
A maximum magnetic moment to angular
momentum conjecture

John D. Barrow1 and G. W. Gibbons1;2;3
1DAMTP, Centre for Mathematical Sciences,

University of Cambridge,
Wilberforce Rd., Cambridge CB3 0WA, UK

2LE STUDIUM, Loire Valley Institute for Advanced Studies,
Tours and Orleans, France

3Laboratoire de Mathématiques et de Physique
Théorique, Université de Tours, France

February 28, 2017

Abstract

Conjectures play a central role in theoretical physics, especially
those that assert an upper bound to some dimensionless ratio of phys-
ical quantities. In this paper we introduce a new such conjecture
bounding the ratio of the magnetic moment to angular momentum
in nature. We also discuss the current status of some old bounds on
dimensionless and dimensional quantities in arbitrary spatial dimen-
sion. Our new conjecture is that the dimensionless Schuster-Wilson-
Blackett number, c�=JG

1
2 , where � is the magnetic moment and J

is the angular momentum, is bounded above by a number of order
unity. We verify that such a bound holds for charged rotating black
holes in those theories for which exact solutions are available, including
the Einstein-Maxwell theory, Kaluza-Klein theory, the Kerr-Sen black
hole, and the so-called STU family of charged rotating supergravity
black holes. We also discuss the current status of the Maximum Ten-
sion Conjecture, the Dyson Luminosity Bound, and Thorne�s Hoop
Conjecture.
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1 Introduction

Regardless of what one thinks of the debate concerning the relative merits of
the traditional Baconian or inductionist, versus Bayesian or Popperian, view-
points about the nature of science, few would disagree that making precisely
stated conjectures or exhibiting counter-examples has an important place in
theoretical physics. In making such conjectures it is important to bare in
mind that although it is frequently convenient to adopt units well suited
to practical aspects of the subject being discussed, any physically meaning-
ful statement must be independent of an arbitrary choice of units. In fact,
adopting an appropriate set of �natural units�can a¤ord insights which may
be otherwise obscured. In this paper we are led in section 2, by our con-
sideration of natural units for physical quantities which are independent of
Planck�s constant, to conjecture new fundamental bounds on dimensionless
quantities in classical gravitation, in particular that there is an upper bound
on the magnetic moment to angular momentum ratio. In section 3, we verify
that such a bound holds for charged rotating black holes in those theories for
which exact solutions are available, including the Einstein-Maxwell theory,
Kaluza-Klein theory, the Kerr-Sen black hole, and the so-called STU family
of charged rotating supergravity black holes. We discuss the current status of
the Maximum Tension Conjecture in section 4, the Dyson luminosity bound
in section 5, and new approaches to Thorne�s Hoop Conjecture in section 6.

2 Units and dimensional analyses

Natural units were �rst introduced into physics and metrology by George
Johnstone Stoney at the British Association Meeting in 1874, in an attempt
to cut through the proliferation of parochial units of measurement spawned
by the industrial revolution and the expansion of Victorian engineering and
commerce [1, 3]. He sought to devise units that, unlike feet and horse-
power, avoided any anthropomorphic benchmark, and made no use of chang-
ing parochial standards, like days or standard weights. A similar universal
approach had also been advocated by Maxwell in 1870, who suggested that
constants be founded on atomic or optical standards [2, 3]. He also saw
a new opportunity to promote his prediction of a new elementary particle,
which he �rst dubbed the �electrolion�in 1881 and then renamed the �elec-
tron� in 1894, carrying a basic unit of electric charge, e, whose numerical
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value he predicted using Faraday�s Law and Avogadro�s Number. The elec-
tron was subsequently discovered by Thomson in 1897, and Stoney remains
the only person to have successfully predicted the numerical value of a new
fundamental constant of physics.

2.1 Stoney Units

In response to a challenge from the British Association to reduce or organise
the plethora of special units that had sprung up to service the industrial
revolution and Britain�s trading empire, in 1874 Johnstone Stoney �rst in-
troduced a system of "natural units" of mass, length and time using the
speed of light, c, the Newtonian gravitational constant, G;and his proposed
electron charge, e, [4, 5, 6]. Stoney�s natural units were

MS =

�
e2

G

�1=2
; LS =

�
Ge2

c4

�1=2
; TS =

�
Ge2

c6

�1=2
: (1)

These were the �rst natural units. However, we should note that in those
days before the theory of special relativity, the speed of light, c, did not
possess the absolute status that it would later assume and e was still just a
hobby-horse of Stoney�s (for some context see the history ref. [7]).

2.2 Planck Units

In 1899, a similar idea was introduced by Max Planck [8] to create another
set of natural units based on c;G; and h; the quantum constant of action
that bears his name. They di¤er from Stoney�s units by a factor 1

2�
( e

2

~c)
1=2 �

the square root of the �ne structure constant divided by 2�. These units are
now commonplace in physics and cosmology and they de�ne units of mass,
length and time that combine relativistic, gravitational and quantum aspects
of physics:

MPl =

�
hc

G

�1=2
; LPl =

�
Gh

c3

�1=2
; TPl =

�
Gh

c5

�1=2
: (2)

However, innumerable related Planck units may be constructed for other
physical quantities in any number of space dimensions by dimensional analy-
sis. Those involving thermal physics can be included by adding the Boltz-
mann constant, kB, to G; c and h. Some of the Planck units are especially
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interesting for classical physics if they do not contain Planck�s constant.
This signals that they are purely classical in origin and may highlight a lim-
iting physical principle. This is trivially so for the Planck unit of velocity,
VPl = c, but less obvious for the Planck units of force FPl = c4=G and power
PPl = c

5=G which are strongly suspected to be maximal quantities in classical
physics. It has been conjectured [9, 11, 12, 13, 14] 1that in general relativ-
ity (with and without a cosmological constant) there should be a maximum
value to any physically attainable force (or tension) given by

Fmax =
c4

4G
; (3)

where c is the velocity of light and G is the Newtonian gravitational constant.
For possible relations to the holographic principle and to quantum clocks, see
[17, 18, 19].

2.3 De Sitter units

If one believes that the observed acceleration of the scale factor of the universe
[20] is due to a classical cosmological constant � rather than some form of
slowly-evolving �dark energy�, with time-dependent density, then a set of
absolute de Sitter units of mass, length, and time can be introduced:

MdS = c
2G�1��

1
2 ; Lds = �

� 1
2 ; Tds = c

�1��
1
2 : (4)

In these units c4=G is still the unit of force and the upper bound (3) still
appears to hold [14].

2.4 Fundamental principles and dimensions

We referred above to �limiting principles�, or what are sometimes called �im-
potence principles�. In [9] the phrase �maximum tension principle�was used
in the usual sense of �fundamental principles�, that is general statements
expected to be true of all viable theories and which may follow as a valid
consequences of a precisely formulated mathematical statement within any
well-de�ned mathematically theory. Such principles may have heuristic value
in motivating and formulating a theory, but cannot be used in themselves

1 for an earlier anticipation of this idea but based on a di¤erent physical motivation see
[16]
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to de�ne a theory. For example �Heisenberg�s Uncertainty Principle� is an
elementary theorem in wave mechanics but is insu¢ cient in itself to de�ne
wave mechanics. Moreover, it not only rests heavily on translation invari-
ance, but may not hold in more general quantum mechanical theories, such
as relativistic quantum �eld theory, in which the notion of a position ob-
servable is problematic. Other examples in general relativity include �Mach�s
principle�2 �equivalence principles. and Thorne�s �hoop conjecture�(to which
we return below). Other �principles�, like the �cosmological principle�may be
simplifying symmetry assumptions, or approximations, that cannot be pre-
cisely true in reality, or straightforward methodological principles, like the
�weak anthropic principle�, or various variational principles.
The maximum force conjecture gives rise to the closely related conjecture

[21] that there is a maximum power de�ned by

Pmax = cFmax =
c5

4G
; (5)

the so-called Dyson luminosity [22], or some multiple of it (to account for
geometrical factors that are O(1)). This will be treated in detail in section
4.
We note that some of the non-quantum Planck units, like the velocity,

VPl = c, are independent of the dimension of space but others, like FPl, are
not, because in N -dimensional space the dimensions of G are M�1LNT�2.
Thus, inN dimensions the non-quantumPlanck unit is mass� (acceleration)N�2,
which is only a force when N = 3; as shown in ref. [14].
In this paper, we display another physically interesting non-quantum

Planck unit formed by the ratio of the magnetic moment of a body, �, to its
total angular momentum, J , and conjecture that classically all bodies satisfy
an inequality

�

J
< �

G1=2

c
; (6)

where � is a numerical factor O(1); and we explore the evidence for this
maximum bound. Unlike the Planck units of force and power, the Planck
unit for the ratio �=J is independent of spatial dimension.
To show this, if we use unrationalised units the dimensions [:] of magnetic

Q and electric charge �Q are the same and are given by the inverse-square

2For an incisive account of many inequivalent formulations this can be given see [10].
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laws discovered by Michell and Priestley, [23, 24], respectively, with

[Q] = [ �Q] =M
1
2L

3
2T�1 : (7)

The dimensions of a magnetic moment � are therefore�
�
�
=M

1
2L

5
2T�1 : (8)

Thus, the ratio of magnetic moment to angular momentum J has dimen-
sions ��

J

�
=
�G 1

2

c

�
=
� Q
Mc

�
: (9)

which is independent of Planck�s constant ~. This property continues to
hold in N -dimensional space because there we have [Q] = M1=2LN=2T�1,
[�] =M1=2L1+N=2T�1 and [J ] =ML2T�1.
The ratio

Z � Q2

GM2
(10)

may be regarded as the separation-independent ratio of the electrostatic re-
pulsion to the gravitational attraction between two identical bodies of mass
M and charge Q. It has been claimed [25] that Zöllner was the �rst person
to recognise its signi�cance and so one might call it the Zöllner number. A
famous, but now discredited, theory of Dirac�s predicting the time variation
of the gravitation �constant�G / 1=t, with the age of the universe t, [26] was
partly motivated by the very small value of Z when the mass M = me and
charge Q = e of the electron (or even the proton mass mpr) are substituted.
Thus, giving

N =
e2

Gm2
e

� 3� 1042; (11)

which suggested to Dirac its possible equality (in some yet to be found theory)
with the square root of the total number of protons or electrons in the visible
universe, c3t=Gme � 1083, up to a factor O(1). In fact, the value of N and
its numerical proximity to the ratio of the classical electron radius to the
Hubble radius was �rst noticed by Weyl in 1919 [27, 5] and the numerical
�coincidence�is anthropic because it is equivalent to the statement that the
present age of the universe is of order the main sequence lifetime of a star
[28, 5].
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Classically, we have the Larmor relation

�

J
=

Q

2Mc
(12)

where M is the mass of a system with charge Q. More generally, we have

�

J
= g

Q

2Mc
(13)

where g is the gyromagnetic ratio. Famously, Dirac showed that for electrons
g = 2, at least at lowest order in the �ne structure constant e2=~c; [29], and
this value has some signi�cance in supersymmetric theories [30].
After earlier suggestions made by Schuster [31] and Wilson [32], Blackett

[33] conjectured that all rotating bodies should acquire a magnetic moment
given by

�

J
= �

G
1
2

c
; (14)

where the dimensionless Schuster-Wilson-Blackett number has � � O(1);
and was once regarded as a possible universal constant. Although � is found
to be of order unity for a variety of rotating astronomical bodies ranging
from the earth, the sun, and a variety of stars, as a general statement for
macroscopic bodies, the Schuster-Wilson-Blackett conjecture has fallen foul
of astronomical data. Yet it remains of interest to enquire whether it provides
a natural upper bound for bodies with signi�cant gravitational self-energy.
Since, for electrons

� = N
1
2 ; (15)

no interesting bound holds for the elementary particles. However, it is of
interest to ask what is known about � in Einstein-Maxwell and supergravity
theories, since for black holes there is typically an upper to jQj=G 1

2M of
order unity. For Planck mass particles with charges of order e, we �nd � is
not far from unity. Such objects can arise in string theory, whose low-energy
limit is supergravity theory, so this further motivates the investigation that
follows.
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3 The Schuster-Wilson-Blackett Number for
electrically charged rotating black holes

Brandon Carter �rst discovered [34] that Kerr-Newman black holes in Einstein-
Maxwell theory have a gyromagnetic ratio equal to 2:

�

J
=
Q

Mc
: (16)

Now, to avoid naked singularities, we require (if we assume the black hole
has no magnetic charge)

GM2 � Q2 + J2

M2
: (17)

Thus,

1 � c2�2

GJ2
+

J2

GM4
; (18)

and so we have the required bound:���
J

�� � G
1
2

c
: (19)

Hence, we have � < 1 for Kerr-Newman black holes. The literature on
extensions of Carter�s result is quite large. A notable example [35] is a
detailed analysis of a current loop surrounding a static black hole. As the
loop moves towards the horizon the gyromagnetic ratio smoothly interpolates
between the classical value g = 1 and the Carter-Dirac value g = 2.
It was shown by Reina and Treves [36] that any asymptotically-�at so-

lution of the Einstein-Maxwell equations obtained by performing a Harrison
transformation on a neutral solution must also have g = 2. Furthermore, it
has been shown [37, 38] that, provided any sources obey the constraint thatG
times the energy density bounds the charge density, then all asymptotically-
�at solutions of the Einstein Maxwell equations, possibly with sources of the
kind speci�ed which are regular outside a regular event horizon, obey the
following Bogomolnyi bound on the Zöllner number:

Z =
Q2

GM2
� 1: (20)

Combining this with Reina and Treves�result, implies

� < 1: (21)
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3.1 Kerr-Newman AdS black holes

Using the notation of [39], and temporarily setting G = c = 1, we must
distinguish the parametersM;Q; J; in the spacetime metric from the physical
quantities. The latter are denoted by primes. From [40], we introduce

M 0 � M

�2
; J 0 � aM

�2
(22)

where � � 1� a2

l2
.

Aliev gives the physical charge as

Q0 =
Q

�
; (23)

He �nds

�0 =
Qa

�
; (24)

so we have
j�0j
jJ 0j =

jQj
M
(1� a

2

l2
) : (25)

Now, for a horizon to exist, we require

�r = (1 +
a2

l2
)
�
r2 � 2Mr

1 + a2

l2

+
Q2 + a2

1 + a2

l2

�
+
r4

a2
(26)

to have at least one real root. A necessary condition for this is that the
quadratic in the �rst term be negative. This requires

jQj
M

<
1q
1 + a2

l2

: (27)

Thus, we also require
j�0j
jJ 0j <

1� a2

l2q
1 + a2

l2

: (28)

Now,

(1� x)(1 + x) = 1� x2 � 1 ; ) 1� xp
1 + x

� 1

(1 + x)
3
2

� 1 ; (29)
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so
j�0j
jJ 0j < 1 : (30)

Therefore, we have shown that � < 1 for Kerr-Newman-AdS black holes. 3

3.2 Einstein-Maxwell-Dilaton black holes

These have only been discussed for general dilaton-photon coupling constant
� for the case of slow rotation [47, 48]. One has a uniqueness theorem for
general �, angular momentum, electric and magnetic charges [49] provided
that �2 � 3.
In the general slow-rotation case one �nds that [47]

J =
a

2

�
r+ +

3� �2
3(1 + �2)

r�
�
; � = aQ : (31)

If a is small, then the mass M and charge Q are given by

M =
1

2

�
r+ +

1� �2
1 + �2

r�

�
; jQj =

r
r+r�
1 + �2

: (32)

Since r+ � r� � 0; we have

jQj
M

�
p
1 + �2; (33)

so that in accordance with the Bogolmolnyi bound of [50], this gives

M � jQjp
1 + �2

: (34)

We have
jJ j
j�j =

1

2

p
1 + �2

�rr+
r�
+

3� �2
3(1 + �2

r
r�
r+

�
; (35)

so, provided �2 � 3, this gives

j�j
jJ j �

1

2

p
1 + �2 � 1 : (36)

3Note that since Harrison transformations are not available when the cosmological
constant is non-vanishing, there is no analogue of the Reina-Treves result with which to
combine the Bogomolnyi bound of. [41] in this case.
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As pointed out in [47], we can then obtain a gyro-magnetic ratio:

g = 2� 4�2r�
(3� �2)r� + 3(1 + �2)r+

: (37)

3.3 Kerr-Kaluza-Klein black holes

The observational and theoretical failures of the old Schuster-Blackett con-
jecture (14) led some to resort to Kaluza-Klein theory (see [42]). Rotating
charged black holes in this theory may be obtained by boosting the neu-
tral Kerr solution (sometimes referred to in this context as a rotating �black
string�) along the �fth dimension. If v is the velocity parameterizing the
boost, and a and Ms the parameters of the original Kerr solution, then in
units in which G = c = 1 [43],[44], we have

M =Ms

�
1 +

1

2

v2

1� v2
�
; J =

Msap
1� v2

Q =Ms
v

1� v2 ; � =
Msavp
1� v2

(38)

and the gyromagnetic ratio is g = 2� v2. Restoring units, we have

j�j
jJ j =

G
1
2

c
v; (39)

and, remarkably, we see that � = v=c � 1.
We may also regard Kaluza-Klein black holes as Einstein-Maxwell-Dilaton

black holes with � =
p
3. For the gyromagnetic ratios of elementary particles

in Kaluza-Klein theory and their comparison with black holes, the reader may
consult [46, 42, 43].

3.4 Kerr-Sen electrically-charged black holes

These black holes satisfy the low-energy equations of motion of heterotic
string theory [51] and may be regarded as an Einstein-Maxwell-Dilaton black
hole with coupling constant � = 1. According to [51], the mass M , charge
Q, angular momentum J and magnetic dipole moment, �; are given by

M =
m

2
(1 + cosh �) ; J =Ma

Q =
mp
2
sinh � ; � = Qa : (40)
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where m; a; � are parameters 4. Thus, we �nd

� =
j�j
jJ j =

p
2
sinh �

1 + cosh �
=
p
2 tanh

�

2
�
p
2 : (41)

and
g = 2 : (42)

We also �nd a Bogomolnyi inequality (34) with �2 = 1 is satis�ed, that
is,

jQj
M

�
p
2: (43)

3.5 STU electrically charged black holes

The electromagnetic properties of a more general family of 4-charged black
holes, which are solutions of the so-called STU supergravity theory (charac-
terised by S, T , and U dualities) are reviewed in [45]. These solutions de-
pend upon 4 boost parameters, �i. If ci = cosh �i, si = sinh �i, �c = c1c2c3c4,
�s = s1s2s3s4, �1c = c2c3c4 etc, �

1
s = s2s3s4 etc, then according to [45]

M =
m

4

X
i

�
c2i + s

2
i

�
; J = ma

�
�c � �s

�
(44)

Qi = 2msici ; �i = 2ma
�
si�

i
c � ci�is

�
: (45)

Evidently
4M �

X
i

jQij : (46)

We also have
1

2

�i
J
=
si�

i
c � ci�is

�c � �s
: (47)

If we assume that si > 0, 8 i, then

1

2

�i
J
� si(�

i
c � �is)

ci(�ic � �is)
� tanh �i � 1 : (48)

There are some special cases which coincide with solutions of the Einstein-
Maxwell-Dilaton theory.

4Our � is Sen�s �.
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� Einstein-Maxwell Black Holes: �1 = �2 = �3 = �4, Qi = Q, �1 = �.
Thus, from (45), we have

M = m cosh 2� ; J = ma cosh 2�; (49)

Qi = m sinh 2� ; �i = ma sinh 2�; (50)

and if we set Q = Qi and � = �i so that

Q2 =
1

4

�
Q21 +Q

2
2 +Q

2
3 +Q

2
4

�
; (51)

then we �nd that g = 2 and

j�j
jJ j = tanh 2� =

jQj
M

� 1 : (52)

Evidently both the charge inequality (46) and the dipole inequality (
48) are satis�ed, the latter by a comfortable margin since for x > 0,

tanh 2x � 2 tanhx : (53)

.

� Kerr-Kaluza-Klein electrically charged black holes: �2 = �3 = �4 = 0,
�1 = �.

M =
m

4
(3 + cosh 2�); J = ma cosh � (54)

Q1 = m sinh 2� ; �1 = 2ma sinh � (55)

Now, if v = tanh � then from (40) we have

M =
Ms

4

�
3 + cosh 2�

�
; J =Msa cosh �

Q =
Ms

2
sinh 2� ; � =Msa sinh � (56)

Thus, Ms = m, Q = 1
2
Q1 and � = 1

2
�1; so that we have

Q2 =
1

4
Q21; (57)
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and we �nd that

� =
j�j
jJ j = tanh � � 1 : (58)

We also have
M � 1

2
jQj; (59)

which is consistent with (34) provided that �2 = 3.

� String Theory: �1 = �2 = �, �3 = �4 = 0:
Now, we have

M =
1

2
m(1 + cosh 2�) ; J =

1

2
ma(1 + cosh 2�); (60)

Q1 = Q2 = m sinh 2� ; �1 = �2 = 2ma sinh � cosh � ; (61)

and if we set Q1 = Q2 =
p
2Q and �1 = �2 =

p
2�; so that

Q2 =
1

4
(Q21 +Q

2
2); (62)

we obtain
j�j
jJ j =

p
2 tanh � : (63)

and
jQj
M

=
p
2 tanh � �

p
2 : (64)

We also �nd that g = 2 and obtain consistency with (34) and agreement
with (41) provided � = 2�.

Note that for all these special cases, the conversion from the conventions
of [45] and standard (Gaussian) units is

Q2 =
1

4

X
i

Q2i : (65)
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4 The Dyson bound

The importance of some multiple of c5=G in studies of gravitational radiation
appears to have �rst been noticed in a paper of Dyson [22]. He observed,
by a scaling argument, that the luminosity in gravitational radiation of an
orbiting binary star system according to Einstein�s linearised theory of grav-
itational radiation, must be a dimensionless multiple of c5=G, (see below
for a more precise statement). Subsequently, Thorne [54] introduced it into
modern studies of possible sources of gravitational radiation, linear or non-
linear, detectable on earth using current technology. Thorne�s paper seems
to have introduced the idea of a Dyson bound [55, 56]: a maximum possible
luminosity in gravitational waves 5.
Six years after [22], Dyson wrote a short note, [57], posing a question the

answer to which was supplied by Hawking�s famous area theorem [58]. It
seems reasonable therefore to suggest (see footnote 9 of [60]) that c5=G; or
some multiple of it, be called �one Dyson�. If one accepts this, the max-
imum luminosity of GW150914 (or the orbital merger of any equal-mass
non-spinning black holes) is about 1 milli-Dyson.

5 The Maximum Tension Principle

Independent of these considerations, in an article written for the Festschrift
celebrating the 60th birthday of the late Jacob Bekenstein [9], it was con-
jectured that c4=4G was the maximum possible tension or force in classical
general relativity. Dimensionally, this makes sense. The Einstein equations
read

R�� �
1

2
g��g

��R�� =
8�G

c4
T�� : (66)

5In reply to an enquiry by Christoph Schiller, Dyson replied on 14th Feb 2011: �It is
not true that I proposed the formula c5=G as a luminosity limit for anything. I make
no such claim. Perhaps this notion arose from a paper that I wrote in 1962 with the
title, �Gravitational Machines�, published as Chapter 12 in the book, �Interstellar Com-
munication�edited by Alastair Cameron, [New York, Benjamin, 1963]. Equation (11) in
that paper is the well-known formula 128V 10=5Gc5 for the power in gravitational waves
emitted by a binary star with two equal masses moving in a circular orbit with velocity
V . As V approaches its upper limit c, this gravitational power approaches the upper limit
128c5=5G. The remarkable thing about this upper limit is that it is independent of the
masses of the stars. It may be of some relevance to the theory of gamma-ray bursts.�
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The Ricci tensor R�� has dimensions L�2 and every component of the energy-
momentum tensor, T�� , has dimensions force per unit area and the Einstein
constant 8�G=c4 has units of an inverse force.
Some heuristic arguments in favour of this maximum tension conjecture

were given in [9] and the factor of 1
4
justi�ed by reference to conical singu-

larities and the requirement that the de�cit angles of cosmic strings do not
exceed 2� radians. In fact, the de�cit angle is subject to a so-called Bogomol-
nyi bound [61] in this case. The extensions in the presence of a cosmological
constant were given in [14] but as yet there exists no formal proof, or indeed
precise mathematical formulation. Further work on the maximum tension
(or force) principle may be found in [11, 12, 13, 15]. Earlier suggestions re-
garding a maximum force then came to light. In [16], the authors claimed
that c4=4G is the maximal force allowed in general relativity and in [21] made
the obvious maximal power hypothesis that c5=4G is the maximum power
allowed in nature. Neither paper makes any reference to [22] or [54]. There
are also earlier (unseen) papers on this subject, [62, 63], whose titles clearly
indicates that the author had the same order of magnitude for the maximal
force and maximal power in mind [64].

6 Thorne�s Hoop Conjecture

The proposed Dyson bound and the maximum tension principle resemble
another, as yet unresolved but possibly related, issue: how does one formulate
in a precise way Thorne�s hoop conjecture? [65] Recently, there has been
some progress in this direction.
In [66], a precise candidate was proposed for the hoop radius of an ap-

parent horizon in terms of its Birkho¤ invariant �b. The conjecture was that
every apparent horizon should satisfy

�b � 4�GMADM=c
2; (67)

where MADM is the ADM mass of the system. In [67], considerable sup-
port was marshalled for (67) using known exact solutions of supergravity
theories. However, more recently, a counterexample was constructed using
time-symmetric vacuum initial data in ref. [68]. Following suggestions in
[70, 71], one may then reformulate the hoop conjecture as

�b � 2�GMBY =c
2; (68)
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whereMBY is the Brown-York quasi-local mass [72, 73] of the apparent hori-
zon. Note that the the Brown-York quasi-local mass is only de�ned for
time-symmetric data. Using a result of Paiva [74] 6. One may check that
(68) holds for all initial data sets constructed in ref. [68]. For a proof in
Robinson-Trautmann metrics, see ref [69].
The Brown-York quasi-local mass [72, 73] of the apparent horizon, which

is assumed to have positive Gaussian curvature, therefore admits a unique
(up to rigid motions) isometric embedding into Euclidean space as a convex
body. The de�nition of the Brown-York mass inside any 2-surface, S; lying
in a Cauchy surface f�; ĝg is

MBY =
1

8�

Z
S

�
k0 � k

�
dA(S; ĝjS); (69)

where k is the trace of the fundamental form of S considered as embedded
in f�; ĝg and k0 is the trace of the fundamental form of fS; gg when iso-
metrically embedded in Euclidean space fE3; �ijg, for which we have simply
dA(S; ĝjS) = dA(S; �ijS) = dA. From a spacetime point of view, the Brown-
York mass depends on both how the spacelike surface S sits in spacetime
fM; g��g (it has two fundamental forms) and also the spacelike hypersurface
� passing through it (which picks out a linear combination of its two second
fundamental forms). The Brown-York mass is believed to be a �quasi-local�
measure of the amount of �energy�on � inside S [76]. The York-Brown mass
su¤ers from a number of shortcomings but in the present context has been
shown that it is positive [77].
Among the shortcomings of the Brown-York mass is that it requires that

the surface S admit an isometric embedding into three-dimensional Euclidean
space. This is not possible for the horizon of all Kerr black holes. Embed-
dings into four-dimensional Euclidean space are known but are believed not
to be unique. There exists a unique isometric embedding into hyperbolic
three-space [86] and hence a (presumably not unique) embedding into four-
dimensional Minkowski spacetime.
The converse of the hoop conjecture remains to be considered; that is,

the question if some surface S satis�es

�b �
2�GMBY

c2
; (70)

6There is an earlier and weaker result due to Croke [78] which may possibly prove to
be of use in the present context
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then must S be, or lie inside, an apparent horizon? The various papers of Shi
and Tam [77, 79, 80, 81, 82, 83, 84, 85] contain some relevant results here.

6.1 Relation to work of Tod

Tod [75] has looked at the hoop conjecture from the point of view of a col-
lapsing shell construction for which an isometric embedding is possible, and
seeks to de�ne the hoop radius in terms of a maximum shadow circumference
Cm. This is de�ned as the supremum of the circumference of all orthogonal
projections of the surface. He �nds that

�

2
C � 1

2

Z
x
k0dA � 2Cm ; (71)

where the upper bound is attained for any surface of constant breadth.
Thus, in the context of the time-symmetric initial value problem, rather

than the collapsing shell calculation 7, an apparent horizon must satisfy

Cm
8
� GMBY

c2
� Cm
2�

(73)

Since
�b � Cm ; (74)

the lower bound yields
�b
8
� GMBY

c2
(75)

which, since 8 > 2�, is a weaker statement than (68) .

7 Conclusions

We have explored the nature of a number of upper bounds on fundamental
quantities in nature. Some of this involves further elaboration and generali-
sation to higher dimensions of earlier upper bounds on forces and power in

7 for which if the apparent horizon lies in a spacelike hyperplane, one does have [66]

�b
4�

� GMADM

c2
(72)

.
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general relativity, but our discussion has focussed on a detailed analysis of our
conjecture that the ratio of the magnetic moment to angular momentum is
bounded above in nature. Suspicion falls on this combination for a maximum
principle because it has a natural Stoney-Planck unit that is independent of
the quantum of action, h, and so it entirely classical. We �nd evidence for
our conjecture that the ratio c�=JG

1
2 is bounded by a quantity of order unity

by investigating a wide range of testing theoretical situations. In particular,
we veri�ed that such a conjecture holds for charged rotating black holes in
those theories for which exact solutions are available, including the Einstein-
Maxwell and dilaton theories, Kaluza-Klein theory, the Kerr-Sen black hole,
and the so-called STU family of charged rotating supergravity black holes.
We also discussed the current status of the Maximum Tension Conjecture,
the Dyson Luminosity Bound, and Thorne�s Hoop Conjecture and saw the
possible points of contact between them and our conjecture bounding �=J .
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