Atomic-scale and three-dimensional transmission electron microscopy of nanoparticle morphology
Authors
Leary, Rowan Kendall
Advisors
Midgley, Paul
Date
2015-02-03Awarding Institution
University of Cambridge
Author Affiliation
Department of Materials Science and Metallurgy
Qualification
Doctor of Philosophy (PhD)
Language
English
Type
Thesis
Metadata
Show full item recordCitation
Leary, R. K. (2015). Atomic-scale and three-dimensional transmission electron microscopy of nanoparticle morphology (Doctoral thesis). https://doi.org/10.17863/CAM.14282
Abstract
The burgeoning field of nanotechnology motivates comprehensive elucidation of nanoscale materials. This thesis addresses transmission electron microscope characterisation of nanoparticle morphology, concerning specifically the crystal- lographic status of novel intermetallic GaPd2 nanocatalysts and advancement of electron tomographic methods for high-fidelity three-dimensional analysis.
Going beyond preceding analyses, high-resolution annular dark-field imaging is used to verify successful nano-sizing of the intermetallic compound GaPd2. It also reveals catalytically significant and crystallographically intriguing deviations from the bulk crystal structure. So-called ‘non-crystallographic’ five-fold twinned nanoparticles are observed, adding a new perspective in the long standing debate over how such morphologies may be achieved.
The morphological complexity of the GaPd2 nanocatalysts, and many cognate nanoparticle systems, demands fully three-dimensional analysis. It is illustrated how image processing techniques applied to electron tomography reconstructions can facilitate more facile and objective quantitative analysis (‘nano-metrology’). However, the fidelity of the analysis is limited ultimately by artefacts in the tomographic reconstruction.
Compressed sensing, a new sampling theory, asserts that many signals can be recovered from far fewer measurements than traditional theories dictate are necessary. Compressed sensing is applied here to electron tomographic reconstruction, and is shown to yield far higher fidelity reconstructions than conventional algorithms. Reconstruction from extremely limited data, more robust quantitative analysis and novel three-dimensional imaging are demon- strated, including the first three-dimensional imaging of localised surface plasmon resonances. Many aspects of transmission electron microscopy characterisation may be enhanced using a compressed sensing approach.
Keywords
electron microscopy, tomography, catalyst, compressed sensing, nanoparticle, three-dimensional
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk
The following licence files are associated with this item: