Repository logo
 

Co-evolution of quaternary organization and novel RNA tertiary interactions revealed in the crystal structure of a bacterial protein-RNA toxin-antitoxin system.


Change log

Authors

Rao, Feng 
Short, Francesca L 
Voss, Jarrod E 
Blower, Tim R 
Orme, Anastasia L 

Abstract

Genes encoding toxin-antitoxin (TA) systems are near ubiquitous in bacterial genomes and they play key roles in important aspects of bacterial physiology, including genomic stability, formation of persister cells under antibiotic stress, and resistance to phage infection. The CptIN locus from Eubacterium rectale is a member of the recently-discovered Type III class of TA systems, defined by a protein toxin suppressed by direct interaction with a structured RNA antitoxin. Here, we present the crystal structure of the CptIN protein-RNA complex to 2.2 Å resolution. The structure reveals a new heterotetrameric quaternary organization for the Type III TA class, and the RNA antitoxin bears a novel structural feature of an extended A-twist motif within the pseudoknot fold. The retention of a conserved ribonuclease active site as well as traits normally associated with TA systems, such as plasmid maintenance, implicates a wider functional role for Type III TA systems. We present evidence for the co-variation of the Type III component pair, highlighting a distinctive evolutionary process in which an enzyme and its substrate co-evolve.

Description

Keywords

Bacterial Proteins, Bacterial Toxins, Catalytic Domain, Coliphages, Crystallography, X-Ray, Eubacterium, Evolution, Molecular, Models, Molecular, Nucleic Acid Conformation, Plasmids, Protein Multimerization, RNA, Bacterial, Ribonucleases

Journal Title

Nucleic Acids Res

Conference Name

Journal ISSN

0305-1048
1362-4962

Volume Title

43

Publisher

Oxford University Press (OUP)
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/H002677/1)
This work was supported by grants from the Biotechnology and Biological Sciences Research Council, United Kingdom (BB/H002677/1 to G.P.C.S and B.F.L.); and the Wellcome Trust, United Kingdom (RG61065 to B.F.L); F.R. was funded by a Biotechnology and Biological Sciences Research Council studentship; F.L.S. held a Commonwealth Scholarship funded by the UK Department for Business, Innovation and Skills and the Cambridge Commonwealth Trust; J.E.V. was funded by a Herschel Smith Scholarship, University of Cambridge, United Kingdom.