Liquid ropes: a geometrical model for thin viscous jet instabilities.
View / Open Files
Authors
Brun, P-T
Audoly, Basile
Ribe, Neil M
Eaves, TS
Lister, John
Publication Date
2015-05-01Journal Title
Phys Rev Lett
ISSN
0031-9007
Publisher
American Physical Society (APS)
Volume
114
Number
174501
Language
English
Type
Article
Metadata
Show full item recordCitation
Brun, P., Audoly, B., Ribe, N. M., Eaves, T., & Lister, J. (2015). Liquid ropes: a geometrical model for thin viscous jet instabilities.. Phys Rev Lett, 114 (174501) https://doi.org/10.1103/PhysRevLett.114.174501
Abstract
Thin, viscous fluid threads falling onto a moving belt behave in a way reminiscent of a sewing machine, generating a rich variety of periodic stitchlike patterns including meanders, W patterns, alternating loops, and translated coiling. These patterns form to accommodate the difference between the belt speed and the terminal velocity at which the falling thread strikes the belt. Using direct numerical simulations, we show that inertia is not required to produce the aforementioned patterns. We introduce a quasistatic geometrical model which captures the patterns, consisting of three coupled ordinary differential equations for the radial deflection, the orientation, and the curvature of the path of the thread's contact point with the belt. The geometrical model reproduces well the observed patterns and the order in which they appear as a function of the belt speed.
Sponsorship
P.-T. B. was partially funded by the ERC Grant No. SIMCOMICS 280117.
Identifiers
External DOI: https://doi.org/10.1103/PhysRevLett.114.174501
This record's URL: https://www.repository.cam.ac.uk/handle/1810/248080
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved
Statistics