Repository logo
 

Long-Term Passivation of Strongly Interacting Metals with Single-Layer Graphene.


Change log

Authors

Weatherup, Robert S 
D'Arsié, Lorenzo 
Cabrero-Vilatela, Andrea 
Caneva, Sabina 
Blume, Raoul 

Abstract

The long-term (>18 months) protection of Ni surfaces against oxidation under atmospheric conditions is demonstrated by coverage with single-layer graphene, formed by chemical vapor deposition. In situ, depth-resolved X-ray photoelectron spectroscopy of various graphene-coated transition metals reveals that a strong graphene-metal interaction is of key importance in achieving this long-term protection. This strong interaction prevents the rapid intercalation of oxidizing species at the graphene-metal interface and thus suppresses oxidation of the substrate surface. Furthermore, the ability of the substrate to locally form a passivating oxide close to defects or damaged regions in the graphene overlayer is critical in plugging these defects and preventing oxidation from proceeding through the bulk of the substrate. We thus provide a clear rationale for understanding the extent to which two-dimensional materials can protect different substrates and highlight the key implications for applications of these materials as barrier layers to prevent oxidation.

Description

Keywords

Graphene, Passivation, Chemical Vapor Deposition (CVD), Nickel (Ni), X-ray photoelectron spectroscopy (XPS)

Journal Title

J Am Chem Soc

Conference Name

Journal ISSN

0002-7863
1520-5126

Volume Title

137

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/K016636/1)
European Research Council (279342)
European Commission Horizon 2020 (H2020) Marie Sk?odowska-Curie actions (656870)
European Commission (285275)
RSW acknowledges a Research Fellowship from St. John’s College, Cambridge and a Marie Skłodowska-Curie Individual Fellowship (Global) under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation programme. LD and SC acknowledge EPSRC Doctoral Training Awards and AC-V acknowledges a Conacyt Cambridge Scholarship and the Roberto Rocca Fellowship. S.H. acknowledges funding from ERC grant InsituNANO (no. 279342). This research was partially supported by the EUFP7 Work Programme under grant GRAFOL (project reference 285275), and EPSRC under grant GRAPHTED (project reference EP/K016636/1).