Repository logo
 

Fluid-rock interactions in a carbon storage site analogue, Green River, Utah


Type

Thesis

Change log

Authors

Kampman, Niko 

Abstract

Reactions between CO2-charged brines and reservoir minerals might either enhance the long-term storage of CO2 in geological reservoirs or facilitate leakage by corroding cap rocks and fault seals. Modelling the progress of such reactions is frustrated by uncertainties in the absolute mineral surface reaction rates and the significance of other rate limiting steps in natural systems. This study uses the chemical evolution of groundwater from the Jurassic Navajo Sandstone, part of a leaking natural accumulation of CO2 at Green River, Utah, in the Colorado Plateau, USA, to place constraints on the rates and potential controlling mechanisms of the mineral-fluid reactions,under elevated CO2 pressures, in a natural system. The progress of individual reactions, inferred from changes in groundwater chemistry is modelled using mass balance techniques. The mineral reactions are close to stoichiometric with plagioclase and K-feldspar dissolution largely balanced by precipitation of clay minerals and carbonate. Mineral modes, in conjunction with published surface area measurements and flow rates estimated from hydraulic head measurements, are then used to quantify the kinetics of feldspar dissolution. Maximum estimated dissolution rates for plagioclase and K-feldspar are 2x10-14 and 4x10-16 mol·m-2·s-1, respectively. Fluid ion-activity products are close to equilibrium (e.g. DGr for plagioclase between -2 and -10 kJ/mol) and lie in the region in which mineral surface reaction rates show a strong dependence on DGr. Local variation in DGr is attributed to the injection and disassociation of CO2 which initially depresses silicate mineral saturation in the fluid, promoting feldspar dissolution. With progressive flow through the aquifer, feldspar hydrolysis reactions consume H+ and liberate solutes to solution which increase mineral saturation in the fluid and rates slow as a consequence. The measured plagioclase dissolution rates at low DGr would be compatible with far-from-quilibrium rates of ~1x10-13 mol·m-2·s-1 as observed in some experimental studies. This suggests that the discrepancy between field and laboratory reaction rates may in part be explained by the differences in the thermodynamic state of natural and experimental fluids, with field-scale reactions occurring close to equilibrium whereas most laboratory experiments are run far-from-equilibrium. Surface carbonate deposits and cementation within the footwall of the local fault systems record multiple injections of CO2 into the Navajo Aquifer and leakage of CO2 from the site over ca. 400,000 years. The d18O, d13C and 87Sr/86Sr of these deposits record rapid rates of CO2 leakage (up to ~1000 tonnes/a) following injection of CO2, but rates differ by an order of magnitude between each fault, due to differences in the fault architecture. Elevated pCO2 enhances rates of feldspar dissolution in the host aquifer and carbonate precipitation in fracture conduits. Silicate mineral dissolution rates decline and carbonate precipitation rates increase as pH and the CO2 charge dissipate. The Sr/Ca of calcite cements record average precipitation rates of ~2x10-6 mol/m2/s, comparable to laboratory derived calcite precipitation rates in fluids with elevated Mn/Ca and Fe/Ca, at cc of ~1 to 3. This suggests that far-from-equilibrium carbonate precipitation, which blocks fracture conduits and causes the leaking system to self-seal, driven by CO2 degassing in the shallow subsurface, can be accurately modeled with laboratory derived rates. Sandstones altered in CO2 leakage conduits exhibit extensive dissolution of hematite grain coatings and are chemically bleached as a result. Measurements of Eh-pH conditions in the modern fluid, and modeling of paleo-Eh-pH conditions using calcite Fe and Mn concentrations, suggests that the CO2-charged groundwaters are reducing, due to their low dissolved O2 content and that pH suppression due to high pCO2 is capable of dissolving and transporting large concentrations of metals. Exhumed paleo-CO2 reservoirs along the crest of the Green River anticline have been identified using volatile hosting fluid inclusions. Paleo-CO2-charged fluids mobilized hydrocarbons and CH4 from deeper formations, enhancing the reductive dissolution of hematite, which produced spectacular km-scale bleached patterns in these sediment.

Description

Pagination differs from hardbound copy deposited in Cambridge University Library.

Date

Advisors

Keywords

Isotope geochemistry, Geological CO2 storage

Qualification

Doctor of Philosophy (PhD)

Awarding Institution

University of Cambridge
Sponsorship
This work was funded by a post-graduate research grant from Shell Global Solutions International awarded to Niko Kampman.