Repository logo
 

Large-scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting slabs


Change log

Authors

Deuss, A 

Abstract

jats:titleAbstract</jats:title>jats:pThe mantle transition zone is delineated by seismic discontinuities around 410 and 660 km, which are generally related to mineral phase transitions. Study of the topography of the discontinuities further constrains which phase transitions play a role and, combined with their Clapeyron slopes, what temperature variations occur. Here we use jats:italicP</jats:italic> to jats:italicS</jats:italic> converted seismic waves or receiver functions to study the topography of the mantle seismic discontinuities beneath Europe and the effect of subducting and ponding slabs beneath southern Europe on these features. We combine roughly 28,000 of the highest quality receiver functions into a common conversion point stack. In the topography of the discontinuity around 660 km, we find broadscale depressions of 30 km beneath central Europe and around the Mediterranean. These depressions do not correlate with any topography on the discontinuity around 410 km. Explaining these strong depressions by purely thermal effects on the dissociation of ringwoodite to bridgmanite and periclase requires unrealistically large temperature reductions. Presence of several wt % water in ringwoodite leads to a deeper phase transition, but complementary observations, such as elevated Vp/Vs ratio, attenuation, and electrical conductivity, are not observed beneath central Europe. Our preferred hypothesis is the dissociation of ringwoodite into akimotoite and periclase in cold downwelling slabs at the bottom of the transition zone. The strongly negative Clapeyron slope predicted for the subsequent transition of akimotoite to bridgmanite explains the depression with a temperature reduction of 200–300 K and provides a mechanism to pond slabs in the first place.</jats:p>

Description

Keywords

mantle transition zone, receiver functions, ponding slabs

Journal Title

Journal of Geophysical Research: Solid Earth

Conference Name

Journal ISSN

2169-9313
2169-9356

Volume Title

121

Publisher

American Geophysical Union (AGU)
Sponsorship
European Research Council (204995)
SC is funded by the Drapers’ Company Research Fellowship through Pembroke College, Cambridge, UK. AD was funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/20072013/ERC grant agreement 204995) and by a Philip Leverhulme Prize.