Show simple item record

dc.contributor.authorEkholm, Tobiasen
dc.contributor.authorSmith, Ivanen
dc.date.accessioned2015-02-16T14:15:35Z
dc.date.available2015-02-16T14:15:35Z
dc.date.issued2015-01-09en
dc.identifier.citationJournal of the American Mathematical Society 2016, 29(1), 1-59. doi: http://dx.doi.org/10.1090/S0894-0347-2015-00825-6en
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/246791
dc.description.abstractWe show that if a closed orientable 2k-manifold K, k > 2, with Euler characteristic χ(K) ≠ -2 admits an exact Lagrangian immersion into C2k with one transverse double point and no other self intersections, then K is diffeomorphic to the sphere. The proof combines Floer homological arguments with a detailed study of moduli spaces of holomorphic disks with boundary in a monotone Lagrangian submanifold obtained by Lagrange surgery on K.en
dc.language.isoenen
dc.publisherAmerican Mathematical Societyen
dc.titleExact Lagrangian immersions with a single double pointen
dc.typeWebpages
prism.publicationDate2015en
rioxxterms.versionofrecord10.1090/S0894-0347-2015-00825-6en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2015-01-09en
rioxxterms.typeOtheren
pubs.funder-project-idEuropean Research Council (205349)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record