Repository logo
 

Functional recovery of a resilient hospital type


Type

Article

Change log

Authors

Short, CA 
Noakes, CJ 
Gilkeson, CA 
Fair, A 

Abstract

Four adaptation options for ‘Nightingale’-type hospital ward buildings devised with practising clinicians are presented and evaluated. The adaptations recover functionality in an archaic ward configuration by delivering care to current UK National Health Service (NHS) models whilst preserving resilience to summer overheating. The investigation builds on recent work that demonstrates the significant resilience to heatwaves enjoyed by such traditionally constructed communal dormitories, the dominant UK hospital type between the late 1850s and 1939. Nightingale wards are potentially well-ventilated naturally, with good dilution of airborne pathogens. Although condemned as outdated by health ministers in recent years, many remain in use. As financial retrenchment suggests economical, creative refurbishment of hospitals will be required rather than new-build and replacement, the authors argue for health estates’ strategies that place value on resilience in a changing climate. Proposed adaptation options are investigated to assess resulting internal airflows and patient exposure to airborne pathogens. Options are costed and payback periods calculated to the standard public sector methodology. The proposed adaptations save time and cost over new-build equivalents. Selection of the most appropriate option is dependent on the characteristics of the patient cohort and care required.

Description

Keywords

adaptation, airborne infection, climate change, hospitals, overheating, refurbishment, resilience, ventilation

Journal Title

Building Research and Information

Conference Name

Journal ISSN

0961-3218
1466-4321

Volume Title

Publisher

Informa UK Limited
Sponsorship
Department of Health (unknown)
Engineering and Physical Sciences Research Council (EP/G061327/1)
Four adaptation options for ‘Nightingale’-type hospital ward buildings devised with practising clinicians are presented and evaluated. The adaptations recover functionality in an archaic ward configuration by delivering care to current UK National Health Service (NHS) models whilst preserving resilience to summer overheating. The investigation builds on recent work that demonstrates the significant resilience to heatwaves enjoyed by such traditionally constructed communal dormitories, the dominant UK hospital type between the late 1850s and 1939. Nightingale wards are potentially well-ventilated naturally, with good dilution of airborne pathogens. Although condemned as outdated by health ministers in recent years, many remain in use. As financial retrenchment suggests economical, creative refurbishment of hospitals will be required rather than new-build and replacement, the authors argue for health estates’ strategies that place value on resilience in a changing climate. Proposed adaptation options are investigated to assess resulting internal airflows and patient exposure to airborne pathogens. Options are costed and payback periods calculated to the standard public sector methodology. The proposed adaptations save time and cost over new-build equivalents. Selection of the most appropriate option is dependent on the characteristics of the patient cohort and care required.