Estimates of tropical bromoform emissions using an inversion method
View / Open Files
Publication Date
2014-01-28Journal Title
Atmospheric Chemistry and Physics
ISSN
1680-7316
Publisher
Copernicus Publishing
Volume
14
Pages
979-994
Language
English
Type
Article
Metadata
Show full item recordCitation
Ashfold, M., Harris, N., Manning, A., Robinson, A., Warwick, N., & Pyle, J. (2014). Estimates of tropical bromoform emissions using an inversion method. Atmospheric Chemistry and Physics, 14 979-994. https://doi.org/10.5194/acp-14-979-2014
Abstract
Bromine plays an important role in ozone chemistry in both the troposphere and stratosphere. When measured by mass, bromoform (CHBr3) is thought to be the largest organic source of bromine to the atmosphere. While seaweed and phytoplankton are known to be dominant sources, the size and the geographical distribution of CHBr3 emissions remains uncertain. Particularly little is known about emissions from the Maritime Continent, which have usually been assumed to be large, and which appear to be especially likely to reach the stratosphere. In this study we aim to reduce this uncertainty by combining the first multi-annual set of CHBr3 measurements from this region, and an inversion process, to investigate systematically the distribution and magnitude of CHBr3 emissions. The novelty of our approach lies in the application of the inversion method to CHBr3. We find that local measurements of a short-lived gas like CHBr3 can be used to constrain emissions from only a relatively small, sub-regional domain. We then obtain detailed estimates of CHBr3 emissions within this area, which appear to be relatively insensitive to the assumptions inherent in the inversion process. We extrapolate this information to produce estimated emissions for the entire tropics (defined as 20° S–20° N) of 225 Gg CHBr3 yr−1. The ocean in the area we base our extrapolations upon is typically somewhat shallower, and more biologically productive, than the tropical average. Despite this, our tropical estimate is lower than most other recent studies, and suggests that CHBr3 emissions in the coastline-rich Maritime Continent may not be stronger than emissions in other parts of the tropics.
Sponsorship
M. Ashfold thanks the Natural Environment
Research Council (NERC) for a research studentship, and is
grateful for support through the ERC ACCI project (project
number 267760). N. Harris is supported by a NERC Advanced
Research Fellowship. This work was supported through the EU
SHIVA project, through the NERC OP3 project, and NERC
grants NE/F020341/1 and NE/J006246/1. We also acknowledge
the Department of Energy and Climate Change for their support
in the development of InTEM (contract GA0201). For field site
support we thank S.-M. Phang, A. A. Samah and M. S. M. Nadzir
of Universiti Malaya, S. Ong and H. E. Ung of Global Satria,
Maznorizan Mohamad, L. K. Peng and S. E. Yong of the Malaysian
Meteorological Department, the Sabah Foundation, the Danum
Valley Field Centre and the Royal Society. This paper constitutes
publication no. 613 of the Royal Society South East Asia Rainforest
Research Programme.
Funder references
NERC (NE/C511248/1)
NERC (NE/F020341/1)
NERC (NE/J006246/1)
NERC (NE/G014655/1)
Identifiers
External DOI: https://doi.org/10.5194/acp-14-979-2014
This record's URL: https://www.repository.cam.ac.uk/handle/1810/247129
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/
Recommended or similar items
The following licence files are associated with this item: