Repository logo
 

Production of zinc substituted hydroxyapatite using various precipitation routes.


Change log

Authors

Shepherd, David 
Best, Serena M 

Abstract

Substituted hydroxyapatites have been investigated for use as bone grafts and have been investigated for many years. Zinc is of interest due to its potential to reduce bone resorption and antibacterial properties. However, it has proven problematic to substitute biologically significant levels of zinc into the crystal structure through wet chemical routes, whilst retaining the high temperature phase stability required for processing. The aim of this study is to investigate two different precipitation routes used to synthesize zinc substituted hydroxyapatite and to explore the effects of ammonia used in the reactions on the levels of zinc substituted into the crystal lattice. It was found that considerable amounts of ammonia are required to maintain a pH sufficiently high for the production of stoichiometric hydroxyapatite using a reaction between calcium nitrate, zinc nitrate and ammonium phosphate. X-ray fluorescence analysis showed that a significant proportion of the zinc added did not substitute into the hydroxyapatite lattice. Fourier transform infrared spectroscopy revealed the existence of a zinc-ammonia complex that, it is proposed, inhibits zinc substitution for calcium. It was found that by reacting orthophosphoric acid with calcium nitrate and zinc nitrate, the volume of ammonia required in the reaction was reduced and higher levels of zinc substitution were achieved, with up to 0.58 wt% incorporated into the hydroxyapatite lattice. The resulting products were found to be stoichiometric hydroxyapatite and did not appear to contain any extraneous calcium phosphate phases after heat treatment up to 1100 °C. X-ray diffraction and Rietveld analysis revealed that the effect of substituting zinc into the HA lattice was to decrease the a-lattice parameter whilst increasing the c-lattice. Transmission electron microscopy also showed that the incorporation of zinc reduced both the length and width of the precipitated crystals.

Description

Keywords

Ammonia, Bone Substitutes, Chemical Precipitation, Crystallization, Durapatite, Materials Testing, Zinc

Journal Title

Biomed Mater

Conference Name

Journal ISSN

1748-6041
1748-605X

Volume Title

8

Publisher

IOP Publishing