Repository logo
 

On the emissions and transport of bromoform: sensitivity to model resolution and emission location


Change log

Abstract

jats:pAbstract. Bromoform (CHBr3) is a short-lived species with an important but poorly quantified ocean source. It can be transported to the Tropical Tropopause Layer (TTL), in part by rapid, deep convective lifting, from where it can influence the global stratospheric ozone budget. In a modelling study, we investigate the importance of the regional distribution of the emissions and of model resolution for the transport of bromoform to the TTL. We use two idealised CHBr3 emission fields (one coastal, one uniformly distributed across the oceans) implemented in high and coarse resolution (HR and CR) versions of the same global model and focus on February as the period of peak convection in the West Pacific. Using outgoing long-wave radiation and precipitation as metrics, the HR version of the model is found to represent convection better. In the more realistic HR model version, the coastal emission scenario leads to 15–20 % more CHBr3 in the global TTL, and up to three times more CHBr3 in the TTL over the Maritime Continent, than when uniform emissions of the same tropical magnitude are employed. Using the uniform emission scenario in both model versions, the distribution of CHBr3 at 15.7 km (approximately the level of zero net radiative heating) is qualitatively consistent with the differing geographic distributions of convection. However, averaged over the whole tropics, the amount of CHBr3 in the TTL in the two model versions is similar. Using the coastal scenario, in which emissions are particularly high in the Maritime Continent because of its long coastlines, the mixing ratio of CHBr3 in the TTL is enhanced over the Maritime Continent in both model versions. The enhancement is larger, and the peak in CHBr3 mixing ratio occurs at a higher altitude, in the HR model version. Our regional-scale results indicate that using aircraft measurements and coarse global models to infer CHBr3 emissions will be very difficult, particularly if (as is possible) emissions are distributed heterogeneously and in regions of strong convective activity. In contrast, the global-scale agreement between our CR and HR calculations suggests model resolution is less vital for studies focussed on the transport of bromine into the global stratosphere. </jats:p>

Description

Keywords

37 Earth Sciences, 3701 Atmospheric Sciences, 13 Climate Action

Journal Title

Atmospheric Chemistry and Physics

Conference Name

Journal ISSN

1680-7367

Volume Title

15

Publisher

Copernicus Publishing on behalf of the European Geosciences Union
Sponsorship
Natural Environment Research Council (NE/J006246/1)
European Research Council (267760)
Natural Environment Research Council (NE/G014655/1)
NERC (NE/C511248/1)
This work was supported through the ERC ACCI project (project no. 267760), and by NERC through grant nos. NE/J006246/1 and NE/F1016012/1. N. R. P. Harris was supported by a NERC Advanced Research Fellowship (NE/G014655/1).