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The Bitonic Filter: Linear Filtering in an
Edge-preserving Morphological Framework

Graham Treece

Abstract—A new filter is presented which has better edge
and detail preserving properties than a median, noise reduction
capability similar to a Gaussian, and is applicable to many signal
and noise types. It is built on a definition of signal as bitonic,
i.e. containing only one local maxima or minima within the filter
range. This definition is based on data ranking rather than value,
hence the bitonic filter comprises a combination of non-linear
morphological and linear operators. It has no data-level-sensitive
parameters and can locally adapt to the signal and noise levels
in an image, precisely preserving both smooth and discontinuous
signals of any level when there is no noise, but also reducing noise
in other areas without creating additional artefactual noise. Both
the basis and the performance of the filter are examined in detail,
and it is shown to be a significant improvement on the Gaussian
and median. It is also compared over various noisy images to
the image-guided filter, anisotropic diffusion, non-local means,
the grain filter, and self-dual forms of levelling and rank filters.
In terms of signal-to-noise, the bitonic filter outperforms all these
except non-local means, and sometimes anisotropic diffusion.
However it gives good visual results in all circumstances, with
characteristics which make it appropriate particularly for signals
or images with varying noise, or features at varying levels. The
bitonic has very few parameters, does not require optimisation
nor prior knowledge of noise levels, does not have any problems
with stability, and is reasonably fast to implement. Despite its
non-linearity, it hence represents a very practical operation with
general applicability.

Index Terms—Gaussian filter, median filter, morphology, noise
reduction, edge preservation

I. INTRODUCTION

THE removal of unwanted noise corrupting a digital signal
is a very common operation. In many contexts the signal

is not known a priori, except perhaps for some general
expectations concerning its overall form, and can contain both
smooth regions and discontinuities, or ‘edges’. In this latter
case, noise removal usually also leads to blurring of these
edges, and many algorithms have been proposed which seek
either to preserve them during noise removal, or restore them
after blurring.

This paper addresses the preservation of signal discontinu-
ities, in a way which still allows noise removal at the edge,
rather than simply lessening (or disabling) the noise reduction
where an edge is detected. Ideally this would still be the case
at fairly high noise levels, where the discontinuity is less than
the level variation due to noise: this is in contrast to techniques
which rely on thresholds to distinguish between an edge to be
preserved and noise to be reduced.

The difficulty of removing noise without corrupting the
signal relates to the overlap in their respective definitions.
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Noise can usually be defined as a random component, whilst
an unknown signal can be regarded as something which is
either repetitive or smooth or simply ‘not random’. In the
absence of specific training, however, it is usually presumed
that the noise has a greater, or higher, frequency content and
hence ‘smoothing’, or the removal of these frequencies, is used
as a synonym for ‘noise removal’. If the actual signal is smooth
(contains low frequencies) or repetitive (is relatively sparse in
frequency) then some noise can be removed without damage
to the signal. However, signal edges are often not repetitive,
and contain very high frequency content, hence removing
the noise leads to blurring, or other forms of corruption,
of the edge. Edge-preservation during noise removal hence
implies the removal of high frequency noise but not of high-
frequency signal: however, at least in the frequency domain,
these components are not distinct.

Here an alternative is considered, in which the signal is
regarded as ‘anything locally bitonic within a given range’. A
bitonic sequence (defined in the context of sorting [1] as an
extension of monotonic) is one which increases monotonically
(or not at all) to a peak then decreases monotonically (or
not at all), i.e. it has at most one local maxima. A signal
which when cyclically shifted meets this definition is also
bitonic. A slightly simpler definition is used here such that
a signal is deemed locally bitonic if it has either only one
local maxima, or only one local minima, or no maxima nor
minima1. This concept of local bitonicity equally encompasses
smooth signals and those containing edges, since only the data
rank matters, not the level. Many real signals hence might be
expected to exhibit local bitonicity over a reasonable range.

By this definition, noise is anything which is not bitonic
over the given range (or equivalently anything which is only
bitonic over a shorter range). Whilst the range does effectively
impose a lower frequency limit on the noise, and an upper
frequency limit on repetitive signals, it crucially does not
impose an upper frequency limit on edges, so long as the
overall shape is locally bitonic. The definition encompasses at
least all noise types which are zero mean and uncorrelated
over neighbouring samples (i.e. white noise), save for the
lower frequency limit. Impulsive, or ‘Salt & Pepper’ noise is
more ambiguous: an isolated impulse would be regarded as a
signal; several impulses within the range as noise. The ability
to preserve impulses whilst removing other types of noise is
a considerable advantage in some scenarios; but in any case it
will be demonstrated that it is possible to relax the bitonicity

1This is a reasonable re-definition since a true cyclically bitonic signal will
always be bitonic by this alternative definition over at least half of its length:
hence the difference is purely one of the range of the bitonicity.
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criteria slightly to allow for good rejection of impulsive noise
as well.

In the context of filtering, interpreted here in the sense of
replacing each value in the signal with some combination of
the surrounding values within a specific range, a bitonic filter
would hence be one which seeks to preserve any signal with
bitonicity over the range of the filter, but reject anything else.
Such a filter would naturally preserve both edges and smooth
features in a signal.

II. THE BITONIC FILTER

A. Definition

Since bitonicity is concerned with the ordering, rather than
the value, of the data, it is natural to turn to rank filters [2], also
known as order-statistic filters. The median is the most well
known example, where the data in a local window is ranked
and the mid (50th centile) value is output. The median filter is
commonly used to eliminate impulsive noise, whilst preserving
edges well, at least if there is no more than one edge within
the range of the filter. A rank filter is a generalisation of the
median where any centile can form the output. Such filters can
be considered as monotonic in that they preserve signals which
are monotonically increasing or decreasing, and indeed this
leads naturally to impulsive noise reduction, since impulses
are bitonic rather than monotonic. For two-dimensional (2D)
data, the shape of the window used to form the set of ranked
data, in morphology known as the ‘structuring element’, has
some impact on which features can be preserved. Here we use
a circular disk for 2D image data to ensure isotropic behaviour.

Using a rank filter of 100th centile (or maximum, known
as a dilation) and immediately following this with another
of 0th centile (minimum, known as an erosion) results in a
morphological closing operation, which preserves signals with
a local maximum, whilst rejecting any signal with a local
minimum. Reversing the order of these filters results in a
morphological opening which has the opposite action. Such
filters have many uses in processing the shape of data, par-
ticularly in granulometry [3]. Figure 1 shows some examples
of opening and closing operations on one-dimensional (1D)
signals. Here a robust opening operation is used, with a small
centile c rather than the minimum, and (100− c) in place of
the maximum. This is not the same as either the slightly better
known rank-max opening [4] nor the soft-opening [5], but it
has been previously suggested by Kass and Solomon [6]. The
use of a small centile allows some control over impulsive noise
rejection, since any impulse which takes up less of the filter
range than c will be rejected. The robust opening Ow,c(x) and
closing Cw,c(x) of a signal x can be defined as:

rw,c(x) = cthcentile
i∈w

{xi} (1)

Ow,c(x) = rw,100−c(rw,c(x)) (2)
Cw,c(x) = rw,c(rw,100−c(x)) (3)

where rw,c(x) is a rank filter, w is the filter window (or
structuring element in 2D), |w| is the window length (or
number of elements in 2D) and c the chosen centile, which
will generally be a fairly low percentage. The bitonicity can

be seen in Fig. 1 (centre-left). However, robust opening and
closing operations only do half of what is required, since they
are not self-dual (symmetric in data value): they only preserve
local minima or maxima respectively. In addition, it can be
seen from Fig. 1 that the opening and closing operations do
not preserve mean signal values in the case of a noisy signal,
which would clearly be a vital property of a practical filter.

Fortunately both these drawbacks can be overcome by the
same means. It is fairly clear, by comparison of the original
signal with each of the opened and closed signals, which is
the most appropriate output for each part of the signal. We can
hence use such a comparison to weight a combination of the
opening and closing operations. However, a weighting based
on a point-wise comparison would simply return the original
signal2, so instead the differences between the original signal
and each of the rank-filtered signals are smoothed with a linear
filter. A Gaussian filter (i.e. a linear moving-window filter with
Gaussian weights) is used for this purpose, since it is known
to have good noise reduction properties. The filter length is
determined experimentally to match the noise reduction from
the rank filters, so that the standard deviation σ = 0.33l where
l is the window length in 1D, or the diameter of the structuring
element in 2D. This smoothed error can be seen in the middle
column of Fig. 1.

Defining the Gaussian linear filter as Gσ(x), this is used
to weight the results of the opening and closing operations as
follows:

εO(x) = |Gσ (x−Ow,c(x))| (4)
εC(x) = |Gσ (Cw,c(x)− x)| (5)

bw,c(x) =
εO(x)Cw,c(x) + εC(x)Ow,c(x)

εO(x) + εC(x)
(6)

where εO(x) and εC(x) are smoothed opening and closing
errors, and bw,c(x) is the output of the bitonic filter3: the
errors, weights and filter output are shown in the middle
and right-hand columns of Fig. 1. This seems to have the
required properties, i.e. the preservation of any bitonic signal,
and reduction of noise in all regions, including across edges:
the opening and closing operations effectively remove bitonic
signals, leaving the Gaussian to reduce any residual noise
signal everywhere to the same extent.

B. Analysis

In fact, the noise reduction capabilities of the bitonic are
very similar to the Gaussian. In high noise environments, the
opening and closing operations will result in relatively constant
signals (see Fig. 1(c)), such that Ow,c(x) ≈ kO and Cw,c(x) ≈

2This can be seen by replacing Gσ(x) with x in eq. (4) and following
3In the particular case that εO(x) and εC(x) are both zero at x, they

are replaced by the arbitrary value 0.5: this would normally imply that both
opening and closing returned the exact original signal and hence how they
are weighted is inconsequential.
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(c) High noise
Fig. 1. Stages of the bitonic filter. In each case the original signal (left) is both opened and closed (centre-left). The difference between the original and each
of these signals is filtered using a Gaussian (centre) and the smoothed error applied as a weighting (centre-right) to the opened and closed signals to generate
the final signal (right). The mathematical symbols relate to the equations in the main text. The morphological filters act to detect bitonicity in the data so that
the Gaussian filter only eliminates the residual noise. This preserves edges exactly in no noise (a) and very well in low to medium noise (b). Even with noise
as high as the signal level, some edge preservation is possible (c), whilst for very high noise the output tends to that of a Gaussian filter.

kC , where kO will generally be lower than the mean value,
and kC higher, in which case:

εO(x) = Gσ(x)− kO
εC(x) = kC −Gσ(x)

bw,c(x) =
(Gσ(x)− kO) kC + (kC −Gσ(x)) kO

kC − kO
= Gσ(x) (7)

i.e. in very high noise the bitonic filter reduces to a simple
Gaussian smoothing of the signal. However, if there is any
bitonic structure in the signal, this will be picked out and
given appropriate weight according to how well it matches
the original signal.

In fact eq. (7) demonstrates that, with increasing noise, the
bitonic filter will tend towards the performance of whatever
linear filter is used in its definition, eqs. (4) and (5), and hence

this could be seen as a framework for combining any linear
filter with rank filters in order to preserve signal edges.

The size of window |w| controls the amount of smoothing
of the filter in exactly the same way as would be expected
for any moving-window linear filter. In contrast, the centile c
determines the sensitivity to impulsive noise. c = 0% treats
any isolated impulses as signal, c ≈ 20% will reject impulses
similarly to a median filter (but with significantly less non-
linear distortion than the median), and c = 50% is the upper
limit, since in this case Cw,c ≡ Ow,c. In nearly all scenarios,
c = 10% provides a very good balance, and is used in all
subsequent results except for the no-noise environment in
Fig. 2. No setting of w nor c can cause instability, and they
create useful output features across the entire range. Both
Gaussian and rank filters are constrained to the convex hull of
the input data, and hence the bitonic filter will never generate
values outside of the input data range.
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It should be noted that, whilst in practise (and as demon-
strated by the results, particularly see Fig. 7) the bitonic filter
certainly acts to preserve bitonic signals and remove anything
else, it is not shown here that bitonicity over the filter length
l is actually guaranteed by this filter. This could only be true
if the centile c is set to zero, in which case the opening
and closing operations are likely to be independently bitonic,
though the weighted combination is more complex and may
not be. In any case, better visual results are obtained by setting
c = 10% and in this case whilst the filter may still generate
a bitonic signal, it will certainly remove some components
(i.e. isolated impulses) which are themselves bitonic. However,
local bitonicity can still be advanced as the best summary of
what the filter seeks to preserve in a signal.

C. Implementation

The bitonic filter can also be implemented reasonably
efficiently. Since the first rank filters of each of eqs. (2) and (3)
both act on the original signal, the ranking only needs to be
performed once, following which both centiles can be selected.
In addition, the Gaussian filters are generally faster than a rank
filter and have little impact on the processing time. Hence the
bitonic filter takes roughly 3 to 4 times as long as a single rank
filter of the same window size. The efficient implementation
of rank filters has been well studied, with histogram-based
O(l) algorithms, as used here for image data, in common use.
A constant-time implementation has also been proposed for
the median filter [7] which is equally applicable to rank filters
using other centiles.

III. EDGE-PRESERVING FILTERS

Whilst, to the author’s knowledge, there are no other filters
designed for the specific purpose of preserving bitonic sig-
nals, there are various morphological filters which have some
similarity.

Most of the variants of median filters, for instance adaptive
median filters [8] focus on better preservation of signals in
the context of reducing impulsive noise, often by some form
of signal or impulse detection. The filter can then either be
modified in extent, or some data weighted by repeating values
in the ranked list: the rank filter equivalent of multiplying by a
larger weight in linear filtering. Examples include the constant-
time weighted median [9], rank-conditioned rank selection
filtering [10], or permutation weighting. A comprehensive
discussion of such filters has been presented in [11]. These
filters vary in rank selection, but will return one of the
input values: hence they are limited in their power to reduce
non-impulsive noise, though more complex combinations of
morphological operations such as discussed by [12] have been
used to de-noise specific signals [13]. In particular, the OCCO
filter [26] takes the average of an opening-then-closing and a
closing-then-opening, which has the advantage of being self-
dual (symmetric in data value).

Connected operators, like rank filters, are also sensitive
to data ordering rather than value, however they divide an
image into non-overlapping sets, and then operate on these
sets: a very helpful recent review is in [14]. In this context

area opening and closing remove features based on their
area rather than their shape [18]. The sets can be defined
inclusively, where the area of a component is considered to
be the total of all included sets, and there exist very efficient
algorithms for extracting such definitions, for instance the
tree of shapes [17]. Self-dual filtering can be achieved by
removing any sets which have areas below a threshold, either
by ‘pruning’ the connected tree of sets and reconstructing the
image, or by directly manipulating the original image as in
the grain filter [15], similar to level sets [16].

Combinations of linear and morphological filters are some-
what less common. Possibly the earliest is the alpha-trimmed
mean [21], which uses a rank filter to remove outliers before
taking the mean (effectively a simple linear filter) of the
remainder. Others simply represent linear combinations of the
output of a rank filter and a linear filter, for instance the
mean-median filter [22], or more general (and very similar)
morphological/rank/linear (MRL) filter [23] and hybrid order
statistic filter [24]. Such filters may require training to define
the many possible rank and linear weights [25]. They are also
limited by the use of a single rank filter which is fundamentally
monotonic: hence edge-preservation is only possible for a
single edge within the range of the rank filter, and also by
limiting any subsequent smoothing from the associated linear
filter.

An alternative combination of linear and rank filters is
given by [6]. In order to improve morphological operations
which can be implemented using histograms, they propose
local smoothing (by a linear filter) of the histogram of the data
values. Whilst this is rather different from the bitonic filter,
setting c = 20% or higher can offer a similar improvement to
the median as does histogram-smoothing on low-noise data.

It is also possible to combine self-dual levelling (effectively
creating larger, more single-valued regions in the image)
with linear filters [14], [19]. This can be implemented by
reconstruction, i.e. iteratively dilating and eroding according to
an independent mask: in this context the levelling re-introduces
edge information from the image into the mask. Hence if the
mask is a Gaussian filtered image as in [27] then the whole
process can be seen as edge-enhanced de-noising.

There are numerous options for noise suppression without
blurring edges which make no use of morphological filters,
a theoretical comparison of many of which can be found
in [28]. Three popular examples serve to provide a comparison
with the bitonic: the image-guided filter [29], anisotropic
diffusion [30], [31] and non-local means [28]. All of these can
preserve edges, but do so by different mechanisms. The image-
guided filter weights data according to difference in value as
well as location: this is similar to the better known bilateral
filter [32], but with improved performance at image edges.
Anisotropic diffusion uses the local curvature to discourage
averaging across steeper edges. Non-local means only averages
data with that from similar surrounding distributions. Each
of these has various derivatives but the fundamental form is
used here, since many of the alternatives, for instance local-
adaptation or iteration, could equally be applied to the bitonic
filter.
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(a) Original (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Guided (g) Diffusion (h) NLM (i) Levelling
Fig. 2. Filtering results on ‘seattle’ image with no added noise. All outputs were generated with the same filter length l, and hence similar smoothing in
areas regarded as noise at this scale, for instance the reflected trees at the base, and the top of the Seattle needle. The Gaussian (b) has uniform smoothing
but no sharp edges. Techniques sensitive to data value, (f) image-guided filtering, (g) anisotropic diffusion and (h) non-local means, retain edges above a
certain threshold but either remove or blur them elsewhere, for instance the panels at the top of the building. The median (d) has sharper edges but removes
or distorts high level details, as does the OCCO filter (e), whilst Gaussian levelling (i) preserves all edges. The bitonic filter (c) smooths similarly to the
Gaussian but with edges of all magnitudes preserved and much better handling of isolated detail than the median, though not as well as levelling.

IV. RESULTS

Details of the tested filters are as follows, where the bitonic
filter length l (window length in 1D or diameter of the
structuring element in 2D) is chosen in each case to represent
the parameter which most controls the extent of the filter:

Gaussian Linear filter with Gaussian weights, with the
standard deviation σ set to 0.33l, and sufficient
filter length to cover up to ±2σ.

Median Median filter, in 1D with window length l, in
2D using an isotropic circular structuring element
with diameter l.

Bitonic Bitonic filter as previously described, with length
l, and c fixed at 10%, except for the no-noise case
in Fig. 2 where it is set to 2%.

Guided Image-guided filter, implemented using the MAT-
LAB4 function imguidedfilter5 [29], with the
local neighbourhood size set to l, and the degree
of smoothing set to four times the added noise
variance in the image.

Diffusion Anisotropic diffusion, implemented for MAT-
LAB6 [30], with number of iterations set to l, the
integration constant set to the standard deviation
of the added noise, the gradient threshold set to

4MATLAB R2014a, The MathWorks Inc., Natick, MA, 2000
5http://uk.mathworks.com/help/images/ref/imguidedfilter.html
6MATLAB file exchange: Anisotropic Diffusion (Perona & Malik) by

Daniel Lopes,14 May 2007

twice the standard deviation of the added noise,
and the wide-region conduction coefficient.

NLM Non-local means filter, implemented using a fast
algorithm for MATLAB7 [28], with the window
and search length both set to l, and the filter
parameter h set to the standard deviation of the
added noise.

OCCO The average of a rank-based opening-closing,
with a closing-opening [26], except that the
centile-based operations Cw,c, Ow,c were used
with c fixed at 10% to improve performance. l
defined the diameter of the structuring element
as for the Bitonic filter.

Grain A self-dual grain filter based on area openings
and closings, implemented similarly to [15], [16],
with an inclusive definition of areas [33]. In 2D,
the minimum area was given by l × l.

Levelling A self-dual levelling based on reconstruction
using a Gaussian mask [27], [19]. l controlled
the standard deviation of the Gaussian, exactly
as with the Gaussian filter above.

Where relevant, the data was symmetrically extended at
the image edges, though very similar results are achieved by
simply extending the values at each edge. Guided, Diffusion
and NLM have additional parameters, and these were set pre-

7MATLAB file exchange: Fast Non-Local Means 1D, 2D Color and 3D by
Dirk-Jan Kroon, 28 Apr 2010
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suming knowledge of the added noise level, with l controlling
overall extent, and the other parameters chosen for optimal
signal to noise ratio (SNR) (and, in the case of Diffusion,
reasonable stability) at the given noise level.

Whilst the grain filter is included in the summary data,
images for this are not included, since both the performance
and overall image features were very similar to the Gaussian-
masked levelling.

A. Noise-free image data

Figure 2 shows the different smoothing properties of all
these filters, applied to an image with no added noise. In this
case the edges have a variety of magnitudes and the non-rank
filters are not able to smooth highly detailed regions of the
image without also smoothing low-magnitude edges. For the
image-guided filter, there is a specific data threshold below
which data is more smoothed. With anisotropic diffusion,
smoothing increases with the conduction coefficient, which has
to be set above the noise level to guarantee stability. Smoothing
in non-local means is controlled by the filter parameter h,
which is usually set somewhat higher than the expected noise
level in the image. As expected, the bitonic preserves more
details than the median and OCCO, but smooths the residual
data in a similar fashion to the Gaussian. Levelling preserves
edges perfectly but is less effective at smoothing.

These results demonstrate the potential applications of the
bitonic filter in the extraction of image edges or background
layers, highlighting detail, or other artistic operations. How-
ever, the bitonic filter was motivated in terms of noise reduc-
tion, which is the focus for the remainder of this section.

B. One-dimensional signals

Figure 3 shows the performance of the Gaussian, median
and bitonic filters on two test signals, one smooth and one
with distinct edges. The median filter performs poorly on these
signals, since they are only monotonic over a small scale: as
soon as the filter length increases beyond this, the signal is
in some cases completely removed, see the middle row of
Fig. 3(a), and in other cases actually inverted, see the middle
row of Fig. 3(b). The bitonic filter is much better at preserving
the signal at all scales, whilst still reducing noise. This is
obvious on the signal with distinct edges in Fig. 3(a) but it is
still true to a lesser extent on the smooth signal of Fig. 3(b).
For very low SNR (bottom rows of Fig. 3(a) and (b)) the
bitonic filter starts to follow the Gaussian, though still with
edge-preservation in some regions.

The performance in Fig. 3 can be explained by analysing the
filters in terms of frequency and ‘rectangle’ response. Whilst
frequency-domain analysis is natural for linear filters, which
can be completely described by their transfer functions, it is
not a complete description of non-linear filters. However, a
similar analysis is possible by splitting the response of the
filter to a sinusoidal input into two parts: the gain at the
input frequency, and the non-linear distortion, i.e. the energy
present at all other frequencies. Figure 4(b) shows the results
of this analysis. As expected, the Gaussian filter also has a
gain which is Gaussian over frequency, and zero distortion.

Signal with SNR = 28 dB Smoothed signal with filter length = 11

Signal with SNR = 12 dB Smoothed signal with filter length = 19

Signal with SNR = 0 dB Smoothed signal with filter length = 29

(a) Discontinuous signal
Signal with SNR = 28 dB Smoothed signal with filter length = 11

Signal with SNR = 12 dB Smoothed signal with filter length = 19

Signal with SNR = 0 dB Smoothed signal with filter length = 29

 

 
Bitonic
Gaussian
Median

(b) Smooth signal
Fig. 3. The response of Gaussian, median and bitonic filters to signals with
varying time scales. As expected, the bitonic filter has very good performance
on the discontinuous signal in (a), with the Gaussian smoothing all edges, and
the median completely removing many. The performance in (b) is perhaps
more surprising, with the bitonic still outperforming the Gaussian even on this
smooth signal, and the median actually reversing the signal in some cases.
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(b) frequency-domain response
Fig. 4. Gaussian, median and bitonic filters analysed in the frequency and
‘rectangle’ domains. (a) shows the gain and residual error when presented
with a rectangular input. In this case, the Gaussian distorts the input at all
filter lengths and starts to reduce the gain once the length increases beyond the
rectangle width. The median has perfect results up to a relative filter length of
2 and then completely removes the rectangle; the bitonic retains perfect results
up to much higher lengths. (b) shows similar results for oscillatory signals.
In this case the residual error is replaced with the non-linear distortion: the
energy present in other frequencies than the input. As expected this is zero
for the Gaussian, but it is also very low for the bitonic, and this has a much
narrower gain transition band. The median introduces far more distortion, and
the gain is negative at many frequencies.
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Fig. 5. Response of filters to various types of noise. The graphs show the
noise reduction (residual compared to original noise level) for the average
of 20 instantiations of each noise type. The bitonic filter closely follows the
Gaussian in all cases. As expected, the median has very good response to
‘Salt & Pepper’ (impulsive) noise, with little shown since the noise is mostly
completely eliminated, but is not quite as good for speckle noise. If the bitonic
centile c is set to a lower value (e.g. c = 0, dashed line), the filter passes most
impulsive signals while still rejecting other noise types: useful for retention
of extremely small details in some noise environments.

However, the bitonic filter has a much better passband, with
a gain of exactly unity until the filter length l is equal to
half of the period. It also has a narrower transition band
than the Gaussian, and introduces surprisingly little distortion,
especially so for frequencies within the passband. This analysis
also explains the poor performance of the median: the gain is
in fact negative for some frequencies, and there is considerable
distortion, particularly for low frequencies.

An equivalent analysis for signal transitions which are not
repetitive is to consider the response to a rectangle of varying
width, as demonstrated in Fig. 4(a). Here the equivalent to
‘gain’ is the change in height of the rectangular input, and
the ‘distortion’ is replaced by the mean-square error of the
output compared to the input. In this domain, the Gaussian
has a much poorer response, with a unity gain only while the
filter is shorter than the rectangle width, and a relatively large
mean-square error in all cases. The median output is perfect
until the filter length is twice the width of the rectangle, and
after that the signal is completely removed. The bitonic has
perfect preservation of the rectangle until the width is less than
the chosen centile c in the filter — in this case set to 10%.

Whilst Fig.4 demonstrates that the bitonic preserves signals
well, to be useful it also needs to reject noise well, and this
is demonstrated in Fig. 5 for various noise types. The bitonic
filter has very nearly the same noise rejection as the Gaussian.
However, the response to impulsive noise can be modified by
the centile c. Setting this to zero (as shown) preserves most
impulses with little effect on other noise types. Setting it to
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Fig. 6. Average results for the five images boat, peppers, house, fruits and
tulips. Filter lengths were chosen to give the best result (independently for
SNR and SSIM) on each image for each of six different levels of initial added
Gaussian noise. The bitonic filter performs better than the Gaussian, median
and other morphological filters, with clear improvements for moderate SNR
levels, tending towards the Gaussian result for very low SNR. Image-guided
performs well at high SNR but very poorly at low levels. Diffusion and NLM
both perform well on this test, save at very low SSIM.

a larger value (e.g. 20%) gives a response to impulsive noise
similar to the median.

C. Noisy image data

Various test images were used to demonstrate different as-
pects of filter performance, with Gaussian noise added to each.
The ‘boat’, ‘peppers’, ‘house’, ‘fruits’ and ‘tulips’ images are
each regions of public-domain test images8, whereas ‘seattle’
is by the author (of the Seattle needle9 reflected in the neigh-
bouring EMP museum10) and ‘varying’ is computer-generated.
The achievable SNR and Structural Similarity (SSIM, an
attempt to measure something closer to visually perceived
quality) [34] are given in Table I, along with the filter length l
which gave the best overall SNR and SSIM, and an indication
of processing time.

Figure 7 is an image containing noise which varies from
left to right, and demonstrates the ability of the bitonic filter
to automatically adjust to noise levels without the need to
locally vary any parameters. In such scenarios it is hard to
find an optimal set of parameters for the guided, diffusion and
NLM filters, which simultaneously allow edge-preservation in
the low noise regions whilst reducing noise (and maintaining
stability) in the high noise regions. Inevitably either edge-
preservation or noise rejection has to be sacrificed to some
extent in each region.

Figures 8 and 9 are two different regions from the ‘boat’
image. The former has many strong features with short length
scales, and NLM works well on such data, though it also
starts to find some false structure within the noise, particularly
evident in regions with little signal. The performance of the

8e.g. https://homepages.cae.wisc.edu/∼ece533/images/
9www.spaceneedle.com
10www.empmuseum.org

bitonic is better then diffusion, and considerably better than
guided, since in the latter it is very difficult to set a sensible
threshold for capturing edges but not noise. In this and all other
examples, the bitonic seems to consistently achieve sharper
edges than the Gaussian, without any loss of either the extent
or quality of noise reduction. It also achieves better noise
reduction then the median, particularly in terms of quality,
as well as preserving smaller features. The ground in Fig. 9 is
a large region with a fairly random texture and NLM removes
much of this texture, whilst still performing well on the boat.
OCCO is good at edge preservation but only at the cost of
removing less noise, whereas the Gaussian levelling is not
capable of removing noise close to edges.

Figures 10, 11 and 12 are further examples which highlight
the behaviour in different scenarios: ‘peppers’ has relatively
large smooth areas away from edges, ‘house’ has large areas
of fairly constant value, and ‘fruits’ contains a particularly
challenging mixture of different smoothness and scale. NLM is
generally impressive except for the replacement of fine texture
with fine artefacts; diffusion is also good but can be limited in
edge sharpness in some places; image-guided and particularly
levelling leave residual noise close to edges. OCCO generally
performs better than the median, but with similar loss of small
features. Figure 13 shows the ‘tulips’ image with less added
noise, and hence the filter length is shorter. For this level of
noise, the bitonic, diffusion and NLM all preserve the fine
details (for instance the veins on the leaves) well, though the
edges are slightly sharper on the bitonic and NLM images.

These images are at a specific noise level to show visual
differences between the techniques, whereas Fig. 6 contains
average results for all images but with different levels of added
noise. It must be acknowledged that SNR and SSIM are not
complete measures of image quality, and are not responsive to
small but visually distracting artefacts. However, this indicates
that the bitonic filter, alongside NLM and diffusion, performs
well across all noise levels, in contrast to the morphological
and image-guided filters whose performance deteriorates in
high noise scenarios.

V. DISCUSSION

In terms of SNR and SSIM, the bitonic filter is not the best
performing filter of those tested here in all scenarios. However,
it does seem to perform well in all tested cases, better than
any of the other morphological filters, and has a different set
of characteristics from the other linear filters which are better
suited to some situations.

Most notably, where the noise is not uniformly distributed
over an image, the bitonic is capable of very good noise
reduction in some areas with potentially perfect preservation
of signals, even those with edges, in others. This is a direct
result of the definitions of signal and noise as bitonic over
different scales. For low-noise images, the filter can be used
to smooth over repetitive details (anything not bitonic over
the filter length) whilst preserving individual fine details and
any transitions very well, which is potentially of use in edge
extraction, background extraction, feature enhancement or
other artistic processing. The other linear filters are not built on
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TABLE I
SIGNAL TO NOISE RATIO (SNR) AND STRUCTURAL SIMILARITY (SSIM) FOR FULL VERSIONS OF ALL IMAGES. THE BEST THREE RESULTS ARE

INDICATED BY THEIR RANKING, WITH 1 ALSO IN BOLD. †THE FILTER LENGTH l, IS AS DESCRIBED IN SECTION IV. ?TIMES ARE FOR APPROXIMATE
REFERENCE ONLY: THE CODE FOR GAUSSIAN, MEDIAN, BITONIC, NLM, OCCO, GRAIN AND LEVELLING WAS ALL REASONABLY WELL OPTIMISED

AND SINGLE-THREADED, GUIDED WAS HIGHLY OPTIMISED AND MAY BE MULTI-THREADED, THE DIFFUSION CODE HAD LITTLE OPTIMISATION.

image measure Noise Gaussian Median Bitonic Guided Diffusion NLM OCCO Grain Levelling

Varying SNR (dB) 10.01 15.36 15.31 17.241 15.56 15.89 16.302 16.123 15.10 14.55
168×168 SSIM 0.546 0.683 0.705 0.7871 0.708 0.720 0.7473 0.7622 0.696 0.664
Grey l† - 7 7 7 3 5 3 3 9 7

Time (ms)? - 1 2 11 11 30 40 47 120 404

Boat SNR (dB) 10.54 19.59 18.58 19.993 19.20 20.362 20.711 19.54 17.06 17.17
512×512 SSIM 0.198 0.6323 0.542 0.6332 0.526 0.6351 0.631 0.586 0.415 0.412
Grey l† - 9 9 9 5 5 9 3 21 17

Time (ms)? - 9 26 107 32 175 2,230 201 1,432 6,740

Peppers SNR (dB) 9.95 19.68 19.10 20.642 19.55 20.543 20.721 19.60 16.66 16.85
512×512 SSIM 0.651 0.9473 0.940 0.9531 0.935 0.9531 0.9482 0.939 0.891 0.886
RGB l† - 11 11 11 5 9 7 5 21 17

Time (ms)? - 43 91 385 96 844 2,256 527 5,931 21,045

House SNR (dB) 17.06 23.95 23.67 25.373 24.30 25.402 27.281 24.56 22.44 22.58
256×256 SSIM 0.335 0.779 0.739 0.7803 0.737 0.8012 0.8351 0.771 0.615 0.627
Grey l† - 7 7 7 5 9 9 3 9 9

Time (ms)? - 2 6 27 12 112 556 67 156 1,269

Fruits SNR (dB) 12.24 21.78 20.81 22.633 21.74 23.142 25.301 22.40 19.40 19.58
512×512 SSIM 0.492 0.9013 0.882 0.9072 0.861 0.9072 0.9321 0.881 0.789 0.801
RGB l† - 11 11 11 7 7 11 3 13 15

Time (ms)? - 43 91 385 128 585 12,109 466 3,637 21,192

Tulips SNR (dB) 21.61 25.23 25.09 26.733 25.95 27.391 26.842 24.21 24.33 24.32
768×512 SSIM 0.857 0.9602 0.951 0.9593 0.955 0.9661 0.956 0.954 0.921 0.927
RGB l† - 5 5 5 5 11 5 3 5 7

Time (ms)? - 45 91 407 125 1,499 1,023 710 1,100 7,055

(a) Varying noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 7. Filter performance on ‘varying’ image. These images have been optimised for best visual quality: see Table I for results optimised for SNR and SSIM.
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(a) -11 dB noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 8. Filter performance on a region of ‘boat’ image: see Table I for details.

a bitonic definition of signals, and are more naturally sensitive
to data values, with the associated difficulty of preserving any
edges in the data which are smaller than the level of the noise.

Unlike the image-guided filter, anisotropic diffusion or
the non-local means filter, the bitonic filter also achieves
this without the use of any parameter which would make
it sensitive to a particular data threshold, nor any need for
parameter optimisation to the level of noise in the image,
nor any issues with stability nor the introduction of spurious
features in high levels of noise. Indeed in nearly all scenarios,
the only necessary adjustment is the filter length. It is hence
easy to apply in practice since it adapts well to whatever it
finds in the signal. It seems to present an improvement on
both the Gaussian and median in all circumstances: sharper
than the former, and more detail-preserving and with better
noise qualities than the latter.

The bitonic filter can also be tuned (by lowering the centile
c) to treat isolated impulses as signal, without much detrimen-
tal effect on the rejection of other non-impulsive noise.

In terms of processing speed, the bitonic filter is typically
3 to 4 times slower than the median, 10 times slower than the
Gaussian. However, this is still competitive with other edge-
preserving filters: faster than non-local means and diffusion,
and not much slower than the less well-performing image-
guided filter. The processing time for each data point as imple-
mented scales linearly with the filter length, with constant time
implementations also possible, hence it is perfectly applicable
to longer filters and much larger images.

The main disadvantage of this filter, which only applies to
signals of two dimensions or greater, is the slight sensitivity
to the shape of the structuring element. The bitonic is in

fact less sensitive in this respect than a median filter using
the same element, however when using a circular disk, and
for larger filter lengths than were used here, it will begin to
round off square corners. If the geometry is of a known form,
another more appropriate structuring element could be used,
for instance a square for images with horizontal and vertical
features.

VI. CONCLUSION

It has been demonstrated that a filter following a bitonic
definition of signals can outperform the Gaussian and median
filters and has different characteristics to other edge-preserving
filters, which make it particularly suitable for situations of
varying or unknown noise.

Since the bitonic filter is entirely local and not iterative,
adaptations of other filters (e.g. iteration or local parameter
variation) might also be appropriate adaptations of the bitonic.
It could also provide a substitute for the Gaussian or median
in any filter which makes use of them, including the non-
local means filter. Alternatively, the bitonic filter could itself
be built around a different linear filter than the Gaussian, in
which case it should improve the edge-preserving capabilities
of the underlying linear filter.

The bitonic filter has been implemented for MATLAB11

and a 2D version for use on images is also available in free
wxDicom12 software.
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(a) -10 dB noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 10. Filter performance on a region of ‘peppers’ image: see Table I for details.

(a) -17 dB noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 11. Filter performance on a region of ‘house’ image: see Table I for details.
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(a) -12 dB noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 12. Filter performance on a region of ‘fruits’ image: see Table I for details.

(a) -22 dB noise (b) Gaussian (c) Bitonic (d) Median (e) OCCO

(f) Original (g) Guided (h) Diffusion (i) NLM (j) Levelling
Fig. 13. Filter performance on a region of ‘tulips’ image with low noise: see Table I for details.
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