Repository logo
 

Limitations on Fluid Grid Sizing for Using Volume-Averaged Fluid Equations in Discrete Element Models of Fluidized Beds


Change log

Authors

Boyce, CM 
Holland, DJ 
Scott, SA 
Dennis, JS 

Abstract

Bubbling and slugging fluidization were simulated in 3D cylindrical fluidized beds using a discrete element model with computational fluid dynamics (DEM-CFD). A CFD grid was used in which the volume of all fluid cells was equal. Ninety simulations were conducted with different fluid grid cell lengths in the vertical (dz) and radial (dr) directions to determine at what fluid grid sizes, as compared to the particle diameter (dp), the volume-averaged fluid equations broke down and the predictions became physically unrealistic. Simulations were compared with experimental results for time-averaged particle velocities as well as frequencies of pressure oscillations and bubble eruptions. The theoretical predictions matched experimental results most accurately when dz = 3-4 dp, with physically unrealistic predictions produced from grids with lower dz. Within the valid range of dz, variations of dr did not have a significant effect on the results.

Description

Keywords

4004 Chemical Engineering, 40 Engineering

Journal Title

Industrial and Engineering Chemistry Research

Conference Name

Journal ISSN

0888-5885
1520-5045

Volume Title

54

Publisher

American Chemical Society (ACS)
Sponsorship
CMB acknowledges the Gates Cambridge Trust for funding his research.