Repository logo
 

Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds.


Change log

Authors

Davidenko, Natalia 
Bax, Daniel V 
Schuster, Carlos F 
Farndale, Richard W 
Hamaia, Samir W 

Abstract

Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and proliferation on collagen materials were unaffected by UV cross-linking. UV irradiation may therefore be used to provide relatively low level cross-linking of collagen without loss of biological functionality.

Description

Keywords

Animals, Binding Sites, Cattle, Cell Adhesion, Cell Line, Tumor, Cell Proliferation, Collagen Type I, Humans, Microscopy, Electron, Scanning, Tissue Scaffolds, Ultraviolet Rays

Journal Title

J Mater Sci Mater Med

Conference Name

Journal ISSN

0957-4530
1573-4838

Volume Title

27

Publisher

Springer Science and Business Media LLC
Sponsorship
British Heart Foundation (None)
European Research Council (320598)
EPSRC (via University of Leeds) (unknown)
Wellcome Trust (094470/Z/10/Z)
British Heart Foundation (RG/15/4/31268)
The authors would like to thank the British Heart Foundation (Grants NH/11/1/28922 and RG/15/4/31268), The Welcome Trust (Grant 094470/Z/10/Z), the ERC Advanced Grant 320598 3D-E and EPSRC Doctoral Training Account for providing financial support for this project. D. V. Bax is funded by the Peoples Programme of the EU 7th Framework Programme (RAE no: PIIF-GA-2013-624904) and also supported by an EPSRC IKC Proof of Concept Award.