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Abstract

Aims/hypothesis Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the predic-
tion of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim
of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide associ-
ation study (EWAS) results from five prospective European cohorts.

Methods We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA
methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five
longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA
methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders.
Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The
methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was
performed in a cohort of Indian Asians (LOLIPOP, UK).

Results The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes
compared with control individuals (p values <1.1 x 1077). Sixty-four out of 76 (84.2%) CpG sites were confirmed by
directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for
baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a
prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA ) showed no improvement (AUC
0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked
to insulin signalling, lipid homeostasis and inflammation.

Conclusions/interpretation By combining results from five European cohorts, and thus significantly increasing study sample
size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of
Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and inde-
pendent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type
2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles
of the differentially methylated CpG sites in type 2 diabetes development.
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What is already known about this subject?

e Epigenetics may play a role in type 2 diabetes development

e Predictive DNA methylation markers (CpG sites) could be useful for prevention efforts in type 2 diabetes

e Several CpG sites have been associated with type 2 diabetes in epigenome-wide association studies

What is the key question?

e Can we identify additional predictive DNA methylation markers for incident type 2 diabetes by combining results

from five European prospective cohorts?

What are the new findings?

e Weidentified 76 DNA methylation markers for incident type 2 diabetes, including 63 novel CpG sites

e Over 80% of the markers identified were confirmed in an independent cohort of Indian Asians

How might this impact on clinical practice in the foreseeable future?

e Epigenetics has the potential to elucidate new biological pathways underlying type 2 diabetes pathogenesis

Keywords Biomarkers - DNA methylation - Epigenetics - Epigenome-wide association studies - Meta-analysis - Prediction -

Prospective studies - Type 2 diabetes

Abbreviations

DMS Differentially methylated CpG sites
eQTM  Expression quantitative trait methylation
EWAS  Epigenome-wide association study
FDR False discovery rate

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
meQTL Methylation quantitative trait loci

MRS Methylation risk score

PCA Principal component analysis

TF Transcription factor

Introduction

Type 2 diabetes is a complex metabolic disease characterised
by chronically elevated blood glucose levels, insulin resis-
tance and beta cell failure and their interaction with obesity
and physical inactivity [1-3]. Recent genome-wide associa-
tion studies identified over 400 genetic variants associated
with type 2 diabetes; however, these variants explain only a
minor part of the type 2 diabetes heritability [4]. To identify
missing components of type 2 diabetes aetiology, researchers
started to examine gene—environment interactions and epige-
netic mechanisms [5—7]. Improving the prediction of incident
type 2 diabetes using epigenetic markers could help tailor

@ Springer

prevention efforts focused on those at the highest risk.
Moreover, epigenetics could also elucidate new pathophysiol-
ogical pathways involved in type 2 diabetes development.

Recent epigenome-wide association studies (EWASs) in
blood have identified differentially methylated CpG sites
(DMS), in individuals with vs without type 2 diabetes, in
genes such as TXNIP, ABCGI and SREBFI [8-10]. Further
replication in a case—control sample of an independent cohort
study confirmed the robustness of those associations with type
2 diabetes [11]. However, most of the EWASSs reported so far
used a cross-sectional approach, whereas it is well-known that
type 2 diabetes develops over a timespan of many years before
it is clinically manifest [1]. At present, only two studies exam-
ining methylation changes prior to type 2 diabetes onset have
been reported: the first in the LOLIPOP cohort including 2664
participants [8]; and the second in EPIC-Norfolk including
1264 participants [12]. In both studies, increased methylation
in the ABCGI and SREBF1 genes and decreased methylation
in the TXNIP gene at baseline were associated with incident
type 2 diabetes.

The aim of this study was to identify additional DNA meth-
ylation markers for incident type 2 diabetes. For this, we
combined results from five European prospective cohorts to
increase statistical power with a focus on European ancestry in
the discovery stage. The cohorts involved are the Doetinchem
Cohort Study [13] from the Netherlands, the ESTHER
(Epidemiologische Studie zu Chancen der Verhiitung,
Fritherkennung und optimierten Therapie chronischer
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Erkrankungen in der &lteren Bevolkerung) [14] and KORA
(Cooperative Health Research in the Region Augsburg) [15]
cohort studies from Germany and the EPIC (European
Prospective Investigation into Cancer) Norfolk [16] study
from the UK. We conducted a meta-analysis using DNA
methylation data from EWASs obtained from blood samples
collected 7—10 years prior to type 2 diabetes diagnosis. A total
of 1250 cases and 1950 controls were included in this meta-
analysis. Furthermore, the significant DMS obtained from the
meta-analysis were tested for replication in a longitudinal
cohort of Indian Asians (The London Life Sciences
Prospective Population Study [LOLIPOP]) to evaluate the
robustness of the associations observed [8].

Methods

Participating cohorts In the EWAS meta-analysis we included
five European cohorts (one from the Netherlands, three from
Germany and one from the UK). The cohorts involved were
the Doetinchem Cohort Study [13], ESTHER [14], KORA
[15] and EPIC-Norfolk [16]. Two independent subcohorts
from the KORA cohort were selected for EWAS analyses,
designated as KORAL (including KORA F4 and FF4 studies)
and KORA2 (including KORA S3 and S4 studies). In total,
five independent EWASs for incident type 2 diabetes were
performed. Replication was performed in a cohort study of
Indian Asians (LOLIPOP) from London, UK [8]. A general
description of the cohort and characteristics of the individuals
included in the current study are presented in Tables 1 and 2
(see electronic supplementary material [ESM] Methods for
further details). All participants provided informed consent
and the studies were approved by ethics committees.

Type 2 diabetes diagnosis The EWAS in Doetinchem,
ESTHER, KORA1, KORA2 and LOLIPOP were performed
as nested case—control studies of incident type 2 diabetes, with
controls matched on age, sex and measurement round. In
EPIC-Norfolk, EWAS was performed as a nested case-
cohort study with random selection of non-cases. In all
cohorts, participants with prevalent type 2 diabetes at baseline
were excluded (Table 1). Definitions of incident type 2 diabe-
tes cases and controls varied between cohorts (Table 1).
Further details are listed in Table 1 and ESM Methods
(Phenotype and covariates).

Methylation measurements and quality control DNA extract-
ed from whole blood was bisulphite converted and hybridised
to [llumina Infinium Methylation arrays (either the 450K array
[KORA, ESTHER, EPIC-Norfolk, LOLIPOP] or the EPIC
array [Doetinchem]). Quality control and normalisation of
methylation data was conducted by each cohort separately

using their own pipeline; details for each cohort are given in
ESM Methods.

Cohort-specific statistical analysis For each cohort, we inde-
pendently ran EWAS models according to the same
standardised analysis plan (ESM Methods), using robust line-
ar regression models. Normalised (3 values for methylation
intensity at each individual CpG site were modelled as the
dependent variable and incident type 2 diabetes as a binary
predictor variable. Additional covariates included age, sex,
estimated cell types using the Houseman algorithm [17] and
batches (model 1). Additionally, we adjusted the model for
baseline BMI (model 2). In sensitivity analyses, both model 1
(model 1.1) and model 2 (model 2.1) were additionally adjust-
ed for smoking (three categories: current; never; ever smoker)
and follow-up time (years between sample collection for DNA
methylation measurements and diagnosis of type 2 diabetes
[equivalent year for matched controls]). For additional models
we calculated percentile reduction/attenuation of effect sizes
compared with model 1.

Meta-analysis and replication Inverse-variance fixed-effects
meta-analyses of cohort-level individual CpG EWAS esti-
mates were performed using METAL [18]. We corrected for
multiple testing by applying a stringent genome-wide signifi-
cant p value <1.1 x 1077 (i.e. 0.05/450k). Potential heteroge-
neity between studies was quantified using the 7 measure (the
percentage of variance explained by study heterogeneity) and
CpG sites with 2 > 60% and heterogeneity p value <0.05
were highlighted. We also highlighted all significant DMS
listed as polymorphic or cross-hybridising CpG sites [19].
For polymorphic CpG sites, we used Hartigan’s dip test to
evaluate the possible binomial distribution of DNA methyla-
tion levels in methylation data of the Doetinchem cohort [20].
We used the HumanMethylation450 v1.2 Manifest File
(https://support.illumina.com/downloads/infinium__
humanmethylation450 product_files.html) and the R package
‘FDb.InfintumMethylation.hg19” version 2.2.0 (https://
bioconductor.org/packages/FDb.InfinlumMethylation.hg19/)
to annotate to the nearest gene for each CpG. Furthermore, we
checked for overlap between our significant DMS and
previously published EWAS results related to blood-based
incident and prevalent type 2 diabetes, blood lipids, BMI
and BP [8, 11, 12, 21-30]. All genome-wide significant
CpG sites associated with incident type 2 diabetes were used
for replication in an independent cohort of Indian Asians
(LOLIPOP). CpGs were considered replicated if they had
directionally consistent effects and a p value <0.05 (nominal
significance). Furthermore, we checked the correlation of
effect sizes between discovery and replication stages. To test
the predictive ability of the 76 markers for incident type 2
diabetes as an outcome, a methylation risk score (MRS) was
calculated based on the summation of the 76 CpGs weighted
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by the effect sizes from an alternative model of the EPIC-
Norfolk dataset [12], which used incident type 2 diabetes as
the dependent variable (3 values represented the OR per 1%
methylation change). Then, receiver operating characteristic
curve analyses were performed to provide estimates for AUC
in the independent LOLIPOP cohort. We tested models
predicting incident type 2 diabetes by the MRS only (model
M1), by established phenotypic risk factors only, including
age, sex, BMI and HbA . (model M2) and combining both
(model M3). We additionally adjusted models M1, M2 and
M3 for cell type distributions (models M4, M5, M6, respec-
tively). To investigate the predictive capacity of CpG sites not
reaching genome-wide significance (i.e. p>1 x 1077), we
compared AUC values from MRSs based on four increasingly
lenient p value thresholds (p<1 x 1077, p<1 x 107, p<1 x
107 and p<1 x 10 *) with increasing numbers of CpG sites.
We performed those analyses in the European-ancestry
Doetinchem cohort based on results from leave-one-cohort-
out EWAS meta-analysis (see ESM Methods for details).

Gene set enrichment analysis, transcription factor analysis
and association with gene expression Using the full
genome-wide results of model 1 from the meta-analysis, we
performed gene set enrichment analysis with the methylGSA
R package to relate CpG sites to their biological function [31].
We included Kyoto Encyclopedia of Genes and Genomes

25

TXNIP

20 —

15

—10g45(p)

PHGDH
10 4

C70rf50

(KEGG) and Reactome pathways as well as Gene Ontology
(GO) terms available in the package. We corrected for multi-
ple testing using false discovery rate (FDR) <5% [32].

Next, we focused on the 76 genome-wide significant DMS
and performed a transcription factor (TF) enrichment analysis
using the web-based ChIP-X Enrichment Analysis 3 (ChEA3)
tool [33]. The enriched TFs were ranked based on Fisher’s
exact test (p value <0.01).

To additionally look-up previously reported associa-
tions of phenotypes/diseases with genetic variants located
in or near associated CpG sites, we submitted a list of
gene names nearest to the 76 DMS from our EWAS
meta-analysis to the NHGRI-EBI GWAS Catalog
(https://www.ebi.ac.uk/gwas/, accessed 25 May 2020).
Similarly, we queried the list of 76 DMS in the EWAS
catalog (http://www.ewascatalog.org/, accessed 15
February 2021). We highlighted associations related to
metabolic traits, lipid traits, BP and obesity.

Furthermore, we investigated the association between our
76 genome-wide significant DMS, gene expression levels in
blood and SNPs using publicly available expression quantita-
tive trait methylation (eQTM) results from the BIOS consor-
tium (https://www.genenetwork.nl/biosqtlbrowser/, accessed
9 July 2020) and methylation quantitative trait loci (meQTL)
from GoDMC (http://mqtldb.godmc.org.uk/, accessed 20
July 2021).

ABCG1

SREBF1

CPT1A

AKAP1

o OtMURBSk2 . urmt

Fig. 1T Manhattan plot showing 76 genome-wide significant CpG sites
(above red line, p<1.1x10"7) associated with incident type 2 diabetes in
five European cohorts (N=1250 cases/1950 controls). Gene annotations
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for the ten most significant CpG sites are indicated in the plot; y-axis
shows negative log of associated p value
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Results

Characteristics of the meta-analysis cohorts Baseline charac-
teristics of the cohorts participating in the discovery
meta-analysis and replication are presented in Table 2.
The mean age at baseline ranged from 50.3 to 62.7 years
across cohorts, and the proportion of men ranged from
42% to 68.1% for both incident type 2 diabetes cases
and controls. The mean follow-up time between DNA
methylation measurements in blood and type 2 diabetes
diagnosis ranged from 6.25 to 10.5 years across cohorts.
Already at baseline, we observed a higher mean BMI in
incident type 2 diabetes cases compared with controls in
all cohorts. Similarly, baseline indicators of
hyperglycaemia (i.e. fasting glucose and/or HbA.) were
higher in incident type 2 diabetes cases compared with
controls in ESTHER, KORA1, EPIC-Norfolk and
LOLIPOP. We observed differences in smoking status
between incident type 2 diabetes cases across cohorts,
with the proportion of current smokers ranging from
9.4% in LOLIPOP to 36.4% in the Doetinchem cohort
(Table 2).

Meta-analysis results of discovery Combining the results of
the five discovery EWAS, we identified 76 genome-wide
significant DMS using model 1 (A = 1.189; QQ plots per
cohort and for the whole meta-analysis for all models are
presented in ESM Fig. 1). Of these, 63 DMS have not been
previously reported to be associated with incident type 2
diabetes. The 76 DMS were annotated to 65 genes. Some of
these genes had multiple CpG sites annotated to them:
LGALS3BP (5); ABCGI (3); SYNGRI (3); SLCY9AI (2);
PFKFB3 (2); and NAPI1L4 (2) (Table 3). The results are
summarised in a Manhattan plot (Fig. 1), showing the distri-
bution of CpG sites across the genome. Based on principal
component analysis (PCA) performed in the Doetinchem
dataset, 32 out of the 76 CpG sites were considered indepen-
dent signals (90% of variance explained). CpG site
cgl11800635 was listed as a probe with potential cross-
hybridisation and 11 CpG sites were listed as polymorphic
CpGs (Table 3). However, for eight out of those 11 CpG sites
available in the Doetinchem dataset, we found no evidence of
binomial methylation distributions, suggesting lack of
confounding by the underlying SNP (dip-test p values 0.5—
0.99). Of the 76 DMS identified, 20 DMS (26%) showed * >
60% suggesting considerable heterogeneity between studies
(p<0.05; Table 3); for each of these 20 CpG sites, we made
forest plots (ESM Fig. 2). Despite high, statistically significant
heterogeneity estimates, only one site showed a difference in
the direction of the association between cohorts (cg19169154
in KORAL; = 66.2%). Also, KORA1 showed large differ-
ences in effect size for ¢g19693031 (? = 89.2%) and
cgl1269166 (P = 79.7%). For some sites, two clusters of

cohorts with similar effect sizes seemed to be present (e.g.
cg24678869 [I* = 71.4%]). Otherwise, despite the high
heterogeneity estimates, effect estimates were broadly consis-
tent between cohorts.

As a sensitivity analysis, we evaluated the impact of
smoking and follow-up time from sample collection until type
2 diabetes diagnosis. With this additional adjustment (model
1.1) there was a reduction in the number of significant DMS
from 76 to 47 (ESM Table 1; follow-up time not available for
EPIC-Norfolk non-cases and LOLIPOP). Adjustment for
baseline BMI (model 2) and for BMI, smoking and follow-
up time (model 2.1) revealed that the number of significant
DMS associated with incident type 2 diabetes decreased from
76 to 4 and 3, respectively (still including the two top CpG
sites at the TXNIP and ABCGI genes; ESM Tables 2 and 3).
The attenuation of effect sizes across all models per CpG site
is presented in ESM Table 4. Mean attenuation for all 76 CpG
sites was 3% in model 1.1, while in models 2 and 2.1 the mean
attenuation of effects was 22% and 26%, respectively. The
correlation of effect sizes between models for all 76 DMS
was very high and varied between 0.98 and 0.99 (ESM Fig. 3).

Comparison with previous EWASs of incident and prevalent
type 2 diabetes, lipids, BMI and BP Previously, 13 of the 76
DMS had been reported to be associated with incident type 2
diabetes [8, 12] and nine with prevalent type 2 diabetes [11,
24], all with consistent directions of effect (ESM Table 5).
Furthermore, 33 of the 76 DMS (43%) overlapped with
BMI EWAS results [21, 27-30], with consistent direction of
the effects, and 12 DMS (16%) overlapped with blood lipid
EWAS results, including triacylglycerols, total cholesterol,
LDL-cholesterol and HDL-cholesterol [25, 26].
Additionally, five DMS (7%) had previously been reported
in EWASs on BP [22, 23] (ESM Table 5).

Replication Out of the 76 genome-wide significant DMS, 64
(84.2%) showed significant, directionally consistent associa-
tion with incident type 2 diabetes in Indian Asians in model 1
(p<0.05; ESM Table 6). Using models 1.1, 2 and 2.1, 40 out of
47 (85%), three out of four (75%) and two out of three (67%)
DMS, respectively, were replicated in the LOLIPOP cohort
(ESM Tables 1-3). Although we observed a substantial atten-
uation of effect sizes 0f 47% in our replication (ESM Table 4),
the correlation of effect sizes between discovery and replica-
tion stages was high (» = 0.91; ESM Fig. 3). Next, we
combined the effects from the discovery and replication
cohorts for the 76 DMS in a meta-analysis. In model 1, 63
DMS showed genome-wide significant associations with inci-
dent type 2 diabetes (p<1.1 x 1077), whereas in models 1.1, 2
and 2.1 the number of genome-wide significant DMS
increased, respectively, from 47, 4 and 3 in discovery only
to 59, 18 and 10 in discovery and replication combined
(ESM Table 6). Despite the high replication rate of 84.2%,

@ Springer



772

Diabetologia (2022) 65:763-776

we did observe considerable heterogeneity between discovery
and replication, greater than that seen between discovery
cohorts alone (in model 1, 53% of DMS showed significant
[<0.05] heterogeneity in combined analysis compared with
26% in discovery cohorts only).

The MRS based on 76 CpG sites showed limited predictive
ability for incident type 2 diabetes (model M1, AUC = 0.591)
in the LOLIPOP cohort (ESM Fig. 4). Moreover, the addition
of the MRS to a prediction model including established
predictors of type 2 diabetes (age, sex, BMI and HbA,.)
showed no improvement (model M2, AUC = 0.753 vs model
M3, AUC = 0.757). Additional adjustment for cell type distri-
butions in these models did not change these conclusions
(models M4, M5, M6). In the Doetinchem cohort we observed
a slight improvement in AUC after adding an MRS based on
genome-wide significant CpG sites (model M1 [age, sex,
BMLI, cell types, batch], AUC = 0.735; model M2 [age, sex,
BMI, cell types, batch and MRS], AUC = 0.755; ESM Fig.
5). However, adding additional CpG sites based on less-
stringent p value thresholds did not improve the AUC, indi-
cating the limited predictive capacity of CpG sites that did not
achieve genome-wide significance in the current meta-
analysis (ESM Fig. 6).

Gene set enrichment analysis and associations with gene
expression and SNPs The results of gene set enrichment ana-
lyses based on genome-wide DNA methylation results from
model 1 are presented in ESM Tables 7-9. The insulin signal-
ling pathway was enriched in KEGG analysis, although the
association did not survive the FDR correction (FDR = 0.12).
Furthermore, fatty acid and lipid homeostasis appear to be
perturbed in future type 2 diabetes cases, since pathways such
as phospholipid metabolism and metabolism of steroids were
found to be enriched (Reactome analysis, FDR = 0.04; GO
terms, FDR < 0.05). As a sensitivity analysis we repeated the
gene set enrichment analyses on the fully adjusted model 2.1
(adjusted for BMI, smoking and follow-up time). As expect-
ed, similar pathways came up; however, the FDR significance
level was not reached due to the higher p values of individual
CpG sites from model 2 (ESM Tables 7-9).

Analysis of enrichment of TFs for the 65 annotated gene
names out of 76 DMS, using the ChEA3 online tool, resulted
in 48 TFs (p<0.01; ESM Table 10).

Further, we queried the list of 65 annotated gene names in
the GWAS catalog to find previously reported associations of
phenotypes/diseases with genetic variants at those loci.
Seventeen out of 65 (26%) genes harboured genetic variant
associations with at least one metabolic trait or disease, such
as lipid traits, BP and obesity (Table 3; ESM Table 11).

Next, we queried the list of 76 genome-wide significant
CpG sites in the EWAS catalog to find previously reported
associations with phenotypes/diseases. Fifty-three out of 76
(70%) CpG sites were identified in EWAS studies of at least

@ Springer

one metabolic trait and 24 (31.6%) CpG sites were previously
reported to be associated with smoking (ESM Table 12).

We investigated whether DNA methylation levels of the 76
CpG sites were significantly associated with gene expression
levels in blood. Of the 76 DMS identified, 21 CpG sites (28%)
were associated with expression levels of 23 genes, including
top signals at genes such as TXNIP, ABCGI, SREBFI and
CPTIA (Table 3; ESM Table 13). Additionally, we performed
a look-up of known meQTL. Of the 76 DMS, DNA methyl-
ation at 59 CpG sites (78%) showed significant association
with at least one SNP and, in total, 14,813 cis associations
were found with 13,121 SNPs (p<5 x 107%). Of these, 80
mQTL were identified after clumping (ESM Table 14).

Discussion

To the best of our knowledge, this is the first meta-analysis of
methylation markers for incident type 2 diabetes. Previous
studies have investigated the association between DNA meth-
ylation and incident type 2 diabetes in single cohorts [8, 12].
By combining DNA methylation data from five EWASs from
European cohorts we successfully increased the power of the
study and identified 76 DMS that were associated with inci-
dent type 2 diabetes.

Type 2 diabetes is a complex disease that exhibits metabol-
ic changes many years prior to clinical disease onset. Using a
prospective study design, we identified multiple changes in
DNA methylation levels preceding the onset of type 2 diabe-
tes. After adjustment for baseline BMI, we observed a large
attenuation of significant CpG sites in the discovery phase.
The EPIC-Norfolk study also investigated the effects of base-
line BMI on their EWAS results and detected a similar reduc-
tion in the number of significant DMS [12]. However, a
modest mean attenuation of effect sizes after BMI adjustment
0f 22% and the strong correlation of adjusted effect sizes with
those of the primary discovery model (» = 0.983) suggested a
smaller effect of BMI than might have been expected based
only on the large reduction in number of genome-wide signif-
icant signals (reduction of 95%). Findings from a recent large
EWAS focusing on BMI suggest that changes in DNA meth-
ylation profiles are a consequence of adiposity rather than a
cause [27]. A look-up in the EWAS catalog revealed that 24 of
our 76 top CpG sites were previously reported to be associated
with smoking. This result is in line with the observed reduc-
tion in the number of significant DMS from 76 to 47 after
adjustment for smoking (and follow-up time) and highlights
the relevance of smoking, which not only impacts methylation
but has also been reported as a risk factor for type 2 diabetes
[34]. Our results show the importance of confounders such as
smoking and BMI in the association between DNA methyla-
tion and type 2 diabetes. Although after adjustment for BMI
effect sizes attenuate by about 20% and most CpGs lose
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genome-wide significance, attenuation is modest compared
with the large reduction in the number of genome-wide signif-
icant signals, offering promise for future meta-analyses of
larger size to significantly detect the DNA methylation signals
predictive of incident type 2 diabetes that are independent of
BMI.

Gene set enrichment and TF analyses performed to obtain
better insight into biological mechanisms revealed perturba-
tion of biological processes linked to insulin signalling, and
fatty acid and lipid homeostasis. The results from our meta-
analysis included CpG sites at genes that are known to be
associated with type 2 diabetes, such as TXNIP, ABCGI,
SREBFI and CPTIA, showing consistency between cross-
sectional and longitudinal studies and also between ethnicities
[9, 10, 35]. However, these findings are accompanied by 63
CpG sites novel for incident type 2 diabetes annotated to a
number of genes that, at least partly, also seem to be relevant
for type 2 diabetes. Examples include OLMALINC, UFMI,
LGALS3BP, TRIO and CFL2. OLMALINC (oligodendrocyte
maturation-associated long intergenic non-coding RNA) is a
long intervening non-coding RNA that was recently reported
to function as an epigenetic regulator of lipid metabolism [36].
UFM]I (encoding ubiquitin-fold modifier 1) may play a
crucial role in various cellular processes including endothelial
reticulum stress-induced apoptosis of pancreatic beta cells
[37]. LGALS3BP encodes a glycoprotein belonging to the
family of galectins, which are presumed to be involved in
regulating processes linked to the immune response and
inflammation [38—40]. TRIO encodes a guanine exchange
factor (trio rho guanine nucleotide exchange factor), which
is a component of the Rho GTPase nucleotide cycle. Rho
GTPases play a crucial role in metabolic homeostasis [41].
CFL2 has been reported to be involved in actin remodelling
required for recruitment of vesicles containing GLUT4 upon
insulin stimulation [42]. Thus, this meta-analysis resulted in
the identification of additional DNA methylation markers for
incident type 2 diabetes. However, we also observed that a large
proportion of those CpG sites have previously been identified
in BMI, lipid and BP EWASS, suggesting common or related
(epi)genetic mechanisms underlying those associations.

We recognise several limitations of the study presented
here. First, although all cohorts excluded prevalent cases of
type 2 diabetes at baseline based on a number of criteria
(Table 1), this was not cross-validated by glycaemic measures
in the EPIC-Norfolk and parts of the KORA2 and Doetinchem
cohorts. As such we cannot exclude that some incident cases
in these cohorts may have had prediabetes or even undiag-
nosed type 2 diabetes at baseline. However, forest plots of
the 20 CpG sites showing considerable heterogeneity between
studies failed to reveal consistent differences due to specific
cohorts, suggesting that the high heterogeneity was not
primarily driven by these cohorts. Second, we focused on
whole-blood DNA methylation, which may not fully

represent methylation patterns in other more metabolically
relevant tissues such as adipose tissue, liver or muscle. Next,
we cannot rule out the possibility of reverse causation, where
the DNA methylation changes we identified are a conse-
quence of raised blood glucose levels and adiposity rather than
a cause. Gradually rising levels of blood glucose and adiposity
in the years prior to clinical diagnosis of type 2 diabetes may
elicit compensatory epigenetic changes, reflecting increased
levels of metabolic dysregulation. We chose to correct our
meta-analysis results for multiple testing using the commonly
applied Bonferroni correction; however, we acknowledge that
other methods would have yielded other sets of significant
CpG sites (e.g. Saffari et al’s [43] cut-off of p<3.6 x 107
would have decreased the number of significant CpGs from
76 to 59). Additionally, if we had corrected our replication
analysis either for 76 tests (i.e. Bonferroni) or the number of
independent signals identified through PCA (i.e. 32), the set of
replicated CpG sites would have decreased from 64 to 39 and
46, respectively. Importantly, this meta-analysis of results
from multiple cohorts increased the statistical power of asso-
ciations between DNA methylation and type 2 diabetes
compared with previous single-cohort studies.

Taken together, this large meta-analysis of EWASs result-
ed in the identification of 76 DMS associated with incident
type 2 diabetes. The results from the replication analysis in a
cohort of Indian Asians suggest that the association between
DNA methylation levels and incident type 2 diabetes is inde-
pendent of ethnicity. Our data also show that BMI partly
explains the association between DNA methylation and inci-
dent type 2 diabetes. Functional analyses revealed multiple
biological pathways involved in fatty acid and lipid metabo-
lism, immune response and inflammation, which partly under-
lie impaired glucose metabolism. Further studies are required
to evaluate the relevance to other tissues and to determine
whether these DMS have a causal role in type 2 diabetes
development. In addition, a more detailed analysis of their
biological function is warranted. Future work could assess
correlations between our poly-epigenetic predictor of incident
type 2 diabetes and DNA methylation-based predictors of
BMI and related traits, including waist/hip ratio and per cent
body fat such as those generated by McCartney et al [44]. It
would also be interesting to test whether such DNA
methylation-based predictors add information in prediction
models over and above available phenotypic analogues.

Supplementary Information The online version contains peer-reviewed
but unedited supplementary material available at https://doi.org/10.1007/
$00125-022-05652-2.
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