Show simple item record

dc.contributor.authorLeclercq, Colinen
dc.contributor.authorPartridge, Jamie Len
dc.contributor.authorAugier, Pierreen
dc.contributor.authorDalziel, Stuarten
dc.contributor.authorKerswell, Richarden
dc.date.accessioned2016-01-15T13:52:58Z
dc.date.available2016-01-15T13:52:58Z
dc.date.issued2016-02-24en
dc.identifier.citationLeclercq et al. Journal of Fluid Mechanics (2016) Vol. 791, pp. 608-630. doi: 10.1017/jfm.2016.44en
dc.identifier.issn0022-1120
dc.identifier.urihttps://www.repository.cam.ac.uk/handle/1810/253304
dc.description.abstractEfforts to model accretion disks in the laboratory using Taylor–Couette flow apparatus are plagued with problems due to the substantial impact the end-plates have on the flow. We explore the possibility of mitigating the influence of these end-plates by imposing stable stratification in their vicinity. Numerical computations and experiments confirm the effectiveness of this strategy for restoring the axially-homogeneous quasi-Keplerian solution in the unstratified equatorial part of the flow for sufficiently strong stratification and moderate layer thickness. If the rotation ratio is too large, however, (e.g. Ωₒ/Ωᵢ = (rᵢ/rₒ) ^(3/2) where Ωₒ/Ωᵢ is the angular velocity at the outer/inner boundary and ri/ro is the inner/outer radius) the presence of stratification can make the quasi-Keplerian flow susceptible to the stratorotational instability. Otherwise (e.g. for Ωₒ/Ωᵢ = (rᵢ/rₒ) ^(1/2) ) our control strategy is successful in reinstating a linearly-stable quasi-Keplerian flow away from the end-plates. Experiments probing the nonlinear stability of this flow show only decay of initial finite-amplitude disturbances at a Reynolds number Re = O(10⁴). This observation is consistent with most recent computational (Ostilla-Mónico et al. 2014) and experimental results (Edlund & Ji 2014) at high Re, and reinforces the growing consensus that turbulence in cold accretion disks must rely on additional physics beyond that of incompressible hydrodynamics.
dc.description.sponsorshipWe gratefully acknowledge the support of EPSRC under grant EP/K034529/1.
dc.languageEnglishen
dc.language.isoenen
dc.publisherCambridge University Press
dc.titleUsing stratification to mitigate end-effects in quasi-Keplerian Taylor-Couette flowen
dc.typeArticle
dc.description.versionThis is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/jfm.2016.44en
prism.endingPage630
prism.publicationDate2016en
prism.publicationNameJournal of Fluid Mechanicsen
prism.startingPage608
prism.volume791en
dc.rioxxterms.funderEPSRC
dc.rioxxterms.projectidEP/K034529/1
rioxxterms.versionofrecord10.1017/jfm.2016.44en
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserveden
rioxxterms.licenseref.startdate2016-02-24en
dc.contributor.orcidDalziel, Stuart [0000-0002-8487-2038]
dc.contributor.orcidKerswell, Richard [0000-0001-5460-5337]
dc.identifier.eissn1469-7645
rioxxterms.typeJournal Article/Reviewen
pubs.funder-project-idEPSRC (EP/K034529/1)
rioxxterms.freetoread.startdate2016-08-24


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record