Repository logo
 

Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment.


Change log

Authors

Eastmond, Peter J 
Astley, Holly M 
Parsley, Kate 
Aubry, Sylvain 
Williams, Ben P 

Abstract

Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate.

Description

Keywords

Arabidopsis, Carbohydrates, Carbon, Dicarboxylic Acids, Gene Expression Regulation, Plant, Gluconeogenesis, Lipid Metabolism, Mutation, Phosphoenolpyruvate Carboxylase, Pyruvate, Orthophosphate Dikinase, Pyruvic Acid, Seedlings, Seeds, Signal Transduction

Journal Title

Nat Commun

Conference Name

Journal ISSN

2041-1723
2041-1723

Volume Title

6

Publisher

Springer Science and Business Media LLC
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/I002243/1)
European Commission (253189)
BBSRC (P19982)
We thank the Biotechnology and Biology Sciences Research Council for funding J.M.H. (P18931 and a studentship to B.P.W.) and P.J.E. (BB/G009724/1 and BB/K002147/1), the Isaac Newton Trust and the Max-Planck Gesellschaft for funding and ATC for a CASE studentship to H.M.A.