Show simple item record

dc.contributor.authorDesai, Amit Y.
dc.date.accessioned2007-10-19T14:25:37Z
dc.date.available2007-10-19T14:25:37Z
dc.date.issued2007-08
dc.identifier.urihttp://www.dspace.cam.ac.uk/handle/1810/194740
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/194740
dc.description.abstractHydroxyapatite [Ca10(PO4)6(OH)2, HA] is used in many biomedical applications including bone grafts and joint replacements. Due to its structural and chemical similarities to human bone mineral, HA promotes growth of bone tissue directly on its surface. Substitution of other elements has shown the potential to improve the bioactivity of HA. Magnetron co-sputtering is a physical vapour deposition technique which can be used to create thin coatings with controlled levels of a substituting element. Thin films of titanium-doped hydroxyapatite (HA-Ti) have been deposited onto silicon substrates at three different compositions. With direct current (dc) power to the Ti target of 5, 10, and 15W films with compositions of 0.7, 1.7 and 2.0 at.% titanium were achieved. As-deposited films, 1.2 μm thick, were amorphous but transformed into a crystalline film after heat-treatment at 700C. Raman spectra of the PO4 band suggests the titanium does not substitute for phosphorous. X-ray diffraction revealed the c lattice parameter increases with additional titanium content. XRD traces also showed titanium may be phase separating into TiO2, a result which is supported by analysis of the Oxygen 1s XPS spectrum. In-vitro observations show good adhesion and proliferation of human osteoblast (HOB) cells on the surface of HA-Ti coatings. Electron microscopy shows many processes (i.e. filopodia) extended from cells after day one in-vitro and a confluent, multi-layer of HOB cells after day three. These finding indicate that there may be potential for HA-Ti films as a novel implant coating to improve upon the bioactivity of existing coatings.en
dc.description.sponsorshipNational Science Foundation (US)en
dc.language.isoen_USen
dc.subjectHydroxyapatiteen
dc.subjectThin Filmen
dc.titleFabrication and Characterization of Titanium-doped Hydroxyapatite Thin Filmsen
dc.typeThesisen
dc.type.qualificationlevelMasters
dc.type.qualificationnameMaster of Philosophy (MPhil)
dc.publisher.institutionUniversity of Cambridge
dc.publisher.departmentDepartment of Physics
dc.identifier.doi10.17863/CAM.14178


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record