Show simple item record

dc.contributor.authorVavouri, Tanya
dc.contributor.authorWalter, Klaudia
dc.contributor.authorGilks, Walter R
dc.contributor.authorLehner, Ben
dc.contributor.authorElgar, Greg
dc.date.accessioned2011-06-14T14:30:41Z
dc.date.available2011-06-14T14:30:41Z
dc.date.issued2007-02-02
dc.identifierhttp://dx.doi.org/10.1186/gb-2007-8-2-r15
dc.identifier.urihttp://www.dspace.cam.ac.uk/handle/1810/237674
dc.descriptionRIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.
dc.description.abstractAbstract Background The human genome contains thousands of non-coding sequences that are often more conserved between vertebrate species than protein-coding exons. These highly conserved non-coding elements (CNEs) are associated with genes that coordinate development, and have been proposed to act as transcriptional enhancers. Despite their extreme sequence conservation in vertebrates, sequences homologous to CNEs have not been identified in invertebrates. Results Here we report that nematode genomes contain an alternative set of CNEs that share sequence characteristics, but not identity, with their vertebrate counterparts. CNEs thus represent a very unusual class of sequences that are extremely conserved within specific animal lineages yet are highly divergent between lineages. Nematode CNEs are also associated with developmental regulatory genes, and include well-characterized enhancers and transcription factor binding sites, supporting the proposed function of CNEs as cis-regulatory elements. Most remarkably, 40 of 156 human CNE-associated genes with invertebrate orthologs are also associated with CNEs in both worms and flies. Conclusion A core set of genes that regulate development is associated with CNEs across three animal groups (worms, flies and vertebrates). We propose that these CNEs reflect the parallel evolution of alternative enhancers for a common set of developmental regulatory genes in different animal groups. This 're-wiring' of gene regulatory networks containing key developmental coordinators was probably a driving force during the evolution of animal body plans. CNEs may, therefore, represent the genomic traces of these 'hard-wired' core gene regulatory networks that specify the development of each alternative animal body plan.
dc.language.isoen
dc.rightsAll Rights Reserved
dc.rights.urihttps://www.rioxx.net/licenses/all-rights-reserved/
dc.titleParallel evolution of conserved non-coding elements that target a common set of developmental regulatory genes from worms to humans
dc.typeArticle
dc.date.updated2011-06-14T14:30:41Z
dc.description.versionPublished version
dc.rights.holderVavouri et al.; licensee BioMed Central Ltd.
pubs.declined2017-10-11T13:54:28.694+0100


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record