Repository logo
 

A computational study of the quantum transport properties of a Cu-CNT composite.


Change log

Authors

Ghorbani-Asl, Mahdi 
Bristowe, Paul D 
Koziol, Krzysztof 

Abstract

The quantum transport properties of a Cu-CNT composite are studied using a non-equilibrium Green's function approach combined with the self-consistent-charge density-functional tight-binding method. The results show that the electrical conductance of the composite depends strongly on CNT density and alignment but more weakly on chirality. Alignment with the applied bias is preferred and the conductance of the composite increases as its mass density increases.

Description

Keywords

0912 Materials Engineering

Journal Title

Phys Chem Chem Phys

Conference Name

Journal ISSN

1463-9076
1463-9084

Volume Title

17

Publisher

Royal Society of Chemistry (RSC)
Sponsorship
European Research Council (259061)
The European Research Council provided financial support for this work under the Seventh Framework Program FP7/2007-2013 (ERC grant agreement no. 259061). Computational support from the Cambridge High Performance Computing Cluster is gratefully acknowledged.