Repository logo
 

Triazolophostins: a library of novel and potent agonists of IP3 receptors.

Published version
Peer-reviewed

Repository DOI


Type

Article

Change log

Authors

Vibhute, Amol M 
Konieczny, Vera 
Taylor, Colin W 
Sureshan, Kana M 

Abstract

IP3 receptors are channels that mediate the release of Ca(2+) from the intracellular stores of cells stimulated by hormones or neurotransmitters. Adenophostin A (AdA) is the most potent agonist of IP3 receptors, with the β-anomeric adenine contributing to the increased potency. The potency of AdA and its stability towards the enzymes that degrade IP3 have aroused interest in AdA analogs for biological studies. The complex structure of AdA poses problems that have necessitated optimization of synthetic conditions for each analog. Such lengthy one-at-a-time syntheses limit access to AdA analogs. We have addressed this problem by synthesizing a library of triazole-based AdA analogs, triazolophostins, by employing click chemistry. An advanced intermediate having all the necessary phosphates and a β-azide at the anomeric position was reacted with various alkynes under Cu(i) catalysis to yield triazoles, which upon deprotection gave triazolophostins. All eleven triazolophostins synthesized are more potent than IP3 and some are equipotent with AdA in functional analyses of IP3 receptors. We show that a triazole ring can replace adenine without compromising the potency of AdA and provide facile routes to novel AdA analogs.

Description

Keywords

Adenosine, Animals, Calcium, Cell Line, Chickens, Humans, Inositol 1,4,5-Trisphosphate Receptors, Molecular Docking Simulation, Small Molecule Libraries, Structure-Activity Relationship, Triazoles

Journal Title

Org Biomol Chem

Conference Name

Journal ISSN

1477-0520
1477-0539

Volume Title

13

Publisher

Royal Society of Chemistry (RSC)
Sponsorship
Biotechnology and Biological Sciences Research Council (BB/L000075/1)
Wellcome Trust (101844/Z/13/Z)
A. M. V. thanks the University Grants Commission (UGC) India for a Senior Research Fellowship (SRF) during this work. K. M. S. thanks the Department of Science and Technology (DST) India for Swarnajayanti Fellowship, Ramanujan Fellowship and for financial support. C. W. T. and V. K. were supported by the Wellcome Trust, Biotechnology and Biological Sciences Research Council, and the German Academic Exchange Service (V. K.).