Show simple item record

dc.contributor.authorBritto, Sylviaen
dc.contributor.authorLeskes, Michalen
dc.contributor.authorHua, Xiaoen
dc.contributor.authorHébert, Claire-Aliceen
dc.contributor.authorShin, Hyeon Suken
dc.contributor.authorClarke, Simonen
dc.contributor.authorBorkiewicz, Olafen
dc.contributor.authorChapman, Karena Wen
dc.contributor.authorSeshadri, Ramen
dc.contributor.authorCho, Jaephilen
dc.contributor.authorGrey, Clareen
dc.date.accessioned2015-06-24T12:54:21Z
dc.date.available2015-06-24T12:54:21Z
dc.date.issued2015-06-08en
dc.identifier.citationJournal of the American Chemical Society 2015, 137 (26), pp 8499–8508. DOI: 10.1021/jacs.5b03395en
dc.identifier.issn0002-7863
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/248670
dc.description.abstractVanadium sulfide VS4 in the patronite mineral structure is a linear chain compound comprising vanadium atoms coordinated by disulfide anions [S2]2–. 51V NMR shows that the material, despite having V formally in the d1 configuration, is diamagnetic, suggesting potential dimerization through metal–metal bonding associated with a Peierls distortion of the linear chains. This is supported by density functional calculations, and is also consistent with the observed alternation in V–V distances of 2.8 and 3.2 Å along the chains. Partial lithiation results in reduction of the disulfide ions to sulfide S2–, via an internal redox process whereby an electron from V4+ is transferred to [S2]2– resulting in oxidation of V4+ to V5+ and reduction of the [S2]2– to S2– to form Li3VS4 containing tetrahedral [VS4]3– anions. On further lithiation this is followed by reduction of the V5+ in Li3VS4 to form Li3+xVS4 (x = 0.5–1), a mixed valent V4+/V5+ compound. Eventually reduction to Li2S plus elemental V occurs. Despite the complex redox processes involving both the cation and the anion occurring in this material, the system is found to be partially reversible between 0 and 3 V. The unusual redox processes in this system are elucidated using a suite of short-range characterization tools including 51V nuclear magnetic resonance spectroscopy (NMR), S K-edge X-ray absorption near edge spectroscopy (XANES), and pair distribution function (PDF) analysis of X-ray data.
dc.description.sponsorshipSB acknowledges Schlumberger Stichting Fund and European Research Council (EU ERC) for funding. JC thanks BK21 plus project of Korea. We thank Phoebe Allan and Andrew J. Morris, University of Cambridge, for useful discussions. We also thank Trudy Bolin and Tianpin Wu of Beamline 9-BM, Argonne National Laboratory for help with XANES measurements. The DFT calculations were performed at the UCSB Center for Scientific Computing at UC Santa Barbara, supported by the California Nanosystems Institute (NSF CNS-0960316), Hewlett-Packard, and the Materials Research Laboratory (DMR-1121053). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
dc.languageEnglishen
dc.language.isoenen
dc.publisherACS
dc.titleMultiple Redox Modes in the Reversible Lithiation of High-Capacity, Peierls-Distorted Vanadium Sulfideen
dc.typeArticle
dc.description.versionThis is the author accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/full/10.1021/jacs.5b03395.en
prism.endingPage8508
prism.publicationDate2015en
prism.publicationNameJournal of the American Chemical Societyen
prism.startingPage26
prism.volume137en
dc.rioxxterms.funderERC
rioxxterms.versionofrecord10.1021/jacs.5b03395en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2015-06-08en
dc.contributor.orcidGrey, Clare [0000-0001-5572-192X]
dc.identifier.eissn1520-5126
rioxxterms.typeJournal Article/Reviewen
rioxxterms.freetoread.startdate2016-06-08


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record