Repository logo
 

Single shot three-dimensional pulse sequence for hyperpolarized 13 C MRI.

Published version
Peer-reviewed

Repository DOI


Change log

Authors

Wang, Jiazheng 
Wright, Alan J 
Hu, De-En 
Brindle, Kevin M 

Abstract

PURPOSE: Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstrate its capability to generate 13 C MR images in tumor-bearing mice injected with hyperpolarized [1-13 C]pyruvate. METHODS: The pulse sequence acquires a stack-of-spirals at two spin echoes after a single excitation pulse and encodes the kz-dimension in an interleaved manner to enhance robustness to B0 inhomogeneity. Spectral-spatial pulses are used to acquire dynamic 3D images from selected hyperpolarized 13 C-labeled metabolites. RESULTS: A nominal spatial/temporal resolution of 1.25 × 1.25 × 2.5 mm3  × 2 s was achieved in tumor images of hyperpolarized [1-13 C]pyruvate and [1-13 C]lactate acquired in vivo. Higher resolution in the z-direction, with a different k-space trajectory, was demonstrated in measurements on a thermally polarized [1-13 C]lactate phantom. CONCLUSION: The pulse sequence is capable of imaging hyperpolarized 13 C-labeled substrates at relatively high spatial and temporal resolutions and is robust to moderate system imperfections. Magn Reson Med 77:740-752, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Description

Keywords

imaging, lactate, metabolism, pyruvate, spiral trajectory, tumors, Animals, Carbon Isotopes, Female, Imaging, Three-Dimensional, Lactic Acid, Magnetic Resonance Imaging, Mice, Mice, Inbred C57BL, Neoplasms, Experimental, Phantoms, Imaging, Pyruvic Acid

Journal Title

Magn Reson Med

Conference Name

Journal ISSN

0740-3194
1522-2594

Volume Title

77

Publisher

Wiley
Sponsorship
The work was supported by a Cancer Research UK Programme grant (17242) to KMB and by the CRUK-EPSRC Imaging Centre in Cambridge and Manchester (16465). JW was also supported, in part, by a grant from the Danish Strategic Research Council (LIFE-DNP: Hyperpolarized magnetic resonance for in vivo quantification of lipid, sugar and amino acid metabolism in lifestyle related diseases).