Default mode network connectivity during task execution
View / Open Files
Publication Date
2015-07-26Journal Title
NeuroImage
ISSN
1053-8119
Publisher
Elsevier
Volume
122
Pages
96-104
Language
English
Type
Article
Metadata
Show full item recordCitation
Vatansever, D., Menon, D., Manktelow, A., Sahakian, B., & Stamatakis, E. (2015). Default mode network connectivity during task execution. NeuroImage, 122 96-104. https://doi.org/10.1016/j.neuroimage.2015.07.053
Abstract
Initially described as task-induced deactivations during goal-directed paradigms of high attentional load, the unresolved functionality of default mode regions has long been assumed to interfere with task performance. However, recent evidence suggests a potential default mode network involvement in fulfilling cognitive demands. We tested this hypothesis in a finger opposition paradigm with task and fixation periods which we compared with an independent resting state scan using functional magnetic resonance imaging and a comprehensive analysis pipeline including activation, functional connectivity, behavioural and graph theoretical assessments. The results indicate task specific changes in the default mode network topography. Behaviourally, we show that increased connectivity of the posterior cingulate cortex with the left superior frontal gyrus predicts faster reaction times. Moreover, interactive and dynamic reconfiguration of the default mode network regions' functional connections illustrates their involvement with the task at hand with higher-level global parallel processing power, yet preserved small-world architecture in comparison with rest. These findings demonstrate that the default mode network does not disengage during this paradigm, but instead may be involved in task relevant processing.
Keywords
Default mode network, Finger opposition task, Functional connectivity, Graph theory, Hierarchical clustering
Sponsorship
The Evelyn Trust (RUAG/018) provided the required funding for this research. Additionally, D Vatansever is funded by the Yousef Jameel Academic Program administered via the Cambridge Commonwealth, European and International Trust; DK Menon is supported by funding from the NIHR Cambridge Biomedical Centre (RCZB/004), and an NIHRSenior Investigator Award (RCZB/014), and EA Stamatakis is funded by the Stephen Erskine Fellowship Queens' College Cambridge. We would also like to thank Sanja Abbott for programming the stimulus delivery, Dr. Guy Williams and Victoria Lupson and the rest of the staff in the Wolfson Brain Imaging Centre (WBIC) at Addenbrooke's Hospital for their assistance in scanning. Last but not least, we thank all the participants for their contribution to this study.
Funder references
Evelyn Trust (unknown)
Identifiers
External DOI: https://doi.org/10.1016/j.neuroimage.2015.07.053
This record's URL: https://www.repository.cam.ac.uk/handle/1810/253434
Rights
Attribution 2.0 UK: England & Wales
Licence URL: http://creativecommons.org/licenses/by/2.0/uk/
Recommended or similar items
The following licence files are associated with this item: