An ultrafast phase-change logic device driven by melting processes
View / Open Files
Authors
Loke, D
Skelton, JM
Wang, WJ
Lee, Taehoon
Zhao, R
Chong, TC
Elliott, Stephen
Publication Date
2014-09-02Journal Title
PNAS
ISSN
0027-8424
Publisher
PNAS
Volume
111
Pages
13272-13277
Language
en_US
Type
Article
Metadata
Show full item recordCitation
Loke, D., Skelton, J., Wang, W., Lee, T., Zhao, R., Chong, T., & Elliott, S. (2014). An ultrafast phase-change logic device driven by melting processes. PNAS, 111 13272-13277. https://doi.org/10.1073/pnas.1407633111
Abstract
The ultra-high demand for faster computers is currently tackled by traditional methods such as size-scaling (for increasing the number of devices), but this is rapidly becoming almost impossible, due to physical and lithographic limitations. To boost the speed of computers without increasing the number of logic devices, one of the most feasible solutions is to increase the number of operations performed by a device, which is largely impossible to achieve using current silicon-based logic devices. Multiple operations in phase-change-based logic devices have been achieved using crystallization; however, they can achieve mostly speeds of several 100’s of nanoseconds. A difficulty also arises from the trade-off between the speed of crystallization and long-term stability of the amorphous phase. We here instead control the process of melting through “pre-melting disordering” effects, while maintaining the superior advantage of phase-change-based logic devices over silicon-based logic devices. A melting speed of just 900 picoseconds was achieved to perform multiple Boolean algebraic operations (e.g. NAND, NOR and NOT). Ab initio molecular-dynamics simulations and in situ electrical characterization revealed the origin (i.e. bond-buckling of atoms) and kinetics (e.g. discontinuous-like behavior) of melting through “pre-melting disordering”, which were key to increasing the melting speeds. By a subtle investigation of the well-characterized phase-transition behavior, this simple method provides an elegant solution to boost significantly the speed of phase-change-based ‘in-memory’ logic devices, thus paving the way for achieving computers that can perform computations approaching terahertz processing rates.
Sponsorship
EPSRC (EP/I018050/1)
Identifiers
External DOI: https://doi.org/10.1073/pnas.1407633111
This record's URL: https://www.repository.cam.ac.uk/handle/1810/245672
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved