diagonal
structure. This is done by treating the correlation matrix
as a weighted graph and using the cluster function in the
R package igraph [5] to separate the graph into disjoint
subnetworks such that each element in one subnetwork
is completely separate from all elements in the other sub-
networks, that is the correlation between them is zero.
Each subnetwork then represents one block in the block
diagonal matrix.
The third method requires no prior information from

the user, instead the Akaike’s Information Criteria (AIC)
metric is used to select the threshold level that deter-
mines the block diagonal structure. The AIC is defined as
AIC = 2p − 2 ln(L), where p are the number of parame-
ters estimated in the model and ln(L) is the log-likelihood
of the data given the model. In our case, we calculate the
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likelihood of observing the given covariance matrix for
different block diagonal matrices (models). We assume
the data is from a multivariate normal distribution with
covariance matrix �. � is the diagonal matrix calculated
(as outlined above) for different threshold values, this
threshold value is chosen to minimise the AIC statistic.
Once the groupings are known, it remains to find the

correlation level within each block that together with the
groupings will define the prior matrix z.This is done by
averaging the correlations within each block to give a con-
stant correlation value for that block in the prior matrix
z. For example, in the block diagonal matrix z below we
have 5 blocks, membership of variables in these 5 blocks
having being determined by one of the three methods
outlined above.

⎛
⎜⎜⎜⎜⎝

δ1 0 0 0 0
0 δ2 0 0 0
0 0 δ3 0 0
0 0 0 δ4 0
0 0 0 0 δ5

⎞
⎟⎟⎟⎟⎠

If, for example block 1 contains 4 variables (or genes)
then, δ1 (the first block in the matrix z) takes the form:

⎛
⎜⎜⎝

1 γ γ γ

γ 1 γ γ

γ γ 1 γ

γ γ γ 1

⎞
⎟⎟⎠

and γ is estimated from the data as the average of the
sample correlations between the four variables.
Given the current estimate of zwe then calculate λ using

the following approximation suggested by [3]:

E((ρij[η]−ρij[z] )2) � (1 − ρij[z]2 )2

λ + 3
fori �= j,

where ρij[η] is the correlation based on η. We approxi-
mate ρij[η] by the sample correlations, and ρij[z] are the
correlations based on z for the selected value of γ . See
[3] for full details of this derivation. However, briefly, this
result follows from the distribution of the sample corre-
lations ρij[η] that is a two parameter distribution whose
mean is ρij[z]. Given the distribution of the ρij[η], the vari-
ance var

(
ρij[η]

) = E
((

ρij[ η]−ρij[z]
)2) is approximated

using the moments of this distribution.

Simulated data
For the simulated data we use the method of Hardin to
generate block diagonal matrices [6]. We generated 100
sample covariance matrices for 50 genes, each covari-
ance matrix had a block diagonal structure with 5 blocks
of different sizes. Correlations within blocks were set to
0.7, random samples were generated for each of these

correlation matrices for three different sample sizes of 10,
15 and 20. We include a simulated dataset under these
parameters in the R package covEB. We denote the empir-
ical Bayes method using a block diagonal prior as EB, for
comparison two other methods are used to calculate the
correlation matrix, the Pearson correlation matrix, and
the Corpcor method of Schäfer et al. are used to esti-
mate elements within blocks and all the elements outside
these blocks are set to zero. We calculated the Frobe-
nius norm between each of the estimation methods and
the true block diagonal matrix. We estimated the corre-
lation matrices and calculated the average false and true
positive rates and their standard deviations over the 100
simulations, for each of the methods mentioned above.

Biological data
The Bacillus subtilis data were taken from the paper [7].
A subset of 19 samples that are clustered according to
the affinity propagation clustering with Euclidean distance
was used. The genes were filtered leaving those with vari-
ance above the median. For each method we used known
transcriptional unit information from BSubCyc (http://
www.bsubcyc.org) to generate the prior groupings, select-
ing 56 known transcriptional units each with at least 5
genes in them.

Results and discussion
First we compared the estimation of elements within
blocks only for the three methods using the Frobenius
norm, assuming known groups. The estimation using the
EB method resulted in a matrix that was closer to the
true matrix within blocks with similar standard devi-
ation across simulations when compared to all of the
other methods. This is shown in Table 1 which gives the
average and standard deviation of the Frobenius norm
between the estimated and true matrix over 100 simu-
lations, for example when n=15, the EB method has a

Table 1 Simulation results for the empirical Bayes method with
known groupings (blocks)

Pearson block Corpcor block EB block EB

Mean n = 10 5.67 20.41 4.08 9.23

Sd n = 10 1.49 1.44 1.64 1.72

Mean n = 15 4.10 17.99 2.81 7.59

Sd n = 15 0.98 0.93 1.05 1.13

Mean n = 20 4.08 18.42 2.69 7.39

Sd n = 20 0.76 0.80 0.75 0.90

We calculate the Frobenius norm between the estimated and true matrix for
elements within the blocks. The estimates for the full matrices are the same for the
Pearson and the Corpcor methods by construction, in contrast there is a small
increase in the Frobenius norm for the EB method. This is due to the fact that for the
Pearson and Corpcor method we set all elements outside the known blocks to zero
whilst the EB method sets these elements to zero in the prior matrix, rather than the
final estimated matrix

http://www.bsubcyc.org
http://www.bsubcyc.org
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distance (according to the Frobenius norm) of 2.81, com-
pared to 4.10 for the Pearson matrix and 17.99 for the
Corpcor method. When the groupings are known, using
the Pearson estimation within blocks and setting elements
outside blocks to zero will give a smaller distance than the
EBmethod. This is because the Frobenius norm of the ele-
ments outside blocks will be exactly zero by construction,
in contrast, the EB method will shrink these elements to
zero rather than setting them to be exactly to zero, and
gives and increase to 7.59 from 2.81 when n = 15. There-
fore, in the case where the groupings are known, we would
expect using the EB method within blocks and setting ele-
ments outside blocks to zero will give the closest result to
the true matrix under the Frobenius norm.
As a second test we also generated group assignments

using the thresholding method (where the threshold level
is known) and compared the EB estimate and the matrices
estimated using either Pearson or Corpcor within blocks
with elements outside blocks set to zero. The results given
in Table 2 showed improvement of the EBmethod over the
Corpcor and Pearson estimation methods. In particular,
the EB method shows the largest improvement over the
other methods when the sample size is smallest (n = 10).
For comparison purposes we also show the results from
the EB method using no prior information (EB AIC). For
this estimate the threshold level is selected from the data
using the AIC metric. For n = 10 the EB AIC method is
still closer to the true matrix than any of the other meth-
ods, and has comparable distances for the larger sample
sizes.
With simulated data, we also compared the FDR and

TPR at a 5% significance level for each of the three meth-
ods. The first three columns of Table 3 compare the results
when the groups are known. In this case there are zero
false positives, which occur by definition of the covari-
ance matrix for the Corpcor and Pearson estimates, but

Table 2 Simulation results with known threshold level and
groups then estimated from the data

Pearson Corpcor EB EB AIC

Mean n = 10 19.27 23.48 17.65 17.86

Sd n = 10 3.42 3.70 3.34 3.14

Mean n = 15 12.30 17.45 12.72 13.89

Sd n = 15 4.34 2.04 3.81 3.21

Mean n = 20 10.52 17.52 11.46 13.19

Sd n = 20 3.96 1.81 3.28 2.81

We calculate the Frobenius norm between the estimated and true matrix for the full
matrix. This shows a particular improvement when sample size is small (n = 10) for
the EB method, as the matrix is closer to the true matrix than for either the Pearson
or Corpcor method. We also compare the result when the AIC method is used to
estimate the threshold level (EB AIC). This method shows similar improvements
when n = 10 and comparable results to the other methods with the larger sample
sizes. Indicating the AIC function has provided a reasonable estimate of the
threshold level

are also matched by the EB method. When the groups
are not known, but the threshold value is, the next three
columns show improved or similar FDR for the EB thresh-
old method, particularly at the smaller sample sizes. How-
ever, there is a trade-off as the TPR is lower for EB block
when n = 10, though it is comparable for n = 15 and
improved for n = 20. We also compare the rates where no
prior information was used and the AIC method was used
instead to select the threshold (EB AIC). This is shown in
the final column, although we expect there may be further
errors due to the extra level of estimation, this method
again shows close results to the EB threshold method,
meaning that at small sample sizes it has improved FDR
over othermethods but with lower TPR rates that improve
as the sample size increases.
For the Bacillus subtilis data, we calculated the FDR

rates based on the known transcriptional units for the
EB method at 6%, this is an acceptable error level for
most experiments that usually aim for a FDR of 5%. By
construction with the Pearson and Corpcor method we
set elements outside blocks to zero, therefore comparing
these to the prior information the FDR for bothmethods is
zero. As a comparison, without imposing the block diago-
nal structure on these matrices, the Pearson and Corpcor
method had an FDR of 20% and 39% respectively. The EB
method also resulted in similar or improved true positive
rates of 93% compared to 92% and 43% for Pearson and
Corpcor respectively.
One potential downside of setting elements outside

known transcriptional units to zero (as we did with the
Pearson and Corpcor estimates) is that the inference
may miss interactions between transcriptional units sup-
ported by the data. By using the t-test on the significance
of the correlations from the EB estimate, we identified
edges between genes in different transcriptional units
at a 5% significance level. As an example we looked at
the transcriptional unit of Pur(E,K,B,C,S,Q,L,F,M,N,H,D)
that is regulated by PurR, this is shown in Fig. 1 and
its genes are coloured pink. This transcriptional unit
also has significant connections to the transcriptional
unit of pyr(AA,AB,B,C,D,E,F,K) that is also known to be
regulated by PurR. Other connected genes in the same
transcriptional units include ytr(B,C,D,E,F), regulated by
Sigma Factor A and the transcriptional regulator YtrA
of the GntR family. The transcriptional unit combin-
ing cys(C,H,P), sat, sumT and sir(B,C), also regulated by
Sigma Factor A. Hem(B,C,X) that is regulated by PerR and
the transcriptional unit containing mrp(A,B,C,D,E,F,G)
and two genes yhcG and yhcI in the same operon, neither
of these units currently have any known regulators.

Conclusions
Above we show that the EB method is closer to the blocks
within the true matrix, as calculated using the Frobenius
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Table 3 Simulation results with known groups (first three columns) and using a known threshold level to estimate groups or blocks
from the data (threshold) and the EB AIC method for when neither the threshold or groups are known

EB Corpcor Pearson EB threshold CorpCor threshold Pearson threshold EB AIC

n = 10 FDR mean 0.00 0.00 0.00 0.04 0.26 0.16 0.04

FDR sd 0.00 0.00 0.00 0.09 0.12 0.09 0.09

TPR mean 0.70 0.54 0.66 0.39 0.56 0.66 0.36

TPR sd 0.21 0.12 0.15 0.21 0.13 0.15 0.21

n = 15 FDR mean 0.00 0.00 0.00 0.09 0.16 0.13 0.06

FDR sd 0.00 0.00 0.00 0.11 0.12 0.11 0.11

TPR mean 0.90 0.32 0.83 0.75 0.59 0.81 0.61

TPR sd 0.10 0.08 0.10 0.19 0.19 0.12 0.21

n = 20 FDR mean 0.00 0.00 0.00 0.11 0.11 0.10 0.10

FDR sd 0.00 0.00 0.00 0.10 0.10 0.09 0.10

TPR mean 0.97 0.44 0.90 0.91 0.55 0.88 0.79

TPR sd 0.04 0.09 0.06 0.09 0.14 0.08 0.11

We calculate the FDR and TPR for all the variables by comparing them to the true matrix, significance of correlations was determined using a t-test. We see improved or
comparable FDR’s for the EB methods across all sample sizes. There is a particular improvement for n = 10, however, there is a trade-off in terms of lower TPR. However,
together we would still expect the EB method to find high value interactions as significant, which is important in designing downstream validation experiments
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Fig. 1 This is an example of the EB estimated network containing a transcriptional unit regulated by PurR (pur(E,K,B,C,S,Q,L,F,M,N,H,D)), that are
shown in pink. As the EB method was the only method used that allowed for connections between transcriptional units, we can see the additional
information gained from this by those elements connected to this transcriptional unit. These include the pyr transcriptional unit that is also known
to be regulated by PurR



Pacini et al. BMC Bioinformatics  (2017) 18:213 Page 6 of 6

norm, for each of the sample sizes when using either the
known groupings or those generated from the simulated
data (using a known thresholding level). Further using
a 5% significance level the EB method has lower false
discovery rates than the Pearson covariance matrix and
existing Corpcor method.
The simulation results indicate that we are able to

improve the false discovery rates when estimating corre-
lations that can be used in downstream analysis. The EB
shows particular improvements when the sample size was
as small as ten replicates. This is important asmany exper-
iments have comparable levels of replication by necessity.
Further, controlling the false discovery rate is partic-

ularly useful when the network inferences are used to
drive experimental hypotheses, as we are interested in
identifying the highest possible value links for subse-
quent laboratory analysis. The EB method was also able
to find connections between transcriptional units sharing
the same regulator (PurR). This shows how the EBmethod
is flexible, controlling error rates whilst also allowing sig-
nificance connections between genes or transcriptional
units that are supported by the data.
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