Repository logo
 

Research data supporting "Carrier Localization in the Vicinity of Dislocations in InGaN"


No Thumbnail Available

Type

Dataset

Change log

Authors

Massabuau, Fabien C-P. 
Chen, Peiyu 
Horton, Matthew K. 
Rhode, Sneha L. 
Ren, Christopher X. 

Description

FIG. 1. AFM (a), SEM (b), panchromatic CL (c), and ADF-STEM (d) performed on the same micrometre-scale area. To guide the eye, a few dislocations are indicated by arrows in each picture. (e) High-resolution (HR) STEM image of the dislocation indicated by a square in (a)-(d), enabling the identification of the core structure (here dissociated 7/4/8/5-atom ring), and (f) geometric phase analysis (GPA) showing the e_xx strain component of the dislocation core region.

FIG. 2. Schematic showing the electron probe in the SEM-CL scanning across a V-pit. The scale of the schematic, although indicative, is representative of the experimental conditions in which the experiment was conducted. Distance to nearest neighbor dependence of the intensity ratio (a)(c) and energy shift (b)(d) measured at the center (a)(b) and facet (c)(d) of the V-pits.

FIG. 3. (a) Histogram of the number of In-N chains as a function of the number of indium atoms in the chains, located within a 10 A radius centered on the dislocation, in the case of a random distribution of indium (i.e. initial configuration of the simulation) or segregation of indium (i.e. equilibrium configuration of the simulation). Abstract representation of the data in (a), in the case of a random distribution (b) or segregation (c) of indium atoms.

FIG. 4. ADF-STEM image of the clustered dislocations 26 (a) and 87 (b). The white strain-related contrast between the neighboring dislocations is indicated by an arrow. Aberration-corrected HAADF-STEM image of the core of dislocation 26 (dissociated 7/4/8/4/9-atom ring)(c) and 87 (undissociated double 5/6-atom ring)(d). An ABSF-filter (Average Background Subtraction Filter) has been applied to (c) and (d) in order to remove noise from the images.

FIG. 5. 16K CL integrated intensity (a)(c) and peak emission energy (b)(d) maps of isolated

(a)(b) and clustered (c)(d) dislocations. To guide the eye, the position of the bright spots, directly observable in (a) and (c), is indicated by circles in all the maps. To emphasize the relative variations in intensity and energy between isolated and clustered configurations, a common color scale is used in (a) and (c) and in (b) and (d).

Version

Software / Usage instructions

.tif, .xlsx

Keywords

Publisher

University of Cambridge
Sponsorship
This work was supported by the EC [FP7/2007-2013 279361], EPSRC, ESTEEM2 and Cambridge Philosophical Society.
Relationships
Supplements: