Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes
Journal Title
Organic Process Research & Development
ISSN
1083-6160
Publisher
American Chemical Society
Volume
19
Issue
8
Pages
1049-1053
Language
English
Type
Article
Metadata
Show full item recordCitation
Houben, C., Peremezhney, N., Zubov, A., Kosek, J., & Lapkin, A. (2015). Closed-Loop Multitarget Optimization for Discovery of New Emulsion Polymerization Recipes. Organic Process Research & Development, 19 (8), 1049-1053. https://doi.org/10.1021/acs.oprd.5b00210
Abstract
Self-optimization of chemical reactions enables faster optimization of reaction conditions or discovery of molecules with required target properties. The technology of self-optimization has been expanded to discovery of new process recipes for manufacture of complex functional products. A new machine-learning algorithm, specifically designed for multiobjective target optimization with an explicit aim to minimize the number of “expensive” experiments, guides the discovery process. This “black-box” approach assumes no a priori knowledge of chemical system and hence particularly suited to rapid development of processes to manufacture specialist low-volume, high-value products. The approach was demonstrated in discovery of process recipes for a semibatch emulsion copolymerization, targeting a specific particle size and full conversion.
Sponsorship
The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (EC FP7) Grant Agreement no. [NMP2-SL-2012-280827] and EPSRC project “Closed Loop Optimization for Sustainable Chemical Manufacture” [EP/L003309/1].
Funder references
EC FP7 CP (280827)
Identifiers
External DOI: https://doi.org/10.1021/acs.oprd.5b00210
This record's URL: https://www.repository.cam.ac.uk/handle/1810/249165
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/