Repository logo
 

Systematic analysis of the role of RNA-binding proteins in the regulation of RNA stability.


Type

Article

Change log

Authors

Hasan, Ayesha 
Cotobal, Cristina 
Duncan, Caia DS 

Abstract

mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.

Description

Keywords

Gene Expression Regulation, Genome, Fungal, RNA Stability, RNA, Messenger, RNA-Binding Proteins, Schizosaccharomyces, Transcriptome, Untranslated Regions

Journal Title

PLoS Genet

Conference Name

Journal ISSN

1553-7390
1553-7404

Volume Title

10

Publisher

Public Library of Science (PLoS)
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/J007153/1)
This work was supported by a Biotechnology and Biological Sciences Research Council grant BB/J007153/1 to JM (http://www.bbsrc.ac.uk), a Masdar Institute fellowship to AH (http://www.masdar.ac.ae/) and a Herchel Smith Postdoctoral fellowship to CC (http://www.herchelsmith.cam.ac.uk). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.