Show simple item record

dc.contributor.authorDavis, Nathaniel JLK
dc.contributor.authorBöhm, Marcus L
dc.contributor.authorTabachnyk, Maxim
dc.contributor.authorWisnivesky-Rocca-Rivarola, Florencia
dc.contributor.authorJellicoe, Tom C
dc.contributor.authorDucati, Caterina
dc.contributor.authorEhrler, Bruno
dc.contributor.authorGreenham, Neil C
dc.date.accessioned2015-07-27T13:43:14Z
dc.date.available2015-07-27T13:43:14Z
dc.date.issued2015-09-28
dc.identifier.citationNature Communications 2015, 6, 8259. doi: 10.1038/ncomms9259
dc.identifier.issn2041-1723
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/249086
dc.description.abstractMultiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.
dc.description.sponsorshipNJLKD thanks the Cambridge Commonwealth European and International Trust, Cambridge Australian Scholarships and Mr Charles K Allen for financial support. MLB thanks the German National Academic Foundation (“Studienstiftung”) for financial support. MT thanks the Gates Cambridge Trust, EPSRC and Winton Programme for Sustainability for financial support. F.W.R.R. gratefully thanks financial support from CNPq [Grant number 246050/2012-8]. C.D. acknowledges financial support from the EU [Grant number 312483 ESTEEM2]. This work was supported by the EPSRC [Grant numbers EP/M005143/1, EP/G060738/1, EP/G037221/1] and the ERC [Grant number 259619 PHOTO-EM].
dc.languageEnglish
dc.language.isoen
dc.publisherSpringer Science and Business Media LLC
dc.rightsCreative Commons Attribution 4.0
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleMultiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.
dc.typeArticle
dc.description.versionThis is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms9259
prism.number8259
prism.publicationDate2015
prism.publicationNameNat Commun
prism.volume6
dc.rioxxterms.funderEPSRC
dc.rioxxterms.funderEPSRC
dc.rioxxterms.funderEPSRC
dc.rioxxterms.funderERC
dc.rioxxterms.projectidEP/M005143/1
dc.rioxxterms.projectidEP/G060738/1
dc.rioxxterms.projectidEP/G037221/1
dc.rioxxterms.projectid259619 PHOTO-EM
dcterms.dateAccepted2015-08-03
rioxxterms.versionofrecord10.1038/ncomms9259
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2015-09-28
dc.contributor.orcidTabachnyk, Maxim [0000-0001-9390-3791]
dc.contributor.orcidJellicoe, Tom C [0000-0003-2729-6430]
dc.identifier.eissn2041-1723
rioxxterms.typeJournal Article/Review
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/G060738/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/M005143/1)
pubs.funder-project-idEngineering and Physical Sciences Research Council (EP/G037221/1)
pubs.funder-project-idEuropean Research Council (259619)
pubs.funder-project-idEuropean Commission (312483)
cam.issuedOnline2015-09-28


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0
Except where otherwise noted, this item's licence is described as Creative Commons Attribution 4.0