Show simple item record

dc.contributor.authorSigle, Daniel Oen
dc.contributor.authorMertens, Janen
dc.contributor.authorHerrmann, Lars Oen
dc.contributor.authorBowman, Richarden
dc.contributor.authorIthurria, Sandrineen
dc.contributor.authorDubertret, Benoiten
dc.contributor.authorShi, Yumengen
dc.contributor.authorYang, Hui Yingen
dc.contributor.authorTserkezis, Christosen
dc.contributor.authorAizpurua, Javieren
dc.contributor.authorBaumberg, Jeremyen
dc.date.accessioned2015-03-23T11:58:53Z
dc.date.available2015-03-23T11:58:53Z
dc.date.issued2014-12-17en
dc.identifier.citationACS Nano 2015, 9(1): 825–830. doi:10.1021/nn5064198en
dc.identifier.issn1936-0851
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/247137
dc.description.abstractNanometre-sized gaps between plasmonically-coupled adjacent metal nanoparticles enclose extremely-localised optical fields which are strongly enhanced. This enables the dynamic investigation of nanoscopic amounts of material in the gap using optical interrogation. Here we use impinging light to directly tune the optical resonances inside the plasmonic nanocavity formed between single gold nanoparticles and a gold surface, filled with only yoctograms of semiconductor. The gold faces are separated by either monolayers of molybdenum disulphide (MoS_2) or two-unit-cell thick cadmium selenide (CdSe) nanoplatelets. This extreme confinement produces modes with hundred-fold compressed wavelength, which are exquisitely sensitive to morphology. Infrared scattering spectroscopy reveals how such nanoparticle-on-mirror modes directly trace atomic-scale changes in real time. Instabilities observed in the facets are crucial for applications such as heat-assisted magnetic recording that demand long-lifetime nanoscale plasmonic structures, but the spectral sensitivity also allows directly tracking photochemical reactions in these 2-dimensional solids.
dc.description.sponsorshipThis work was supported by the UK EPSRC grant EP/G060649/1, Defence Science and Technology Laboratory (DSTL), and ERC grant 320503 LINASS.
dc.languageEnglishen
dc.language.isoenen
dc.publisherAmerican Chemical Society
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTunable plasmonsen
dc.subject2D-materialsen
dc.subjectmolybdenum disulphideen
dc.subjectwaveguidesen
dc.subjectnanoparticlesen
dc.subjectnano-opticsen
dc.titleMonitoring Morphological Changes in 2D Monolayer Semiconductors Using Atom-Thick Plasmonic Nanocavitiesen
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/nn5064198.en
prism.endingPage830
prism.publicationDate2014en
prism.publicationNameACS Nanoen
prism.startingPage825
prism.volume9en
dc.rioxxterms.funderEPSRC
dc.rioxxterms.funderDSTL
dc.rioxxterms.funderERC
dc.rioxxterms.projectidEP/G060649/1
dc.rioxxterms.projectid320503 LINASS
rioxxterms.versionofrecord10.1021/nn5064198en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2014-12-17en
dc.contributor.orcidBowman, Richard [0000-0002-1531-8199]
dc.contributor.orcidBaumberg, Jeremy [0000-0002-9606-9488]
dc.identifier.eissn1936-086X
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/G060649/1)
pubs.funder-project-idEPSRC (EP/K028510/1)
pubs.funder-project-idEPSRC (EP/L027151/1)
pubs.funder-project-idEuropean Research Council (320503)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0
Except where otherwise noted, this item's licence is described as Creative Commons Attribution 4.0